Holographic Fermi surfaces from top-down constructions

Steve Gubser

Based on 1112.3036, 1207.3352, 1312.7347 with O. DeWolfe and C. Rosen and 1411.5384 with C. Cosnier-Horeau

Eurostrings 2015, March 23, 2015

Contents

1	Intr	oduction	3					
	1.1 An overview of holographic fermions							
	1.2	A generic answer from AdS/CFT for the fermionic Green's function	8					
	1.3	The simplest supergravity calculation	9					
	1.4	Problems with holographic fermions and their solutions	10					
2	Sup	ergravity backgrounds and spinning branes	11					
3	 1.1 An overview of holographic fermions	15						
4	Green's functions and Fermi surfaces							
	4.1	Examples	19					
5	A te	ntative Luttinger count	26					
6	Sun	imary	27					

1. Introduction

Fermi surfaces at finite chemical potential μ are straightforward at weak coupling:

• System's response to adding a fermion is measured by Green's function:

 $G_{R}(t,x)=i\theta(t)\langle\{\psi^{\dagger}(t,x),\psi(0,0)\}\rangle_{\text{Fermi sea}}$

• Find a pole in Fourier space:

$$G_R(\omega, k) = \frac{Z}{\epsilon(k) - \mu - \omega - i\Gamma} + \dots$$
$$\approx \frac{Z}{v_F(k - k_F) - \omega - i\Gamma}$$

- $\Gamma \sim \omega^2$ + (finite temperature) in Landau theory: long-lived quasi-particles.
- I plotted $\operatorname{Im} \frac{1}{(k-1)-\omega-\frac{i}{10}(\omega^2+0.02)}$ to convey the idea.

3

Fermi surfaces arise in $\mathcal{N} = 4$ super-Yang-Mills and ABJM theory, exhibiting several different behaviors. Here are typical examples from $AdS_5 \times S^5$:

A significant caveat: states showing Fermi surfaces often have bosonic instabilities.

Here are typical examples from $AdS_4 \times S^7$.

The key question: Knowing the dual operator in $\mathcal{N} = 4$ SYM or ABJM theory, how can we *anticipate* whether there will be a Fermi surface, and/or estimate k_F ?

1.1. An overview of holographic fermions

• Study finite density theories in $\mathbf{R}^{2,1}$ at finite density by analyzing a dual black hole in AdS_4 with electric charge behind the horizon.

$$S = \int d^4x \, \left[R - \frac{1}{4} F_{\mu\nu}^2 + \frac{6}{L^2} \right]$$

 A_{μ} gauges in the bulk a U(1)symmetry of the boundary theory.

- Dual field theory (from coincident M2-branes) has fermionic operators $\mathcal{O}_{\gamma} \sim \operatorname{tr} \lambda X$ where λ is a fermion and X a boson. Trace is over color.
- Use AdS/CFT to compute $\langle \mathcal{O}_{\chi} \mathcal{O}_{\chi}^{\dagger} \rangle.$

horizon $r=r_{\rm u}$ + + + + + + AdS/CFT prescription is to insert a supergravity fermion from the boundary with \mathcal{O}_{χ} and see how

Electric field comes from charge behind horizon.

- Boundary theory is a strongly interacting CFT involving both fermions and bosons, so it's not *a priori* clear there should be fermi surfaces at all.
- But supergravity picture makes it fairly clear that there should be *if fermion charge is large enough*.

Gravitational attraction and electrostatic repulsion compete to determine behavior of test particles.

Back-reacted geometry is a domain wall from AdS_4 to $AdS_2 \times \mathbf{R}^2$.

Normalizable fermions at $\omega = 0$ and $k = k_F \neq 0$ stay above the horizon and below the boundary.

1.2. A generic answer from AdS/CFT for the fermionic Green's function

[Faulkner-Liu-McGreevy-Vegh 0907.2694], cf [S.S. Lee 0809.3402, Cubrovic-Zaanen-Schalm 0904.1993]

$$G(\omega,k) = \left\langle \mathcal{O}_{\chi}(\omega,\vec{k})\mathcal{O}_{\chi}^{\dagger}(-\omega,-\vec{k}) \right\rangle \approx \frac{h_1}{(k-k_F) - \frac{1}{v_F}\omega - h_2 e^{i\gamma} \omega^{2\nu_F}}$$

when $k \approx k_F$ and $\omega \approx 0$.

