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Introduction

Bulk quantum mechanics in AdS/CFT

AdS/CFT is usually viewed as a duality between two quantum
theories, but in most talks one hears about it what is actually done is
solving classical gravity equations.

This is fine if you are interested in solving large N strongly coupled
QFT’s, but in my view the most exciting interpretation of AdS/CFT
is that it gives a definition of non-perturbative quantum gravity in
asymptotically-AdS spacetime!

Today I will explain how some surprising features of this definition can
be naturally understood in the language of quantum error correction,
a subject first developed as part of quantum computation theory.
Almheiri/Dong/Harlow, Harlow/Pastawski/Preskill/Yoshida
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Introduction

Let’s first recall some basic properties of the AdS/CFT dictionary:

The Hilbert spaces are equivalent; any state in the CFT has a “bulk”
interpretation, and vice versa.

The Hamiltonians are equivalent, as are the other generators of the
AdS symmetries.

For any bulk field φ(x), as we pull it to the boundary it becomes a
CFT local operator:

lim
r→∞

φ(t, r ,Ω)r∆ = O(t,Ω).

This is sometimes called the “extrapolate dictionary”.
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Introduction

What I would like to do in this talk is understand to what extent we can
“back off of the extrapolate dictionary”, defining local bulk operators φ(x)
as operators in the CFT.

There are two objections one usually hears to doing this:

In a diffeomorphism-invariant theory there are no gauge-invariant
local operators, so φ shouldn’t exist.

This is technically true, but is easily rectified by an appropriate
gauge-fixing. Everything I say in this talk can be “upgraded” to take this
into account, but nothing important changes so I will not discuss it
explicitly.

We know from the Bekenstein-Hawking formula that, in sufficiently
excited states, the entropy of the system grows like the area of the
boundary of a spatial region, not like the volume of the region. This
must eventually obstruct the possibility of having a volume’s worth of
commuting operators at spacelike separation. t’ Hooft, Susskind

The second point is quite correct, and will ultimately be important, but I
will ignore it for now and see how far we can go before getting into trouble.
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Reconstruction review

Bulk Reconstruction

In fact there is a fairly well-understood way of perturbatively constructing
local bulk operators in the CFT.

The idea is to look for a CFT operator φ(x) that:

Obeys the bulk equation of motion as an operator equation.

Is consistent with the extrapolate dictionary.

These two conditions give us a PDE that we can hope to solve uniquely, at
least order by order in 1/N.
Banks/Douglas/Horowitz/Martinec, Hamilton/Kabat/Lifschytz/Low, Heemkerk/Marolf/Polchinski/Sully
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Reconstruction review

Let’s see how this works explicitly for a scalar field at leading order in 1/N
about the vacuum.

We all know that in the bulk we can write a free scalar as

φ(x) =
∑
n

fn(x)an + f ∗n (x)a†n,

where fn is a complete set of KG-normalized solutions of the wave
equation in AdS.
For concreteness, we can work in Poincare coordinates

ds2 =
dz2 + d~x2 − dt2

z2
,

and take
fn(x) = ψ~kω(z)e i(

~k·~x−ωt) ω > 0, ω2 ≥ ~k2,

with
ψ~kω(z)→ N~kωz

∆ (z → 0).
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Reconstruction review

Matching to the extrapolate dictionary gives

a~kω =
1

N~kω
O~kω,

which we can substitute back into our expression for φ(x) to arrive at:

φ(x) =

∫
R
dX K (x ;X )O(X )

R

x

This procedure is often called global reconstruction.
7



Reconstruction review

We can then include 1/N corrections by iterating the equations of motion
on this expression, which has a nice diagrammatic representation:

These corrections are important in understanding how this construction
implements backreaction; for example if we consider a state with a planet
in it then, as in electrodynamics, there will be an infinite subclass of
diagrams that we should resum to correct the smearing function to be a
solution in the new background.
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Reconstruction review

So far this procedure works for any equations of motion, even the
wrong ones! But clearly something should break if we don’t use the
right ones.

One example of something that would break is the algebra of the
operators; for example we want to have

〈Ω|φ . . . [φ(x), φ(y)] . . . φ|Ω〉 = 0 (x − y)2 > 0,

but this usually won’t be true in the CFT unless we use the right
EOM. Kabat/Lifschytz/Lowe
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Operator algebra

Bulk algebra in the CFT

I want to emphasize that this does not establish the vanishing of this
commutator as an operator statement; it has only been shown to
vanish between states where we act on the vacuum with an O(1)
number of φ’s.

