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1. Introduction
Fermi surfaces at finite chemical potential µ are straightforward at weak coupling:

ρ(ε)

ω

ε

µ

• System’s response to adding a fermion is
measured by Green’s function:

GR(t, x) = iθ(t)〈{ψ†(t, x), ψ(0, 0)}〉Fermi sea

• Find a pole in Fourier space:

GR(ω, k) =
Z

ε(k)− µ− ω − iΓ
+ . . .

≈ Z

vF (k − kF )− ω − iΓ

• Γ ∼ ω2 + (finite temperature) in Landau
theory: long-lived quasi-particles.

• I plotted Im 1
(k−1)−ω− i

10(ω
2+0.02)

to convey
the idea.
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Fermi surfaces arise inN = 4 super-Yang-Mills and ABJM theory, exhibiting sev-
eral different behaviors. Here are typical examples from AdS5 × S5:

A significant caveat: states showing Fermi surfaces often have bosonic instabilities.
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Here are typical examples from AdS4 × S7.

The key question: Knowing the dual operator inN = 4 SYM or ABJM theory, how
can we anticipate whether there will be a Fermi surface, and/or estimate kF?
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1.1. An overview of holographic fermions

• Study finite density theories in R2,1

at finite density by analyzing a dual
black hole in AdS4 with electric
charge behind the horizon.

S =

∫
d4x

[
R− 1

4
F 2
µν +

6

L2

]
Aµ gauges in the bulk a U(1)
symmetry of the boundary theory.

• Dual field theory (from coincident
M2-branes) has fermionic
operatorsOχ ∼ trλX where λ is
a fermion and X a boson. Trace is
over color.

• Use AdS/CFT to compute
〈OχO†χ〉.

Electric field comes from charge behind horizon.

4

AdS  = RAdS
2,1

4
t,x

E

horizon r=r

r

H

AdS

AdS/CFT prescription is to insert a supergravity
fermion from the boundary with Oχ and see how
much of it falls into the black hole.

N

ωO  (   ,k)+O  (   ,k)

AdS
4

ω

χ

χχ

dissipative

reactive
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• Boundary theory is a strongly
interacting CFT involving both
fermions and bosons, so it’s not a
priori clear there should be fermi
surfaces at all.

• But supergravity picture makes it
fairly clear that there should be if
fermion charge is large enough.

Back-reacted geometry is a domain wall
from AdS4 to AdS2 ×R2.

2

2AdS     R

AdS
4

Domain wall

Gravitational attraction and electrostatic
repulsion compete to determine behavior of
test particles.

down
F      = mg

up
F   = qE

AdS
4

χ

Normalizable fermions at ω = 0 and k = kF 6= 0
stay above the horizon and below the boundary.

AdS
4

χ
k

F

ω = 0

λ = 2π/
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1.2. A generic answer from AdS/CFT for the fermionic Green’s function

[Faulkner-Liu-McGreevy-Vegh 0907.2694], cf [S.S. Lee 0809.3402, Cubrovic-Zaanen-Schalm 0904.1993]

G(ω, k) =
〈
Oχ(ω,~k)O†χ(−ω,−~k)

〉
≈ h1

(k − kF )− 1
vF
ω − h2eiγω2νF

when k ≈ kF and ω ≈ 0.

k = k

y

kx

particle,
quasi−

ω < 0

ω > 0

F

k

hole,
quasi−

interacting   fermions

Sea   of

• A singularity in G(ω, k) at ω = 0 and
finite k = kF defines the presence of a
Fermi surface.

• vF is Fermi velocity.

• Assuming νF > 1/2, low-energy
dispersion relation is ω ≈ vF (k − kF ).

• If νF > 1/2 or if eiγ is nearly real,
quasi-particles’ width is much smaller
than their energy.

• Can easily obtain νF ≤ 1/2, i.e. far from
perturbative Landau regime.



Holographic Fermi surfaces 9 S. Gubser

1.3. The simplest supergravity calculation

[Faulkner et al ’09; Hartman-Hartnoll 1003.1918; DeWolfe-Gubser-Rosen 1112.3036]

• Simplest charged black hole background is extremal RNAdS4:

ds2 =
r2

L2
(fdt2 − d~x2)− L2

r2
dr2

f
Aµdx

µ = µ

(
1− rH

r

)
f = 1− 4

(
rH
r

)3

+ 3

(
rH
r

)4 (1)

• Simplest fermion to consider obeys massless charged Dirac equation:

γµ(∇µ − iqAµ)χ = 0 . (2)

Fermi surfaces in boundary theory correspond to fermion normal modes in the
bulk.

