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ABJM Theory

 It describes the low energy physics of

U(N) U(N)

ABJM is a N=6 3d SCFT 
 Chern-Simons-matter-theory:  

2 CS + 4 hypers bifundamental

Φi, i = 1 . . . 4

U(N)k � U(N)�k

λ =
N
k

N M2-branes on C4/Zk

’t Hooft coupling

[Aharony, Bergman, 
Jafferis, Maldacena]



Dual to M-theory on AdS4

By AdS/CFT, conjecturally dual to 

M-theory on AdS4 � S7/Zk
�

S7/Zk

�F4 = N

S7 � CP3 � S1

Large k, it is dual to 

II A on AdS4 � CP3

gs � 1
k



ABJM on S^3 gives matrix model

We can use Localization on S^3 to compute exact partition 
function

ZS3(N, k) = eSABJM � Z1�loop =
[Kapustin, Yaakov, Willett]
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Perturbative partition function is 
Airy function

gs =
2πi
k

In a large N expansion we can systematically compute 
corrections to the free energy 

1. Matrix model is similar to pure CS on Lens space L(2,1) ~ 
~topological string via large N duality [Marino, Drukker, 
Putrov; Marino, Putrov] 

2. Fermi gas approach: one-dim ideal Fermi gas of N 
particles [Marino, Putrov]

1) N � 1, λ, F(gs, λ) =
�

g�0
g2g�2
s Fg(λ)

2) N � 1, k, F(N, k) =
�

g�0
N2�2gFg(k)

’t Hooft expansion

M-theory expansion

F = lnZS3



IIA Worldsheet + 
D2-brane instantons

Perturbative partition function is 
Airy function

Free energy receives both perturbative and nonperturbative 
corrections

Nonperturbative corrections have interpretation of 

[Marino, Drukker, Putrov]

Fg(λ) = Fptg (λ) + Fnonptg (λ)

Fnonptg (λ) � O
�
e�2π

�
λ, e�πk

�
λ
�
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IIA Worldsheet + 
D2-brane instantons

Large N, λ

Perturbative partition function is 
Airy function

Free energy receives both perturbative and nonperturbative 
corrections

Nonperturbative corrections have interpretation of 

 …can be neglected in the thermodynamic limit
[Marino, Drukker, Putrov]

Fg(λ) = Fptg (λ) + Fnonptg (λ)

Fnonptg (λ) � O
�
e�2π

�
λ, e�πk

�
λ
�



Ai(z) =
1
2πi

� eiπ/3�

e�iπ/3�
dt exp

� t3
3 � zt

�

Perturbative partition function is 
Airy function

The perturbative part, on the other hand, can be exactly 
resummed to obtain an Airy function!

[Fuji, Hirano, Moriyama; Marino, Putrov ]

� Ai
��π2k

2

�1/3 �
N � k

24 � 1
3k

��

ZS3 � expFpert(gs, λ)

Also valid in  
M-theory limit: 

small k!!



ABJM dual to M-theory on AdS4

ABJM (N, k) � M-theory on AdS4 � S7/Zk

ZAdS4 = ZCFT3

Since by AdS/CFT

We can use the master equation

…to extract important information about 
quantum corrections in M-theory/String theory



lnZS3 = �
�
2π
3 k1/2N3/2 � 1

4 lnN+ . . .

For example, in a large N expansion

ABJM dual to M-theory on AdS4
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4 lnN+ . . .

Compute in M-theory by summing over field configurations

ZAdS4 � eS(EH+Λ)+1�loop+...

For example, in a large N expansion

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]

ABJM dual to M-theory on AdS4



lnZS3 = �
�
2π
3 k1/2N3/2 � 1

4 lnN+ . . .

Compute in M-theory by summing over field configurations

ZAdS4 � eS(EH+Λ)+1�loop+...

For example, in a large N expansion

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]

ABJM dual to M-theory on AdS4



lnZS3 = �
�
2π
3 k1/2N3/2 � 1

4 lnN+ . . .

Compute in M-theory by summing over field configurations

ZAdS4 � eS(EH+Λ)+1�loop+...

For example, in a large N expansion

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]

ABJM dual to M-theory on AdS4



lnZS3 = �
�
2π
3 k1/2N3/2 � 1

4 lnN+ . . .

