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ABJM Theory

ABJM is a N=6 3d SCFT
Chern-Simons-matter-theory: —
2CS +4 hypers bifundamental Jafferis, Maldacenal]

kXU(N

t Hooft coupling
N
A=
i=1. k

't describes the low energy physics of
N M2-branes on C*/Z,



Dual to M-theory on Ad$S4

By AdS/CFT, conjecturally dual to

M-theory on AdS,4 x S’ /7

/ *F4 =N
S’ /7

Large k, it is dual to

Il A on AdS, x CP°

1
S7ECP3XS1 gSO(E



ABJM on $73 gives matrix model

We can use Localization on S”A3 to compute exact partition

function
[Kapustin, Yaakov, Willett]
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ABJM on $3 gives matrix model

We can use Localization on S 3 to compute exact partition

function
[Kapustin, Yaakov, Willett]

Zss(N, k) = @ ABIM Z1_loop =

b

— N 1 2 «inh Hi—H; 2 2 qinh (Y=Y
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> = v j j 12
N'= J (2m)N (2m) AT . [1;; [2 COSh(Ui;VI)}
\_

Vector multiplet scalar localizes in the Cartan directions

ONxN = diag (.Ui)



Perturbative partition function is
Airy function

In a large N expansion we can systematically compute
corrections to the free energy F — InZgs

't Hooft expansion

HN>1,A, F(gs,A) =) g °F 2ri

_ - g>0 Tk
M-theory expansion

2)N> 1k, F(N,k) =" N"29Fy(k)
g>0
1. Matrix model is similar to pure CS on Lens space L(2,1) ~
~topological string via large N duality [Marino, Drukker,
Putrov; Marino, Putrov]

2. Fermi gas approach: one-dim ideal Fermi gas of N
particles [Marino, Putrov]



Perturbative partition function is
Airy function

Free energy receives both perturbative and nonperturbative
corrections

o t onpt
Fg(A) = Fg (A) + Fg" (A)
Nonperturbative corrections have interpretation of

IIA Worldsheet +  F7o7Pt()) . ©) (e—znﬁ’ e—nk\/}_\)
D2-brane instantons
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Perturbative partition function is
Airy function

Free energy receives both perturbative and nonperturbative

Fo(A) = F5H(A) + FRPY(A)

Nonperturbative corrections have interpretation of

IIA Worldsheet +  F7o7Pt()) . ©) (e—znﬁ’ e—nk\/}_\>
D2-brane instantons

[Marino, Drukker, Putrov]

...can be neglected in the thermodynamic limit

Large N, A



Perturbative partition function is
Airy function

The perturbative part, on the other hand, can be exactly
resummed to obtain an Airy function!

ZSS ~ eXP Fpert(gS,A)

’-[2 k 1/3 k 1 Also valid in
Aj _ N -theory limit:
A ( 2 ) ( 24 3k ) Y tsma;lyk!! t

[Fuji, Hirano, Moriyama; Marino, Putrov ]

1 eir[/3OO _ t3 —
Ai(Z) / dtexp | = — zt
e -

N 27-” —in/3 ~o _3



ABJM dual to M-theory on Ad$S4

Since by AdS/CFT

ABJUM (N, k) ~ M-theory on AdS,; x S’ /Zj
We can use the master equation

Zads, = £CFT,

...to extract important information about
quantum corrections in M-theory/String theory
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ABJM dual to M-theory on Ad$S4

For example, in a large N expansion

\/E"W?NS/Z _ %th—k o

Compute in M-theory by summing over field configurations

lIIZSS —

- AS(EH+N)+1—loop+...
ZAO’S4 ~ @ ( ) P

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]



ABJM dual to M-theory on Ad$S4

For example, in a large N expansion

Vo 11/27\B/2

lIlZSB —

\.
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Compute in M-theory by summing over field configurations

ZAdS, CE

[Marino, Drukker, Putrov]

oS(EH+N)-

+1—/loop+-...