In fact there is a simple argument that this type of commutator
cannot vanish, or even be small, as a quantum operator.
Almheiri/Dong/Harlow

It is consistent with the black hole argument I gave earlier, but is
more rigorous.
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Operator algebra

A Paradox

Let’s first recall that in quantum field theory, causality is enforced by
locality:

[O(X ),O(Y )] = 0 (X − Y )2 > 0.

We can consider this in the bulk as well:

Here O(X ) is some arbitrary local boundary operator. Do we have

[φ(x),O(X )] = 0?
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Operator algebra

No!

This would be inconsistent with a standard property of quantum field
theory, which is called the “time-slice axiom” (or “primitive causality”):

For any ε > 0, any bounded operator that commutes with all local
operators in a time slice of thickness ε about some Cauchy surface Σ
must be proportional to the identity operator. Streater/Wightman, Haag

Intuitively, this is expressing the statement that the set of local operators
on a time slice acts irreducibly on the Hilbert space:

|φ(x) + α(x)〉 = e i
∫
dxα(x)p(x)|φ(x)〉.

Thus we see that, unlike in boundary causality, bulk causality cannot be
expressed as an operator equation in the CFT.
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Operator algebra

But then how do we express it? More generally, how do we think about
the emergence of the bulk algebra? In the remainder of this talk, I will
describe some aspects of our proposal for how this works.

I will first relate this commutator to an apparently unrelated question
in AdS/CFT, that of the validity of “subregion-subregion” duality.

I will then argue that the formalism of “quantum error correction”,
first developed as part of the quest to build a quantum computer,
provides a natural resolution of both problems.

Finally I will make contact with the original holographic argument
against bulk locality; we will see that the theory of quantum error
correcting codes predicts the failure of bulk locality on the CFT side
precisely at the point where the bulk argument demands it.

Time permitting, I may also discuss recent work (this week!)
introducing an exactly soluble model of AdS/CFT in which this
proposal is realized explicitly. Harlow/Pastawski/Preskill/Yoshida.
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Subregion-subregion duality

Subregion-subregion duality?

In the last few years, there has been considerable interest in the
following question: if we are given the quantum state of the CFT only
on some subregion of the boundary, is there some subregion of the
bulk that we can still describe? Bousso/Freivogel/Leichenauer/Rosenhaus/Zukowski,

Czech/Karczmarek/Nogueira/Van Raamsdonk, Hubeny/Rangamani

There has also been a lot of discussion over which bulk region we
might expect; eg the “causal wedge” or the “entanglement wedge”?
Wall, Headrick/Hubeny/Lawrence/Rangamani, Freivogel/Jefferson/Kabir/Mosk/Yang

These ideas were originally motivated by the Ryu Takayanagi formula,
but by using the type of operator reconstruction I’ve already discussed
one can also say something nontrivial about it. Hamilton/Kabat/Lifschytz/Lowe,

Morrison
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Subregion-subregion duality

Indeed what I will be interested in is the so-called AdS-Rindler
reconstruction:

A
x

D[A]

φ(x)
∣∣∣
W [A]

=

∫
D[A]

dX K̂ (x ;X )O(X ) + O(1/N).

In the bulk it is equivalent to the global reconstruction; they are related by
a Bogoliubov transformation.

15
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Subregion-subregion duality

It is more intuitive from above:

A

The operator φ(x) can be represented on A, but the operator φ(y) cannot.
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Subregion-subregion duality

We can now make the connection to our previous commutator paradox.

Say that O(x) is your favorite local operator on the boundary. Observe:

or

We can always find a wedge reconstruction of φ(x) such that
[φ(x),O(X )] = 0.
This can only be consistent with the time-slice axiom if the different
representations aren’t actually equal as operators!
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Subregion-subregion duality

Another illustration:

A B

C

Now the operator in the center has no representation on A, B, or C , but it
does have a representation either on AB, AC , or BC !
Something interesting is going on here, but what is it?
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Quantum Error Correction

Quantum Error Correction

I’ll now introduce a new set of ideas, which I will hopefully soon
convince you are deeply related to what we have been discussing.

Say that I want to send you a quantum state |ψ〉 in the mail, but I
am worried that it might get lost.