• Supergravity gives relations q = 1√
2L

and µ =
√
6rH
L

. Generally we’ll choose
L = 1. If also rH = 1, then one finds a normal mode at

ω = 0 k = kF ≡ 0.9185 . (3)
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1.4. Problems with holographic fermions and their solutions

• Previous calculations mainly focus on ad hoc lagrangians, e.g. [Liu-McGreevy-Vegh

’09, Cubrovic-Zaanen-Schalm ’09].

– Instead, let’s work with fermions of maximal gauged supergravity in D = 4
and D = 5: reductions / truncations of M-theory on S7 and type IIB on S5.

• AdS-Reissner-Nordstrom black holes have non-zero entropy at T = 0, which is
hard to understand in field theory.

– Work with classical variants of RNAdS4 which can be embedded in M-
theory or type IIB and have no zero-point entropy.

• Field theory interpretation, e.g. in ABJM theory or N = 4 super-Yang-Mills
theory, has been obscure.

– Formulate “boson rule” and “fermion rule” which capture results of many
supergravity calculations in terms of field theory quantities.

• Supergravity calculations are hard work!

– Find some strong collaborators.
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2. Supergravity backgrounds and spinning branes
Charged black holes in AdS5 come from spinning D3-branes.
Charged black holes in AdS4 come from spinning M2-branes.

M2−branes 4

5 8

1

y , ... , y

t,x

y , ... , y

D = 4, N = 8 supergravity [de Wit and Nicolai, 1982] has SO(8) gauge symmetry
associated with the S7 directions coming from y1 . . . y8.

• For a semi-pedagogical refresher, see [de Wit, hep-th/0212245].

• Field content is: graviton gµν, 8 gravitini ψiµ, 28 gauge fields Aij
µ , 56 Majorana

spinors χijk, and 70 real scalars φijkl.

• Eight-valued indices i, j, ... characterize either the internal symmetry groupSU(8)
or the gauge group SO(8) (in a spinorial rep wrt S7).
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It’s useful to pass to an SO(8) triality frame more simply related to S7:
A12
µ

A34
µ

A56
µ

A78
µ

 =
1√
8


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



Aa
µ

Ab
µ

Ac
µ

Ad
µ

 . (4)

Now Aa
µ encodes spin in the y1-y2 plane, Ab

µ encodes spin in the y3-y4 plane, etc.

With Aa
µ 6= Ab

µ 6= Ac
µ 6= Ad

µ, one must turn on three of the 70 scalars to find
consistent solutions. Relevant part ofD = 4,N = 8 action is

L = R− 1

2
(∂~φ)2 +

2

L2
(coshφ1 + coshφ2 + coshφ3)−

1

4

∑
i=a,b,c,d

e−λi(F i
µν)

2

(5)
where 

λa
λb
λc
λd

 =


−1 −1 −1
−1 1 1
1 −1 1
1 1 −1


φ1

φ2

φ3

 (6)

These scalars parametrize oblateness / prolateness of the S7.
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The general charged 4-d black brane solution we want to consider is

ds24 = e2A(r)
[
−h(r)dt2 + d~x2

]
+
e2B(r)

h(r)
dr2 Ai = Φi(r)dt φA = φA(r)

where
A = −B = log

r

L
+

1

4

∑
i

logHi

h = 1− r

rH

∏
i

rH + Qa

r + Qa

λi = −2 logHi +
1

2

∑
j

logHj

Φi =
1

L

√
Qi

rH

√∏
j(rH + Qj)

rH + Qi

(
1− rH + Qi

r + Qi

)
,

(7)

and one can show

s =
1

4GL2

√∏
j

(rH + Qj) (8)

with s→ 0 as rH → 0 provided at least one of the Qj = 0.
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There are several qualitatively different behaviors for these charged black branes,
and we aim to explore all of them, especially the cases with s→ 0.

T = 0,

µa

µ  = µc d

a bµ  = µ  = 0

T large

T large T large

2Q−4d

a

all µ  = 0i

µ  = µ  = µ  = 0
b c d

small

small

T finite

µ  = 0

4Q−4d = RNAdS

µ  = µ  = µ  = 0
b c d

T = 0

3Q−4d

Coulomb branch
solution

1Q−4d

another copy
of 2Q−4d

T,

horizon

2

2

AdS      R horizon
3

2
AdS      R

• 1Q-4d, 2Q-4d, 3Q-4d are the main cases we’ll consider; 4Q-4d was the simplest
RNAdS4 case, already discussed.