J

[Marino, Sen, Bhattacharya, Grassi]



ABJM dual to M-theory on Ad$S4

For example, in a large N expansion

.

V2 1
InZgs = \/;nkVZNS/QI 7N+

Compute in M-theory by summing over field configurations

S(EH+MN)4+1—loop—+...
ZAO’S4 :Ee (EH+ )E P

J

L .

~\

y,

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]



ABJM dual to M-theory on Ad$S4

For example, in a large N expansion

V2 1 ’
InZgs = \/;nkVQNS/QI 7N+

Compute in M-theory by summing over field configurations

:| S(EH+AN -E‘I—IOO
ZAO’S4 e (EH+ )J P J

[Marino, Drukker, Putrov] [Marino, Sen, Bhattacharya, Grassi]

Goal here is to compute all I/N

corrections!!
[JG, Dabholkar, Drukker]

\ .
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J " Off-shell Instanton
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STEP 1

Localization rgravity




Localization &
Black hole entropy

Recently we have assisted to spectacular progress in the
computation of exact Black Hole entropy using Localisation

techniques in Supergravity!

d(q) = Zads.,

Path integral in Supergravity localizes onto finite dimensional
integral! In the case of N=8 SUGRA we can actually recover
integers!! (Cf Dabholkar’s talk)

8—|—IOO dt |7722
ZAdSQZ/ . 4? + ... €N
E

[Sen]

. {9/2
—100 [JG, Dabholkar, Murthy]A3
[Murthy, Gupta; Murthy, Reys]



Localization gives exact
computation

Consider supersymmetric path integral and deform it by a
Q-exact term

/e_s — Z(t) — /e—S—tQV [Duistermaat, Heckman, Bott,

Witten, Pestun...]

and chose supersymmetric deformation Q*2V=0. Then it is
easy to show that the deformation is exact

dZ (1)
ot

In this limit path integral becomes 1-loop exact!!

=0=Z(0) =Z(c0)

Z(o00) = lim [ e 571V = Z e>(9) x sdet(QV")
e oe{QV=0}



Localization gives exact
computation

Consider supersymmetric path integral and deform it by a
Q-exact term

/e_s — Z(t) — /e—S—tQV [Duistermaat, Heckman, Bott,

Witten, Pestun...]

and chose supersymmetric deformation Q*2V=0. Then it is
easy to show that the deformation is exact

dZ (1)
ot

In this limit path integral becomes 1-loop exact!!

=0=Z(0) =Z(c0)

Z(o00) = lim [ e 571V = Z e>(9) x sdet(QV")

oce{QV=0} o # EOM



S’ /7

Use a 4-dim consistent truncation down to AdS4 and apply
localization at the level of the Off-shell theory.

N=2 truncation consists of two vector multiplets coupled to a
tensor multiplet. Prepotential is cubic (CP"3 cohomology).

Dualise the theory to obtain square root prepotential plus a
hypermultiplet charged under the gauge group.

Same truncation for Sasaki-Einstein SE; ~ KEg % 81 :

relevant for less supersymmetric quivers Gauntlett, Kim, Varola

Waldram]



4D superconformal gravity

Embed truncation in the 4d N=2 superconformal formalism
of off-shell supergravity with electric gaugings

[de Wit, Lauers, Proeyen,...]

Relevant Multiplets

. Weyl mult: (€5 Wi Taps - - )
» Vector mult.: (A, Qi, X, Yi)
+ Hyper mult.. (A9, &%, F9)

i=1,2 € SU(2) R-symmetry
a=1,2¢cSp(2)



4D superconformal gravity

Embed truncation in the 4d N=2 superconformal formalism
of off-shell supergravity with electric gaugings

[de Wit, Lauers, Proeyen,...]