- A singularity in $G(\omega, k)$ at $\omega = 0$ and finite $k = k_F$ defines the presence of a Fermi surface.
- v_F is Fermi velocity.
- Assuming $\nu_F > 1/2$, low-energy dispersion relation is $\omega \approx v_F(k k_F)$.
- If $\nu_F > 1/2$ or if $e^{i\gamma}$ is nearly real, quasi-particles' width is much smaller than their energy.
- Can easily obtain $\nu_F \leq 1/2$, i.e. far from perturbative Landau regime.

1.3. The simplest supergravity calculation

[Faulkner et al '09; Hartman-Hartnoll 1003.1918; DeWolfe-Gubser-Rosen 1112.3036]

• Simplest charged black hole background is extremal $RNAdS_4$:

$$ds^{2} = \frac{r^{2}}{L^{2}}(fdt^{2} - d\vec{x}^{2}) - \frac{L^{2}}{r^{2}}\frac{dr^{2}}{f} \qquad A_{\mu}dx^{\mu} = \mu\left(1 - \frac{r_{H}}{r}\right)$$

$$f = 1 - 4\left(\frac{r_{H}}{r}\right)^{3} + 3\left(\frac{r_{H}}{r}\right)^{4} \qquad (1)$$

• Simplest fermion to consider obeys massless charged Dirac equation:

$$\gamma^{\mu} (\nabla_{\mu} - iqA_{\mu})\chi = 0.$$
⁽²⁾

Fermi surfaces in boundary theory correspond to fermion normal modes in the bulk.

• Supergravity gives relations $q = \frac{1}{\sqrt{2L}}$ and $\mu = \frac{\sqrt{6}r_H}{L}$. Generally we'll choose L = 1. If also $r_H = 1$, then one finds a normal mode at

$$\omega = 0 \qquad \qquad k = k_F \equiv 0.9185 \,. \tag{3}$$

1.4. Problems with holographic fermions and their solutions

- Previous calculations mainly focus on ad hoc lagrangians, e.g. [Liu-McGreevy-Vegh '09, Cubrovic-Zaanen-Schalm '09].
 - Instead, let's work with fermions of maximal gauged supergravity in D = 4and D = 5: reductions / truncations of M-theory on S^7 and type IIB on S^5 .
- AdS-Reissner-Nordstrom black holes have non-zero entropy at T = 0, which is hard to understand in field theory.
 - Work with classical variants of $RNAdS_4$ which can be embedded in M-theory or type IIB and have no zero-point entropy.
- Field theory interpretation, e.g. in ABJM theory or $\mathcal{N} = 4$ super-Yang-Mills theory, has been obscure.
 - Formulate "boson rule" and "fermion rule" which capture results of many supergravity calculations in terms of field theory quantities.
- Supergravity calculations are hard work!
 - Find some strong collaborators.

2. Supergravity backgrounds and spinning branes

Charged black holes in AdS_5 come from spinning D3-branes. Charged black holes in AdS_4 come from spinning M2-branes.

D = 4, $\mathcal{N} = 8$ supergravity [de Wit and Nicolai, 1982] has SO(8) gauge symmetry associated with the S^7 directions coming from $y^1 \dots y^8$.

- For a semi-pedagogical refresher, see [de Wit, hep-th/0212245].
- Field content is: graviton $g_{\mu\nu}$, 8 gravitini ψ^i_{μ} , 28 gauge fields A^{ij}_{μ} , 56 Majorana spinors χ^{ijk} , and 70 real scalars ϕ^{ijkl} .
- Eight-valued indices i, j, ... characterize either the internal symmetry group SU(8) or the gauge group SO(8) (in a spinorial rep wrt S^7).

It's useful to pass to an SO(8) triality frame more simply related to S^7 :

Now A^a_{μ} encodes spin in the $y^1 - y^2$ plane, A^b_{μ} encodes spin in the $y^3 - y^4$ plane, etc. With $A^a_{\mu} \neq A^b_{\mu} \neq A^c_{\mu} \neq A^d_{\mu}$, one must turn on three of the 70 scalars to find consistent solutions. Relevant part of $\mathcal{D} = 4$, $\mathcal{N} = 8$ action is

$$\mathcal{L} = R - \frac{1}{2} (\partial \vec{\phi})^2 + \frac{2}{L^2} (\cosh \phi_1 + \cosh \phi_2 + \cosh \phi_3) - \frac{1}{4} \sum_{i=a,b,c,d} e^{-\lambda_i} (F^i_{\mu\nu})^2$$
(5)

where

$$\begin{pmatrix} \lambda_a \\ \lambda_b \\ \lambda_c \\ \lambda_d \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}$$

These scalars parametrize oblateness / prolateness of the S^7 .