• rH → 0 limit is singular for 1Q-4d, 2Q-4d, 3Q-4d.

• To make sure that supergravity is applicable, we’ll turn on small non-zero rH .

• Order of limits gets subtle: For example, 2Q-4d is a rH → 0 limit with µa =
µb = 0, not the same as a µa = µb → 0 limit with T = 0.
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3. Fermion equations of motion
D = 4,N = 8 supergravity lagrangian is schematically

L = Lb +
1

2
χ̄Dχχ + ψ̄µOmixχ +

1

2
ψ̄µDRarita−Schwingerψµ +O(fermion4) (9)

Our main task is to decouple the quadratic fermion action and solve resulting linear
equations to get two-point functions 〈OχO†χ〉.

• Some of the 56 fermions χijk can mix with the 8 gravitini ψiµ, giving them a
mass (super-Higgs). We don’t want these.

• Because bosonic background has no charged fields under U(1)4, we know that
χijk can’t couple with ψiµ if it has an SO(8) weight not in the 8. There are 32
such χijk, and dual operators are schematically trλZ .

• Of the 24 remaining χijk, there are 16 which don’t couple to the ψiµ, and 8 that
do, but we haven’t worked out which are which. So ignore them all and focus
on the special 32.

• Similar results are available from [Gubser-DeWolfe-Rosen ’13] in the case of D = 5,
N = 8 supergravity; fields of interest are dual to operators trλZ .



Holographic Fermi surfaces 16 S. Gubser

In 4-dim: The fermion equations of motion we want to study take the form[
iγµ∇µ + γµAj

µQj + σµνF j
µνPj + M

]
~χ = 0 . (10)

~χ is a 32-component vector, and the matrices Qj, Pj, and M all commute (!).

Simultaneous eigenvectors satisfy[
iγµ∇µ +

1

4

∑
j

(
qjγ

µAj
µ +

i

2
pje

−λj/2σµνF j
µν + mje

λj/2

)]
χ = 0 . (11)

∇µ includes spin connection
but not gauge connections

6

Gauge couplings and Pauli
couplings.

@
@

@
@I 6

Spatially variable mass
term, m→ 0 at ∂AdS4.

@
@

@
@I

and we can tabulate the parameters (qj, pj,mj).

Dual operators follow from values of qj: E.g. qj = (3, 1, 1,−1) corresponds to
trλZ where

[λ]SO(8) = (1
2
, 1
2
, 1
2
,−1

2
) [Z]SO(8) = (1, 0, 0, 0) i.e. Z = X1 + iX2 (12)

We’ll denote Zj = X2j−1 + iX2j for j = 1, 2, 3, 4.
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In 5-dim: Gauge group is SO(6) ⊃ U(1)3, but we restricted to the case

Aa
µ ≡ A12

µ = aµ Ab
µ ≡ A34

µ = Ac
µ ≡ A56

µ = Aµ

µa = µ1 µb = µc = µ2/
√

2
(13)

µ  = 0
2

2µ  = 01 small,

T finite

µ

µ  = 0i

µ  = 01

solution

T = 0, all

1Q−5d
T = 0

T T largelarge

3Q−5d = RNAdS 2Q−5d

Coulomb branch

3AdS      R

AdS      R horizon
3

3

horizon
2

Only one scalar in supergravity is active, φ in the 20′ of SO(6); it is dual to Oφ =
tr(2|Z1|2 − |Z2|2 − |Z3|2), where Zj = X2j−1 + iX2j.

24 of the 48 fermions χabc are dual to trλZ and obey equations of the form[
iγµ∇µ + 2q1γ

µaµ + 2q2γ
µAµ + ip1e

−2φ/
√
6γµνfµν + ip2e

φ/
√
6γµνFµν

− 2(m1e
−φ/
√
6 + m2e

2φ/
√
6)
]
χ = 0

(14)



Holographic Fermi surfaces 18 S. Gubser

4. Green’s functions and Fermi surfaces
Setting χ(t, ~x, r) =

1
4
√
− det gmn

e−iωt+ikx
1

ψ(r) where m,n = t, 1, 2, we find:

• Infalling solution at the horizon is ψ ∝ (r − rH)−
iω
4πT .