Relevant Multiplets

« Weyl mult.: (e,w wuv ab? T

» Vector mult.: AH,Q' X‘
—P Auxiliary fields

. Hyper mult: (A%, g ‘ play very important role
in Localization!

i=1,2 € SU(2) R-symmetry
a=1,2¢cSp(2)



2-derivative Lagrangian

2-derivative bosonic Lagrangian with square root prepotential

N = 2 prepotential F(X°,X") \/XO X1)3

1

S = / d*x\/g [N X'x! (/g + D) + NyoXox? — gN,J\”7’Y;} +
( VA ;VAS“ (5 ~ g) AlGAS + F gFS + 4g°A X XA +gA’ﬁYf"“y’Akyg,-,> daﬁ]
1 _
Niy = 2_i(FIJ — Fi)

Couplings are derivatives of prepotential which give rise to
intricate couplings.
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2-derivative Lagrangian

2-derivative bosonic Lagrangian with square root prepotential

N = 2 prepotential F(X°,X") \/XO X1)3

1

_ R _ )
S = / d*x\/g [N/JX’XJ (g + D) + NyoX ox’ — gN,JY’/’Y;} +
va.vae_ (D A LA+ FoFe f 4g°A ;XA XY A dr
—VARVA; 6 o )N T K AG A XA A d

Charged hypers lead to negative cosmological constant:

HAY = Py(io®)%LAP, 1 =0, 1



On-shell solution

ar?
AdS4 Metric:  ds® = L? (I’Q 3 | (’2 - 1)dQ§>
6L%vol(S7)
xFq = (2r)°N = N =
/87/Zk 4 ( ) k(21‘[)6
For symmetry reasons:  F,, =T,, =0

Attractor solution: all scalars are functions of N,k

Vee. X =i, J = const A x &7
ec: i Hyper:

1

Gauging leads to hyperbolic space: 2gJIP, — Z



Renormalized On-shell action

Let’'s compute on-shell action/ R — 2/\|on—shell

S:/d4x\/§£:/d§23/100dr(r2—1)£:%oo
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Renormalized On-shell action

Let’'s compute on-shell action/ R — 2/\|on—shell

S:/d§23/1rodr(12—1)£: (g— +§>C

S— S+ / Lp
OAdS,

Add boundary couterterms to remove cutoff dependent terms

2
Ren(S) = n;/_k1 [2N3/2
Exact matching with ABJM! [

Marino, Drukker, Putrov]



STEP 2

Off-shell instanton
solutions



Localization equations &
Solutions

Deform action by introducing Q-exact term

S—S—t) Q[QW)'W] Q= o

Bosonic part of deformation is definite positive!
C?V‘bosonic: — (QLIJ)TQLIJ >0

Theory localizes very oft-shell

lim e S—tQV Localizes Z e—S(U)

[— o0 —
occ{QW=0}




Localization equations &
Solutions

Assume there’s no background fluctuations!
Solve oft-shell BPS equations for vectors & hypers on AdS4

QLIJveC =0

/ / /
_C - i Y — oY :2%
p

r L

C' . parametrize 2-dim space of off-shell solutions

X/

All the other fields remain in their attractor background!



Localization equations &
Solutions

Assume there’s no background fluctuations!
Solve off-shell BPS equations for vectors & hypers on AdS4

QLIJveC =0

J _C

/ |
X '2r_2

C' ,
p IJ, IL

C' . parametrize 2-dim space of off-shell solutions

All the other fields remain in their attractor background!

Similar solutions found on AdS2xSA2 in the
[JG, Dabholkar, Murthy]

Cf Dabholkar’s talk

context of black hole entropy



Localization equations &
Solutions

Assume there's no background fluctuations!
Solve oft-shell BPS equations for vectors & hypers on AdS4

Qwhyper =0

C'P
AG o 67, F§=29-"(0°)3

Remark: the hyper solution still solves all BPS equations!

On the contrary, for vectors, only half of them are satisfied!



STEP 3

The Airy function



Off-shell renormalised action

Localization leads to huge simplification! It reduces a very
complicated path integral to a finite dimensional integral!!

—S —S
T /e SUGRA __y Z e suGra(0) Z ot
ocQW=0

g~ C
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Off-shell renormalised action

Localization leads to huge simplification! It reduces a very
complicated path integral to a finite dimensional integral!!