(6)

The general charged 4-d black brane solution we want to consider is

$$ds_4^2 = e^{2A(r)} \left[-h(r)dt^2 + d\vec{x}^2 \right] + \frac{e^{2B(r)}}{h(r)}dr^2 \qquad A^i = \Phi_i(r)dt \qquad \phi_A = \phi_A(r)$$

where

$$\begin{split} A &= -B = \log \frac{r}{L} + \frac{1}{4} \sum_{i} \log H_i \\ h &= 1 - \frac{r}{r_H} \prod_i \frac{r_H + Q_a}{r + Q_a} \\ \lambda_i &= -2 \log H_i + \frac{1}{2} \sum_j \log H_j \\ \Phi_i &= \frac{1}{L} \sqrt{\frac{Q_i}{r_H}} \frac{\sqrt{\prod_j (r_H + Q_j)}}{r_H + Q_i} \left(1 - \frac{r_H + Q_i}{r + Q_i}\right) \,, \end{split}$$

and one can show

$$s = \frac{1}{4GL^2} \sqrt{\prod_j (r_H + Q_j)} \tag{8}$$

with $s \to 0$ as $r_H \to 0$ provided at least one of the $Q_j = 0$.

(7)

There are several qualitatively different behaviors for these charged black branes, and we aim to explore all of them, *especially the cases with* $s \rightarrow 0$.

- 1Q-4d, 2Q-4d, 3Q-4d are the main cases we'll consider; 4Q-4d was the simplest $RNAdS_4$ case, already discussed.
- $r_H \rightarrow 0$ limit is singular for 1Q-4d, 2Q-4d, 3Q-4d.
- To make sure that supergravity is applicable, we'll turn on small non-zero r_H .
- Order of limits gets subtle: For example, 2Q-4d is a $r_H \to 0$ limit with $\mu_a = \mu_b = 0$, not the same as a $\mu_a = \mu_b \to 0$ limit with T = 0.

3. Fermion equations of motion

 $D = 4, \mathcal{N} = 8$ supergravity lagrangian is schematically

$$\mathcal{L} = \mathcal{L}_b + \frac{1}{2}\bar{\chi}D_{\chi}\chi + \bar{\psi}_{\mu}O_{\text{mix}}\chi + \frac{1}{2}\bar{\psi}_{\mu}D_{\text{Rarita-Schwinger}}\psi_{\mu} + \mathcal{O}(\text{fermion}^4) \quad (9)$$

Our main task is to decouple the quadratic fermion action and solve resulting linear equations to get two-point functions $\langle \mathcal{O}_{\chi} \mathcal{O}_{\chi}^{\dagger} \rangle$.

- Some of the 56 fermions χ_{ijk} can mix with the 8 gravitini ψ^i_{μ} , giving them a mass (super-Higgs). We don't want these.
- Because bosonic background has no charged fields under $U(1)^4$, we know that χ_{ijk} can't couple with ψ^i_{μ} if it has an SO(8) weight not in the 8. There are 32 such χ_{ijk} , and dual operators are schematically tr λZ .
- Of the 24 remaining χ_{ijk} , there are 16 which don't couple to the ψ^i_{μ} , and 8 that do, but we haven't worked out which are which. So ignore them all and focus on the special 32.
- Similar results are available from [Gubser-DeWolfe-Rosen '13] in the case of D = 5, $\mathcal{N} = 8$ supergravity; fields of interest are dual to operators tr λZ .

In 4-dim: The fermion equations of motion we want to study take the form

$$\left[i\gamma^{\mu}\nabla_{\mu} + \gamma^{\mu}A^{j}_{\mu}\mathbf{Q}_{j} + \sigma^{\mu\nu}F^{j}_{\mu\nu}\mathbf{P}_{j} + \mathbf{M}\right]\vec{\chi} = 0.$$
(10)

 $\vec{\chi}$ is a 32-component vector, and the matrices \mathbf{Q}_j , \mathbf{P}_j , and \mathbf{M} all commute (!). Simultaneous eigenvectors satisfy

and we can tabulate the parameters (q_j, p_j, m_j) .