• Asymptotic forms at large r are related to retarded Green’s function:

ψα+ = Aαr
m−d

2 + Bαr
−m−1−d

2 ψα− = Cαr
m−1−d

2 + Dαr
−m−d

2

GR(ω,~k) = −i
∫

d3k

(2π)3
eiωt−i

~k·~xθ(t)〈[Oχ(t, x),O†χ(0, 0)]〉 =
Dα

Aα

.
(15)

• α = 1, 2 refers to spinor index of boundary operator. GR = Gαβ is diagonal,
so we can consider one value of α at a time.

• Aα = 0 makes fermion wave-function normalizable at boundary.

• Dissipationless modes are possible at ω = 0: Fermion normal mode if also
Aα = 0. Thus a Fermi surface (GR =∞) corresponds to a normal mode.

• As far as we can tell, no analytic results are available; all results for GR were
obtained by numerically solving (a close equivalent of) the Dirac equation.
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4.1. Examples

Thanks to a relationG11(ω, k) = G22(ω,−k), we can get all information fromG22.
Cases examined in 5-d were the following:

# Dual operator m1 m2 q1 q2 p1 p2 1Q-5d 2Q-5d
1 λ1Z1 −1

2
3
4

3
2

1 −1
4

1
2

YA N
2 λ2Z1 −1

2
3
4

3
2
−1 −1

4
−1

2
YA N

3 λ3Z1, λ4Z1 −1
2

3
4

3
2

0 −1
4

0 YA N
4 λ1Z2, λ1Z3

1
2
−1

4
1
2

2 1
4

0 NB YG

5 λ2Z2, λ2Z3
1
2
−1

4
−1

2
2 −1

4
0 N YG

6 λ3Z2, λ4Z3
1
2
−1

4
−1

2
1 −1

4
−1

2
N YH

7 λ3Z3, λ4Z2
1
2
−1

4
1
2

1 1
4
−1

2
NB YH

“Boson Rule:” You get a Fermi surface for trλZ iff Z has an
expectation value.

• 1Q-5d has 〈tr(2|Z1|2 − |Z2|2 − |Z3|2)〉 > 0, so 〈tr |Z1|2〉 > 0.

• 2Q-5d has 〈tr(2|Z1|2 − |Z2|2 − |Z3|2)〉 < 0, so 〈tr |Z2|2〉 > 0, 〈tr |Z3|2〉 > 0.
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4-d cases are a bit more intricate:

# Active boson qa qb qc qd ma mb mc md 1Q-4d 2Q-4d 3Q-4d
1 Z1 3 −1 1 1 −3 1 1 1 YA N N
2 Z1 3 1 −1 1 −3 1 1 1 YA N N
3 Z1 3 1 1 −1 −3 1 1 1 YA N N
4 Z2 −1 3 1 1 1 −3 1 1 NB N Y
5 Z2 1 3 −1 1 1 −3 1 1 N N Y
6 Z2 1 3 1 −1 1 −3 1 1 N N Y
7 Z3 −1 1 3 1 1 1 −3 1 NB YF Y
8 Z3 1 −1 3 1 1 1 −3 1 N YF Y
9 Z3 1 1 3 −1 1 1 −3 1 N YG Y
10 Z4 −1 1 1 3 1 1 1 −3 NB YF Y
11 Z4 1 −1 1 3 1 1 1 −3 N YF Y
12 Z4 1 1 −1 3 1 1 1 −3 N YG Y
13 Z1 3 −1 −1 −1 −3 1 1 1 YA N N
14 Z2 −1 3 −1 −1 1 −3 1 1 NB N Y
15 Z3 −1 −1 3 −1 1 1 −3 1 NB YG Y
16 Z4 −1 −1 −1 3 1 1 1 −3 NB YG Y

But boson rule works in every case: non-zero bosons are Z1 for 1Q-4d; Z3 and Z4

for 2Q-4d; and Z2, Z3, Z4 for 3Q-4d.

Suggested interpretation: The singularity in 〈OχO†χ〉 is due to a Fermi surface of a
colored fermion, co-existing with a scalar condensate which (at large N ) leaves the
U(1) symmetry unbroken.
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Easiest for me to think about the case of N = 4 SYM in d = 4. Large N allows
U(1) to remain unbroken even with non-zero scalar condensate:

D3−branes

y , ... , y1 3
y , ... , y4 6

t,x

2

µµ

X

X X

X

2

1

Symmetry broken Symmetry unbroken at large N

1

A common worry is that scalar condensate can run away along flat directions. But
perhaps this is not relevant at large N . Here’s why:

• Only a subleading fraction of directions satisfy [XI, XJ ] = 0.

