
Holographic Lattices 

Jerome Gauntlett

with 

Aristomenis Donos

Christiana Pantelidou



Holographic Lattices

CFT with a deformation by an operator that breaks 
translation invariance

Why?

• Translation invariance         momentum is conserved, 
hence no dissipation and hence DC response are infinite. 
To model more realistic metallic behaviour or insulating 
behaviour we can use a lattice

)

• The lattice deformation can lead to novel ground states 
at T=0. Can also model metal-insulator transitions

• Formal developments: thermo-electric DC 
conductivities in terms of black hole horizon data

  
  Analogous to 
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Plan

• Lattice with global U(1) symmetry and          . In Einstein-
Maxwell theory.  Coherent metals.

• Q-lattices, using scalars and global symmetry. Can give coherent 
metals, incoherent metals and insulators and transitions between 
them.

• Drude physics and coherent metals

• Helical lattices in D=5 pure gravity.  Universal deformation. 
Coherent metals. Comments on calculating Greens functions

µ(x)

Three examples:



Drude Model of transport in a metal  
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Coherent metals arise when momentum is nearly 
conserved [Hartnoll,Hofman]   

• Drude physics doesn’t require quasi-particles

• In nature there are also “incoherent” metals without 
Drude peaks

• Insulators with                                 at T=0

• Similar comments apply to thermal conductivity

Not dominated by single time scale ⌧

Q = �̄rT

�DC = ̄DC = 0

Of particular interest to realise these in holography



Holographic CFTs at finite charge density

 Focus on d=3 CFT and consider D=4 Einstein-Maxwell theory:

Admits              vacuumAdS4 d=3 CFT with global U(1)
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At = µ(1� r+
r
)

Electric flux

T
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U
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2)

Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is 
translationally invariant

µ

T=0 limit: AdS4AdS2 ⇥ R2

 UV IR

d=3 CFT



Need to solve PDEs in two variables

[Horowitz, Santos,Tong]   

Construct lattice black holes dual to CFT with 

By perturbing the black hole and using holographic tools we 
can calculate the electric conductivity and find a delta 
function at 

µ(x) = µ+A cos kx

! = 0 [Hartnoll]   

µ(x)

At(x, r) ⇠ µ(x) +O(
1

r

) r ! 1

After constructing black holes, one can perturb, again solving 
PDEs, to extract thermo-electric conductivities

gµ⌫(x, r)
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e.g. Monochromatic lattice:
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Find Drude peaks at low T



UV data

IR fixed point

Coherent metal phases

AdS-RN

At T=0 the black holes approach                           in the IRAdS2 ⇥ R2

AdS2 ⇥ R2

perturbed by irrelevant operator with

k/µ

�(kIR) � 1

A/µ

Don’t find exceptions to this behaviour even for dirty lattices e.g.

µ(x) = 1 +A

10X

n=1

cos(nk x+ ✓n) ,

Can be understood by 
analysing T=0 solutions:



Holographic Q-lattices 

• Choose             so that AdS-RN is a solution at 

• Now                in CFT.  Want to build a holographic lattice 
by deforming with the operator

• The model has a gauge           and a global           symmetryU(1) U(1)

Exploit the global bulk symmetry to break translations so that 
we only have to solve ODEs

• Illustrative D=4 model 

L = R� 1

2
|@'|2 + V (|'|)� Z(|'|)

4
F 2

V, Z ' = 0

' $ O
O
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Homogeneous and anisotropic and periodic holographic lattices

Ansatz for fields

U = r2 + . . . ,

a = µ+
q

r
. . . ,

UV expansion:

e2V1 = r2 + . . . e2V2 = r2 + . . .

� =
�

r3��
+ . . .

UV data: T/µ �/µ3�� k/µ

ds

2 = �Udt

2 + U

�1
dr

2 + e

2V1
dx

2 + e

2V2
dy

2

At = a(r)

'(r, x) = �(r)eikx



For small deformations from AdS-RN we find Drude peaks
corresponding to coherent metals. 

�/µk/µ

AdS2 ⇥ R2

AdS-RN
This can be understood 
by examining T=0 
behaviour of solutions:

New

For larger deformations, for specific models, we find a transition 
to new behaviour.  The new ground states can be both insulators
and also incoherent metals!