Dual operators follow from values of q_j : E.g. $q_j = (3, 1, 1, -1)$ corresponds to tr λZ where

 $[\lambda]_{SO(8)} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right) \qquad [Z]_{SO(8)} = (1, 0, 0, 0) \quad \text{i.e.} \quad Z = X_1 + iX_2 \quad (12)$ We'll denote $Z_j = X_{2j-1} + iX_{2j}$ for j = 1, 2, 3, 4. In 5-dim: Gauge group is $SO(6) \supset U(1)^3$, but we restricted to the case

Only one scalar in supergravity is active, ϕ in the **20**' of SO(6); it is dual to $\mathcal{O}_{\phi} = \operatorname{tr}(2|Z_1|^2 - |Z_2|^2 - |Z_3|^2)$, where $Z_j = X_{2j-1} + iX_{2j}$.

24 of the 48 fermions χ_{abc} are dual to tr λZ and obey equations of the form

$$\begin{bmatrix} i\gamma^{\mu}\nabla_{\mu} + 2q_{1}\gamma^{\mu}a_{\mu} + 2q_{2}\gamma^{\mu}A_{\mu} + ip_{1}e^{-2\phi/\sqrt{6}}\gamma^{\mu\nu}f_{\mu\nu} + ip_{2}e^{\phi/\sqrt{6}}\gamma^{\mu\nu}F_{\mu\nu} \\ - 2(m_{1}e^{-\phi/\sqrt{6}} + m_{2}e^{2\phi/\sqrt{6}})\end{bmatrix}\chi = 0$$
(14)

4. Green's functions and Fermi surfaces

Setting $\chi(t, \vec{x}, r) = \frac{1}{\sqrt[4]{-\det g_{mn}}} e^{-i\omega t + ikx^1} \psi(r)$ where m, n = t, 1, 2, we find:

• Infalling solution at the horizon is $\psi \propto (r - r_H)^{-\frac{i\omega}{4\pi T}}$.

• Asymptotic forms at large r are related to retarded Green's function:

$$\psi_{\alpha+} = A_{\alpha} r^{m-\frac{d}{2}} + B_{\alpha} r^{-m-1-\frac{d}{2}} \qquad \psi_{\alpha-} = C_{\alpha} r^{m-1-\frac{d}{2}} + D_{\alpha} r^{-m-\frac{d}{2}}$$

$$G_{R}(\omega, \vec{k}) = -i \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\omega t - i\vec{k}\cdot\vec{x}} \theta(t) \langle [\mathcal{O}_{\chi}(t, x), \mathcal{O}_{\chi}^{\dagger}(0, 0)] \rangle = \frac{D_{\alpha}}{A_{\alpha}}.$$
(15)

- $\alpha = 1, 2$ refers to spinor index of boundary operator. $G_R = G_{\alpha\beta}$ is *diagonal*, so we can consider one value of α at a time.
- $A_{\alpha} = 0$ makes fermion wave-function normalizable at boundary.
- Dissipationless modes are possible at $\omega = 0$: Fermion normal mode if also $A_{\alpha} = 0$. Thus a Fermi surface ($G_R = \infty$) corresponds to a normal mode.
- As far as we can tell, no analytic results are available; all results for G_R were obtained by numerically solving (a close equivalent of) the Dirac equation.

4.1. Examples

Thanks to a relation $G_{11}(\omega, k) = G_{22}(\omega, -k)$, we can get all information from G_{22} . Cases examined in 5-d were the following:

#	Dual operator	m_1	m_2	q_1	q_2	p_1	p_2	1Q-5d	2Q-5d
1	$\lambda_1 Z_1$	$-\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{2}$	1	$-\frac{1}{4}$	$\frac{1}{2}$	Y ^A	Ν
2	$\lambda_2 Z_1$	$-\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{2}$	-1	$-\frac{1}{4}$	$-\frac{1}{2}$	Y ^A	Ν
3	$\overline{\lambda}_3 Z_1, \overline{\lambda}_4 Z_1$	$-\frac{\overline{1}}{2}$	$\frac{3}{4}$	$\frac{\overline{3}}{2}$	0	$-\frac{1}{4}$	0	\mathbf{Y}^{A}	Ν
4	$\lambda_1 Z_2, \lambda_1 Z_3$	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{2}$	2	$\frac{1}{4}$	0	N ^B	Y ^G
5	$\overline{\lambda}_2 Z_2, \overline{\lambda}_2 Z_3$	$\frac{\overline{1}}{2}$	$-\frac{\tilde{1}}{4}$	$-\frac{1}{2}$	2	$-\frac{1}{4}$	0	Ν	\mathbf{Y}^{G}
6	$\lambda_3 Z_2, \lambda_4 Z_3$	$\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{\tilde{1}}{2}$	1	$-\frac{1}{4}$	$-\frac{1}{2}$	Ν	\mathbf{Y}^{H}
7	$\overline{\lambda}_3 Z_3, \overline{\lambda}_4 Z_2$	$\frac{\overline{1}}{2}$	$-\frac{1}{4}$	$\frac{1}{2}^2$	1	$\frac{1}{4}$	$-\frac{\tilde{1}}{2}$	\mathbf{N}^{B}	\mathbf{Y}^{H}