Compute in M-theory by summing over field configurations

ZAdS4 � eS(EH+Λ)+1�loop+...

For example, in a large N expansion

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]

Goal here is to compute all 1/N 
corrections!!

[JG, Dabholkar, Drukker]

ABJM dual to M-theory on AdS4
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Localization in Supergravity 

STEP 1



Localization &  
Black hole entropy

Recently we have assisted to spectacular progress in the 
computation of exact Black Hole entropy using Localisation 
techniques in Supergravity!

d(q) = ZAdS2 [Sen]

Path integral in Supergravity localizes onto finite dimensional 
integral! In the case of N=8 SUGRA we can actually recover 
integers!! (Cf Dabholkar’s talk)

ZAdS2 =

� ε+i�

ε�i�

dt
t9/2 e

t+ π2q2
4t + . . . � N

[JG, Dabholkar, Murthy]^3
[Murthy, Gupta; Murthy, Reys]



[Duistermaat, Heckman, Bott, 
 Witten, Pestun…]

Localization gives exact 
computation

Consider supersymmetric path integral and deform it by a 
Q-exact term

and chose supersymmetric deformation Q^2V=0. Then it is 
easy to show that the deformation is exact

∫
e−S → Z(t) =

∫
e−S−tQV

∂Z(t)
∂t = 0 ⇒ Z(0) = Z(∞)

Z(∞) = lim
t→∞

∫
e−S−tQV =

∑

σ∈{QV=0}
e−S(σ) × sdet(QV′′)

In this limit path integral becomes 1-loop exact!!
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e−S → Z(t) =

∫
e−S−tQV

∂Z(t)
∂t = 0 ⇒ Z(0) = Z(∞)

Z(∞) = lim
t→∞

∫
e−S−tQV =

∑

σ∈{QV=0}
e−S(σ) × sdet(QV′′)

In this limit path integral becomes 1-loop exact!!

σ �= EOM



M-theory truncation on S7/Zk

Use a 4-dim consistent truncation down to AdS4 and apply 
localization at the level of the Off-shell theory.

N=2 truncation consists of two vector multiplets coupled to a 
tensor multiplet. Prepotential is cubic (CP^3 cohomology).

Dualise the theory to obtain square root prepotential plus a 
hypermultiplet charged under the gauge group.

Same truncation for Sasaki-Einstein                                     , 
relevant for less supersymmetric quivers

SE7 � KE6 � S1

[Gauntlett, Kim, Varela, 
Waldram]



4D superconformal gravity

Embed truncation in the 4d N=2 superconformal formalism 
of off-shell supergravity with electric gaugings

[de Wit, Lauers, Proeyen,…]

• Vector mult.: (Aμ,Ωi,X,Yij)

(eaμ,ψi
μ,T�

ab, . . .)

Relevant Multiplets

• Weyl mult.:

• Hyper mult.: (Aα
i , ξα,Fα

i)

i = 1, 2 � SU(2) R-symmetry
α = 1, 2 � Sp(2)



4D superconformal gravity

Embed truncation in the 4d N=2 superconformal formalism 
of off-shell supergravity with electric gaugings

[de Wit, Lauers, Proeyen,…]

• Vector mult.: (Aμ,Ωi,X,Yij)

(eaμ,ψi
μ,T�

ab, . . .)

Relevant Multiplets

• Weyl mult.:

• Hyper mult.: (Aα
i , ξα,Fα

i)
Auxiliary fields 

play very important role 
in Localization! 

i = 1, 2 � SU(2) R-symmetry
α = 1, 2 � Sp(2)



2-derivative Lagrangian

F(X0,X1) =
�
X0(X1)3N = 2 prepotential

2-derivative bosonic Lagrangian with square root prepotential 

S =

�
d4x�g

�
NIJX̄IXJ

�R
6 + D

�
+ NIJ�X̄I�XJ � 1

8NIJYijIYJ
ij +

�
��Ai

β�A α
i �

�R
6 � D

2

�
Ai

βA α
i + FiβF α

i + 4g2Ai
βX̄α

γXγ
δA δ

i + gAi
βYjkα

γ A γ
k εij

�
d β
α

�

NIJ =
1
2i (FIJ � F̄IJ)

NIJFIμνFJμν + . . .