• Cases considered are finitely far from SUSY limit, so it’s probably more repre-
sentative to think of non-commuting directions.

• In non-commuting directions, condensate is limited by V ∼ g2 tr[XI, XJ ]2.
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So—plausibly—the singularity at k = kF , with residue∼ N 2 inAdS5 calculations,
owes to diagrams inN = 4 SYM roughly like this:

χO

singular at k=kF

finite probability
withk=0

O(N

k

scalar
condensate

intermediate states

X

λ

X

λ

Oχ

gaugino
fermi surface

2)

This account contrasts strongly with the proposal the Fermi surfaces are best under-
stood in terms of color singlet fermions in the gauge theory [Huijse-Sachdev ’11], and
if colored fermions have Fermi surfaces, they are hidden from supergravity calcula-
tions.
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A closer look at examples shows that kF is often significantly smaller than the nat-
ural scale

µ∗ =
√
T 2 + µ2

1 + µ2
2 (5-d) µ∗ =

√
T 2 +

∑
j µ

2
j (4-d) . (16)
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There are two unrelated reasons for this:

1. µ1 � µ∗ for the 1Q-5d (Case A), so we naturally have small Fermi surfaces.

2. Case G involves the gaugino λ
(1
2 ,

1
2 ,

1
2)

1 , which carries charge under U(1) of the

2Q-BH background, whereas Case H involves the gaugino λ
(−1

2 ,
1
2 ,−

1
2)

3 , which is
neutral under this U(1).

Viewing #1 as trivial, we suggest the following

“Fermion Rule:” The value of kF is suppressed, though it may not vanish, when
λ is neutral under the U(1) charge of the black hole.
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A detailed look at 4-d cases provide supports the boson rule and gives some addi-
tional evidence in favor of the fermion rule.

• Chemical potential µa is small for case A.

• kF is rather larger for case F (charged λ) than for case G (neutral λ).
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5. A tentative Luttinger count
Consider just the 2Q-5d case: An AdS5 black hole with two equal charges, A34

µ =
A56
µ with A12

µ = 0.

• A lovely sharp Fermi surface arises for λ+++
1 and λ̄−++

2 (more precisely for
trλZ operators involving these fermions): kF/µ∗ ≈ 0.812.

• A count of the total charge carried by the fermions is given, according to Lut-
tinger, by

ρfermions = Nfermionsqfermions

∫
k<kF

d3k

(2π)3
. (17)

We know qfermions = 1 (from SO(6) group theory), and it’s reasonable to sup-
pose Nfermions = N 2.

• On the other hand, we know the total ρtotal =
Q2

πrH
s.

• After a bit of calculation, find
ρfermion

ρtotal
≈ 0.972.

OK since it’s not decisively greater than one—but a bit strange since I’d have
thought more charge would be carried by bosons.
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6. Summary
• Field theory understanding of holographic Fermi surfaces is probably easier

without extremal entropy complicating the story.

• Holographic Fermi surfaces appear or don’t appear in correlators ofOχ = trλZ
precisely if Z has an expectation value.

• Probably what’s going on is that we’re seeing a Fermi surface of the color-
charged fermions λ, not some composite color-singlet created byOχ.

• Neutral fermions (wrt black hole’s chemical potential) have smaller Fermi sur-
faces, though their kF may not be exactly 0.

• Better understanding of field theory is very desirable. Also, we need some ex-
amples without boson instabilities.
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ptRevisiting cases with non-zero entropy
What about 5d cases with all three charges non-zero? Hard because s remains finite
as T → 0. A few examples are helpful:

Fermion is trλ1Z2 = trλ+++Z010.
There “should” be a Fermi surface everywhere.

Oscillatory region is where BF bound is
violated in AdS2 region.

Fermion is tr λ̄3Z1 = trλ+−+Z100.
There “should” be a Fermi surface everywhere.

µR = µa√
2µb

, with µb = µc.

µR = 1√
2

is the equal-charge black hole.
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A Fermi surface vanishing into an oscillatory region probably indicates only finite
but small width developing at zero temperature; c.f. [Liu-McGreevy-Vegh ’09]

Contrast with fermions such as trλ4Z1 = trλ−−+Z100, where there are no Fermi
surfaces. Makes sense because overall charge of λ4 is negative—so no Fermi sea
wants to form.
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