"Boson Rule:" You get a Fermi surface for $\operatorname{tr} \lambda Z$ iff Z has an expectation value.

• 1Q-5d has $\langle \operatorname{tr}(2|Z_1|^2 - |Z_2|^2 - |Z_3|^2) \rangle > 0$, so $\langle \operatorname{tr} |Z_1|^2 \rangle > 0$.

• 2Q-5d has $\langle \operatorname{tr}(2|Z_1|^2 - |Z_2|^2 - |Z_3|^2) \rangle < 0$, so $\langle \operatorname{tr} |Z_2|^2 \rangle > 0$, $\langle \operatorname{tr} |Z_3|^2 \rangle > 0$.

4-d cases are a bit more intricate:

#	Active boson	q_a	q_b	q_c	q_d	m_a	m_b	m_c	m_d	1Q-4d	2Q-4d	3Q-4d
1	Z_1	3	-1	1	1	-3	1	1	1	YA	Ν	Ν
2	Z_1	3	1	-1	1	-3	1	1	1	Y ^A	Ν	Ν
3	Z_1	3	1	1	-1	-3	1	1	1	YA	Ν	Ν
4	Z_2	-1	3	1	1	1	-3	1	1	N ^B	Ν	Y
5	Z_2	1	3	-1	1	1	-3	1	1	Ν	Ν	Y
6	Z_2	1	3	1	-1	1	-3	1	1	Ν	Ν	Y
7	Z_3	-1	1	3	1	1	1	-3	1	NB	YF	Y
8	Z_3	1	-1	3	1	1	1	-3	1	Ν	\mathbf{Y}^{F}	Y
9	Z_3	1	1	3	-1	1	1	-3	1	Ν	Y ^G	Y
10	Z_4	-1	1	1	3	1	1	1	-3	N ^B	\mathbf{Y}^{F}	Y
11	Z_4	1	-1	1	3	1	1	1	-3	Ν	\mathbf{Y}^{F}	Y
12	Z_4	1	1	-1	3	1	1	1	-3	Ν	\mathbf{Y}^{G}	Y
13	Z_1	3	-1	-1	-1	-3	1	1	1	YA	Ν	Ν
14	Z_2	-1	3	-1	-1	1	-3	1	1	N ^B	Ν	Y
15	Z_3	-1	-1	3	-1	1	1	-3	1	N ^B	Y ^G	Y
16	Z_4	-1	-1	-1	3	1	1	1	-3	NB	Y ^G	Y

But boson rule works in every case: non-zero bosons are Z_1 for 1Q-4d; Z_3 and Z_4 for 2Q-4d; and Z_2 , Z_3 , Z_4 for 3Q-4d.

Suggested interpretation: The singularity in $\langle \mathcal{O}_{\chi} \mathcal{O}_{\chi}^{\dagger} \rangle$ is due to a Fermi surface of a colored fermion, co-existing with a scalar condensate which (at large N) leaves the U(1) symmetry unbroken.

Easiest for me to think about the case of $\mathcal{N} = 4$ SYM in d = 4. Large N allows U(1) to remain unbroken even with non-zero scalar condensate:

A common worry is that scalar condensate can run away along flat directions. But perhaps this is not relevant at large N. Here's why:

- Only a subleading fraction of directions satisfy $[X^I, X^J] = 0$.
- Cases considered are finitely far from SUSY limit, so it's probably more representative to think of non-commuting directions.
- In non-commuting directions, condensate is limited by $V \sim g^2 \operatorname{tr}[X^I, X^J]^2$.