Couplings are derivatives of prepotential which give rise to 
intricate couplings.



2-derivative Lagrangian

F(X0,X1) =
�
X0(X1)3N = 2 prepotential

2-derivative bosonic Lagrangian with square root prepotential 

Charged hypers lead to negative cosmological constant:

tIAα
i = PI(iσ3)αβAβ

i , I = 0, 1

S =

�
d4x�g

�
NIJX̄IXJ

�R
6 + D

�
+ NIJ�X̄I�XJ � 1

8NIJYijIYJ
ij +

�
��Ai

β�A α
i �

�R
6 � D

2

�
Ai

βA α
i + FiβF α

i + 4g2Ai
βX̄α

γXγ
δA δ

i + gAi
βYjkα

γ A γ
k εij

�
d β
α

�
NIJFIμνFJμν + . . .



2-derivative Lagrangian

F(X0,X1) =
�
X0(X1)3N = 2 prepotential

2-derivative bosonic Lagrangian with square root prepotential 

Charged hypers lead to negative cosmological constant:

tIAα
i = PI(iσ3)αβAβ

i , I = 0, 1

S =

�
d4x�g

�
NIJX̄IXJ

�R
6 + D

�
+ NIJ�X̄I�XJ � 1

8NIJYijIYJ
ij +

�
��Ai

β�A α
i �

�R
6 � D

2

�
Ai

βA α
i + FiβF α

i + 4g2Ai
βX̄α

γXγ
δA δ

i + gAi
βYjkα

γ A γ
k εij

�
d β
α

�
NIJFIμνFJμν + . . .



On-shell solution

AdS4 Metric: 

Attractor solution: all scalars are functions of N,k

XI = iJI, J = const

YI = �2i J
I

L ,

Aα
i � δα

i

Fα
i = 0

2gJIPI = �1
L

Vec: Hyper:

Gauging leads to hyperbolic space:

ds2 = L2
� dr2
r2 � 1 + (r2 � 1)dΩ23

�

For symmetry reasons: Fμν = Tμν = 0

�

S7/Zk

�F4 = (2π)6N � N =
6L6vol(Ŝ7)

k(2π)6



Renormalized On-shell action 

S =

�
d4x�gL =

�
dΩ3

� �

1
dr(r2 � 1)L =� �

�
R � 2Λ|on�shellLet’s compute on-shell action
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Renormalized On-shell action 

Add boundary couterterms to remove cutoff dependent terms

S =

�
dΩ3

� r0

1
dr(r2 � 1)L =

� r30
3 � r0 +

2
3

�
C

S � S+

�

�AdS4

Lb

Ren(S) = �π
�
2

3 k1/2N3/2

[Marino, Drukker, Putrov]

�
R � 2Λ|on�shellLet’s compute on-shell action

Exact matching with ABJM!



STEP 2

Off-shell instanton 
solutions 



Localization equations & 
Solutions 

S � S� t
�

Q
�
(QΨ)†Ψ

�
Deform action by introducing Q-exact term

Bosonic part of deformation is definite positive!

QV|bosonic = (QΨ)†QΨ � 0

Q2 = �Hopf

Theory localizes very off-shell

lim
t��

e�S�tQV Localizes
=�

�

σ�{QΨ=0}

e�S(σ)



Localization equations & 
Solutions 

Assume there’s no background fluctuations!  
Solve off-shell BPS equations for vectors & hypers on AdS4

QΨvec = 0
XI =

CI

r + iJI, YI = �2i J
I

L + 2C
I

r2
CI : parametrize 2-dim space of off-shell solutions
All the other fields remain in their attractor background!



Localization equations & 
Solutions 

Assume there’s no background fluctuations!  
Solve off-shell BPS equations for vectors & hypers on AdS4

QΨvec = 0
XI =

CI

r + iJI, YI = �2i J
I

L + 2C
I

r2
CI : parametrize 2-dim space of off-shell solutions
All the other fields remain in their attractor background!