ZAdS4:/e—SSUGRA N Z e—SSUGRA(o)
occQW=0

g~ C

Here we focus only on the “classical” part!

Need to compute complicated integral on
AdS4 and renormalise!



Off-shell renormalised action

ZAdS4 — /dCOdC1 exp[—Ren S(CO, C1)]
Ren(S) =S [X(r), Y(r),Fi(r)] + bnd ct

Given the square root prepotential, the action on the
localisation locus is a non-trivial problem! But action happens
to be integrable!!



Off-shell renormalised action

ZAdS4 - /dCOdC1 exp[—Ren S(CO, C1)]

Ren(S) =S [X(r), Y(r),Fi(r)] + bnd ct

Given the square root prepotential, the action on the

localisation locus is a non-trivial problem! But action happens

to be integrable!!

ZAdS, = /d¢od¢1 exp

2./2

T3

P x (J+iC) ~ X(r

(@' — No' — kg°

[JG, Dabholkar, Drukker]

— 1)




Massaging a bit the renormalised action...

Zpds, = / dp°de’ exp

e

V2
rtkv/3

2
o)

2
32k

(¢")° — Ng'




Airy function

Massaging a bit the renormalised action...

B 2
/ 2 2
ZAdS4 _ /d¢0d¢1 eXp _k ( CPO L nl\(/\_/g (¢1 )3/2) _|_ 3n2k(¢1 )3 e N¢1

It measure is instead flat for (1/¢°, ¢'), then we can perform the
Gaussian integral and obtain:



Airy function

Massaging a bit the renormalised action...

_ 5 -
2 2
ZAdS4 _ /dCPOdCP1 exp _k (@ - nl\(/\_/é (§b1 )3/2> 4 3n2k(cp1 )3 o NCP1

It measure is instead flat for (1/¢°, ¢'), then we can perform the
Gaussian integral and obtain:

e-+Ioco 2 . 1
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Airy function

Massaging a bit the renormalised action...

_ 5 -
2 2
ZAdS4 _ /dCPOdCP1 exp _k (@ - nl\(/\_/g (QD1 )3/2> 4 3n2k(¢1 )3 o NCP1

It measure is instead flat for (1/¢°, ¢'), then we can perform the
Gaussian integral and obtain:

e-+Ioco 2 . 1
Zds, O /Eioo du exp (3n2ku — Nu> U= ¢

2
s AP [ (Z=k)1/3N

2 [JG, Dabholkar, Drukker]




Comparison with exact answer

We obtain '
x Ai | (

It

2

2

k)1/3N)

but exact answer contains renormalizations of N

2

< A [ (k)2 (N
(397 (

These are easy to implement once we know the renormalized

K 1
24 3k [Bergman, Hirano]

value of N already at the “classical level”

Zads, = / exp

2./2

1Y — (N +...)g

(e

h! — kop®
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Conclusions

Use Localisation in SUGRA on AdS4 ABJM partition function
on S~ 3 via Localization

We found a 2-dim space

of off-shell solutions )
ABJM matrix model can

be solved exactly

Path integral reduces Ai(2) ~ topological string
to a finite dimensional integral

Perturbative partition function

With an assumption for the measure is given by analytic Airy function

we find Airy function



More general quiver diagrams which preserve at least N=3 SUSY (12 Q’s) also

show Airy function behaviour. This is consistent with our computation which only
relies on N=2 SUGRA (8 Q's)!

ABJ matrix model ( U(N)xU(N+M) ) can also be solved exactly; the perturbative
partition function is given by same Airy function but with additional
renormalizations to N.

On the M-theory side we can turn on torsion on S’ /7, . This corresponds to

fractional holonomy /C3 ™ - The same computation will follow and Airy

K
function is found.

The bulk computation was done in a frame where all gaugings are electric.
However, the truncation corresponds to mixed magnetic-electric gaugings. This
might explain measure ( ).

It should be possible to do the computation from the world-sheet and argue using
localisation that the partition function is a topological string partition function

( )