So—plausibly—the singularity at $k = k_F$, with residue $\sim N^2$ in AdS_5 calculations, owes to diagrams in $\mathcal{N} = 4$ SYM roughly like this:

This account contrasts strongly with the proposal the Fermi surfaces are best understood in terms of color singlet fermions *in the gauge theory* [Huijse-Sachdev '11], and if colored fermions have Fermi surfaces, they are hidden from supergravity calculations.

$$\mu_* = \sqrt{T^2 + \mu_1^2 + \mu_2^2}$$
 (5-d) $\mu_* = \sqrt{T^2 + \sum_j \mu_j^2}$ (4-d). (16)

23

There are two unrelated reasons for this:

1. $\mu_1 \ll \mu_*$ for the 1Q-5d (Case A), so we naturally have small Fermi surfaces.

2. Case G involves the gaugino $\lambda_1^{(\frac{1}{2},\frac{1}{2},\frac{1}{2})}$, which carries charge under U(1) of the 2Q-BH background, whereas Case H involves the gaugino $\lambda_3^{(-\frac{1}{2},\frac{1}{2},-\frac{1}{2})}$, which is *neutral* under this U(1).

Viewing #1 as trivial, we suggest the following

"Fermion Rule:" The value of k_F is suppressed, though it may not vanish, when λ is neutral under the U(1) charge of the black hole.

A detailed look at 4-d cases provide supports the boson rule and gives some additional evidence in favor of the fermion rule.

- Chemical potential μ_a is small for case A.
- k_F is rather larger for case F (charged λ) than for case G (neutral λ).

25

5. A tentative Luttinger count

Consider just the 2Q-5d case: An AdS_5 black hole with two equal charges, $A^{34}_{\mu} = A^{56}_{\mu}$ with $A^{12}_{\mu} = 0$.

- A lovely sharp Fermi surface arises for λ_1^{+++} and $\bar{\lambda}_2^{-++}$ (more precisely for tr λZ operators involving these fermions): $k_F/\mu_* \approx 0.812$.
- A count of the total charge carried by the fermions is given, according to Luttinger, by

$$p_{\text{fermions}} = N_{\text{fermions}} q_{\text{fermions}} \int_{k < k_F} \frac{d^3 k}{(2\pi)^3} \,.$$
 (17)

We know $q_{\text{fermions}} = 1$ (from SO(6) group theory), and it's reasonable to suppose $N_{\text{fermions}} = N^2$.

- On the other hand, we know the *total* $\rho_{\text{total}} = \frac{Q_2}{\pi r_H}s.$

6. Summary

- Field theory understanding of holographic Fermi surfaces is probably easier without extremal entropy complicating the story.
- Holographic Fermi surfaces appear or don't appear in correlators of $\mathcal{O}_{\chi} = \operatorname{tr} \lambda Z$ precisely if Z has an expectation value.
- Probably what's going on is that we're seeing a Fermi surface of the colorcharged fermions λ , not some composite color-singlet created by \mathcal{O}_{χ} .
- Neutral fermions (wrt black hole's chemical potential) have smaller Fermi surfaces, though their k_F may not be exactly 0.
- Better understanding of field theory is very desirable. Also, we need some examples without boson instabilities.

Revisiting cases with non-zero entropy

What about 5d cases with all three charges non-zero? Hard because s remains finite as $T \rightarrow 0$. A few examples are helpful:

Fermion is $\operatorname{tr} \lambda_1 Z_2 = \operatorname{tr} \lambda^{+++} Z^{010}$. There "should" be a Fermi surface everywhere.

Oscillatory region is where BF bound is violated in AdS_2 region.

Fermion is tr $\overline{\lambda}_3 Z_1 = \text{tr } \lambda^{+-+} Z^{100}$. There "should" be a Fermi surface everywhere.

$$\mu_R = \frac{\mu_a}{\sqrt{2}\mu_b}$$
, with $\mu_b = \mu_c$.
 $\mu_R = \frac{1}{\sqrt{2}}$ is the equal-charge black hole.

A Fermi surface vanishing into an oscillatory region probably indicates only finite but small width developing at zero temperature; c.f. [Liu-McGreevy-Vegh '09]

Contrast with fermions such as $\operatorname{tr} \lambda_4 Z_1 = \operatorname{tr} \lambda^{--+} Z^{100}$, where there are no Fermi surfaces. Makes sense because overall charge of λ_4 is negative—so no Fermi sea wants to form.