[JG, Dabholkar, Murthy]
Similar solutions found on AdS2xS^2 in the 

 context of black hole entropy
Cf Dabholkar’s talk



Localization equations & 
Solutions 

Assume there’s no background fluctuations!  
Solve off-shell BPS equations for vectors & hypers on AdS4

QΨhyper = 0

Aα
i � δα

i , Fα
i = 2gC

IPI
r (σ3)αi

Remark: the hyper solution still solves all BPS equations!  
On the contrary, for vectors, only half of them are satisfied!



STEP 3

The Airy function 



Off-shell renormalised action

ZAdS4 =

�
e�SSUGRA �

�

σ�QΨ=0
e�SSUGRA(σ) � Zdet

Localization leads to huge simplification! It reduces a very 
complicated path integral to a finite dimensional integral!!

σ � CI
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Off-shell renormalised action

ZAdS4 =

�
e�SSUGRA �

�

σ�QΨ=0
e�SSUGRA(σ) � Zdet

Here we focus only on the “classical” part!

Need to compute complicated integral on 
 AdS4 and renormalise!

Localization leads to huge simplification! It reduces a very 
complicated path integral to a finite dimensional integral!!

σ � CI



Off-shell renormalised action

Given the square root prepotential, the action on the 
localisation locus is a non-trivial problem! But action happens 
to be integrable!!

Ren(S) = S [X(r),Y(r),Fα
i (r)] + bnd ct

ZAdS4 =

�
dC0dC1 exp[�Ren S(C0,C1)]



Off-shell renormalised action

Given the square root prepotential, the action on the 
localisation locus is a non-trivial problem! But action happens 
to be integrable!!

ZAdS4 =

�
dφ0dφ1 exp

�
2
�
2

π
�
3

�
φ0(φ1)3 � Nφ1 � kφ0

�

φ � (J + iC) � X(r = 1)
[JG, Dabholkar, Drukker]

Ren(S) = S [X(r),Y(r),Fα
i (r)] + bnd ct

ZAdS4 =

�
dC0dC1 exp[�Ren S(C0,C1)]



Airy function

Massaging a bit the renormalised action…

ZAdS4 =

�
dφ0dφ1 exp

�

��k
��

φ0 �
�
2

πk
�
3

(φ1)3/2
�2

+
2

3π2k (φ1)3 � Nφ1

�

�
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Airy function

Massaging a bit the renormalised action…

ZAdS4 =

�
dφ0dφ1 exp

�

��k
��

φ0 �
�
2

πk
�
3

(φ1)3/2
�2

+
2

3π2k (φ1)3 � Nφ1

�

�

If measure is instead flat for                 , then we can perform the 
Gaussian integral and obtain:

(
�
φ0,φ1)

ZAdS4 ∝
∫ ε+i∞

ε−i∞
dμ exp

( 2
3π2k μ

3 − Nμ
)
, μ = φ1

∝ Ai
(
(
π2

2 k)1/3N
)

[JG, Dabholkar, Drukker]



Comparison with exact answer

∝ Ai
(
(
π2

2 k)1/3N
)

We obtain

but exact answer contains renormalizations of N

∝ Ai
(
(
π2

2 k)1/3
(
N− k

24 − 1
3k

))

These are easy to implement once we know the renormalized 
value of N already at the “classical level”

ZAdS4 =

∫
exp

[
2
√
2

π
√
3

√
φ0(φ1)3 − (N+ . . .)φ1 − kφ0

]

[Bergman, Hirano]
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Comments & Remarks

• More general quiver diagrams which preserve at least N=3 SUSY (12 Q’s) also 
show Airy function behaviour. This is consistent with our computation which only 
relies on N=2 SUGRA (8 Q’s)! 

• ABJ matrix model ( U(N)xU(N+M) ) can also be solved exactly; the perturbative 
partition function is given by same Airy function but with additional 
renormalizations to N. 

• On the M-theory side we can turn on torsion on             . This corresponds to 
fractional holonomy                   ; The same computation will follow and Airy 
function is found. 

• The bulk computation was done in a frame where all gaugings are electric. 
However, the truncation corresponds to mixed magnetic-electric gaugings. This 
might explain measure (work in progress…). 

• It should be possible to do the computation from the world-sheet and argue using 
localisation that the partition function is a topological string partition function 
(work in progress…).
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