See also: [Gouteraux][Andrade,Withers]



Study a universal helical deformation that applies to all  d=4 CFTS

D=4 CFTs with a Helical Twist

First recall the Bianchi            Lie algebra

L2 = @
x2

L3 = @
x3

[L2, L3] = 0

L

1 = @

x1 + k(x3@x2 � x2@x3)

[L1, L2] = �kL3 [L1, L3] = kL2

x3

x1

x2

V II0
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Useful to introduce the left-invariant one-forms

!1 = dx1

!2 = cos (kx1) dx2 � sin (kx1) dx3,

!3 = cos (kx1) dx2 + sin (kx1) dx3

We want to explicitly break the                spatial symmetryISO(3)

of the CFT down to Bianchi V II0

Achieve by introducing suitable sources for the stress tensor

Equivalently, consider CFT not on           but on R1,3

ds2 = �dt2 + !2
1 + e2↵0 !2

2 + e�2↵0 !2
3

with            parametrising the deformationk,↵0



Study in holography by considering

S =

Z
d

5
x

p
�g(R+ 12)

This is a consistent truncation of all                     solutions in 
string/M-theory. Hence analysis applies to entire class of CFTs

AdS5 ⇥M

ds2 = �g f2 dt2 + g�1dr2 + h2 !2
1 + r2

�
e2↵ !2

2 + e�2↵ !2
3

�
Ansatz

Equations of motion

f 0 = . . . , g0 = . . . , h00 = . . . , ↵00 = . . .

IR boundary conditions: smooth black hole horizon



Expand functions at UV boundary

f =1 +

k2

12r2
(1� cosh 4↵0)�

ch
r4

+

k4

96r4
(3 + 4 cosh 4↵0 � 7 cosh 8↵0) + log r() + . . . ,

g =r2
✓
1� k2

6r2
(1� cosh 4↵0)�

M

r4
+ log r() + . . .

◆
,

h =r

✓
1� k2

4r2
(1� cosh 4↵0) +

ch
r4

+ log r() + . . .

◆
,

↵ =↵0 �
k2

4r2
sinh 4↵0 +

c↵
r4

+ log r() + . . . .

Source parameters: ↵0, k Vev parameters: ch, c↵,M

Log terms arise because of conformal anomaly

Together these give            of helically deformed CFTTµ⌫

Tµ
µ =

k4

3

(cosh(8↵0)� cosh(4↵0))

Parameter count: expect two parameter family of black 
holes labelled by            ,          (for fixed dynamical scale)k/T ↵0



Results of numerics

At T=0 the solution might be approaching  AdS5?

α0= 14
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T=0 interpolating solutions

Consider small perturbation of      about AdS5 which 
one solve in terms of Bessel functions

↵

Suggests the IR expansion as r ! 0

g = r2 +
k3↵̄2

+

r
e�4k/h̄+r(1 +

5h̄+

8k
r +O(r2)) + · · · ,

f = f̄+ � k3↵̄2
+f̄+

2r3
e�4k/h̄+r(1 +

5h̄+

8k
r +O(r2)) + · · · ,

h = h̄+r �
k3↵̄2

+h̄+

2r2
e�4k/h̄+r(1 +

21h̄+

8k
r +O(r2)) + · · · ,

↵ =
↵̄+2k2p
⇡h̄+r2

K2

✓
2k

h̄+r

◆
+ · · · ,

Note that there can be a renormalisation of length scales



Length scale renormalisation

�̄ ⌘

s
g
x1x1(r ! 0)

g
x1x1(r ! 1)
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Note similar T=0 ground states have been seen before

s-wave superconductors [Horowitz,Roberts]    

p-wave superconductors [Basu,He,Mukherjee,Rozali,Shieh]
[Donos,JPG,Pantelidou]    

Chemical potential lattice          with no zero-mode                                      
[Chesler,Lucas,Sachdev]    

µ(x)



Greens functions for thermal conductivity at finite T

Perturb black hole �(ds2) = 2�g
tx1(t, r)dtdx1 + 2 �g23(t, r)!2!3

Obtain 2x2 matrix of Greens functions

Focus on G11(!) = hT tx1T tx1i T(!) ⌘ G11

i!
and recall
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DC calculation

si = cit

hOj(t)i =
Z

dt0Gji(t� t0)si(t
0)

Linear in time source

hOj(t)i = [tGji(! = 0)� �ji] ci

�ji = lim
!!0

Im
Gji(!)

!



Switch on source for            linear in time

For               construct 

Can also evaluate     at the black hole horizon. Need to 
ensure regularity at the black hole horizon

�g
rx

(r)

• Calculating  DC   

)

static susceptibility

Q

plus

Evaluate the stress tensor to find

̄

T tx1

�g
tx1 = �cF (r)t+ h

tx1(r) �g23(r)

k = @t

Einstein’s equations

Q = 2
p
�grrkx1

@rQ = 0

T tx1 = Q� ctT x1x1

G
T

tx1
T

tx1 (! = 0) = T x1x1)
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• Considered three classes of holographic lattices.                

The Drude physics can be understood by the 
appearance of translationally invariant ground states 
in the far IR:                       or AdS2 ⇥ R2 AdS5

• For larger deformations the Q-lattices realised 
incoherent metallic an insulating phases

The new T=0 ground states break translation invariance 

The phases have novel thermoelectric transport properties
(holography is the only tool to access this)

Summary/Final Comments

• All of these included a realisation of strongly coupled 
Drude physics at small T, at least for small deformations



• What is the landscape of such spatially modulated ground 
states?

• How far can we generalise the DC calculation?

Summary/Final Comments