If it were a classical system I could just copy it and send you many
copies, but the no-cloning theorem of quantum mechanics prevents
me from doing this.

Nonetheless, there is a way of a encoding the state which protects it
against postal corruption - quantum error correction.

QEC was first developed as a necessary part of building a quantum
computer: decoherence of your memory is almost inevitable, so you
need a way to fix it!
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Quantum Error Correction

An Example

Despite the no-cloning theorem, the basic idea is still to embed the state I
want to send you into a larger Hilbert space. This is best explained with
an example.

Say that I want to send you a “single qutrit” state:

|ψ〉 =
2∑

i=0

Ci |i〉.

The idea is to instead send you three qutrits in the state

|ψ̃〉 =
2∑

i=0

Ci |ĩ〉,

where |ĩ〉 is a basis for a special subspace of the full 27-dimensional Hilbert
space, which is called the code subspace.
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Quantum Error Correction

Explicitly, we take

|0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉)

|1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉) (1)

|2̃〉 =
1√
3

(|021〉+ |102〉+ |210〉) .

Note that this subspace is symmetric between the three qutrits, and
each state is highly entangled.

This entanglement leads to the interesting property that in any state
in the subspace, the density matrix on any one of the qutrits is
maximally mixed, ie is given by 1

3 (|0〉〈0|+ |1〉〈1|+ |2〉〈2|).

In other words, any single qutrit has no information about the
encoded state |ψ̃〉.
This leads to the remarkable fact that we can completely recover the
quantum state from any two of the qutrits!
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Quantum Error Correction

To see this explicitly, we can define a two-qutrit unitary operation U12 that
acts as

|00〉 → |00〉 |11〉 → |01〉 |22〉 → |02〉
|01〉 → |12〉 |12〉 → |10〉 |20〉 → |11〉
|02〉 → |21〉 |10〉 → |22〉 |21〉 → |20〉

.

It is easy to see then that we have

U12|ĩ〉 = |i〉1|χ〉23,

with |χ〉 ≡ 1√
3

(|00〉+ |11〉+ |22〉).

This then gives us
U12|ψ̃〉 = |ψ〉1 ⊗ |χ〉23,

so we can recover the state!

By symmetry there must also exist U13 and U23.
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Quantum Error Correction

This is reminiscent of our “ABC” example of the operator in the center,
but there we talked about operators instead of states. We can easily
remedy this.

Say we have a single-qutrit operator O

O|i〉 =
∑
j

(O)ji |j〉.

We can always find a three-qutrit operator Õ that implements this
operator on the code subspace:

Õ|ĩ〉 =
∑
j

(O)ji |j̃〉.

Generically this operator will have nontrival support on all three qutrits,
but using our U12 we can define

O12 ≡ U†12O1U12,

which acts nontrivially only on the first two but still implements O on the
code subspace.
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Õ|ĩ〉 =
∑
j

(O)ji |j̃〉.

Generically this operator will have nontrival support on all three qutrits,
but using our U12 we can define

O12 ≡ U†12O1U12,

which acts nontrivially only on the first two but still implements O on the
code subspace.

23



Quantum Error Correction

This is reminiscent of our “ABC” example of the operator in the center,
but there we talked about operators instead of states. We can easily
remedy this.
Say we have a single-qutrit operator O

O|i〉 =
∑
j

(O)ji |j〉.

We can always find a three-qutrit operator Õ that implements this
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Quantum Error Correction

The point now is that we can interpret O12, O13, and O23 as being
analogous to the representations of φ(0) on AB, AC , and BC in this
example:

A B

C

By using the entanglement of the code subspace, we can replicate the
paradoxical properties of the AdS-Rindler reconstruction.
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Quantum Error Correction

We can also make contact with the commutator puzzle: let’s compute

〈ψ̃|[Õ,X3]|φ̃〉, (2)

where X3 is some operator on the third qutrit and |φ̃〉, |ψ̃〉 are arbitrary
states in the code subspace.

Since Õ always acts either to the left on a state in the code subspace, we
can replace it by O12. But then the commutator is zero! This would have
worked for X1 or X2 as well, so we see that on the code subspace Õ
commutes with all “local” operators.
This is the lesson to learn for AdS/CFT; the bulk algebra of operators
holds only on a subspace of states!
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Quantum Error Correction

To make more direct contact with AdS/CFT, we obviously need to
generalize this example. Indeed there is a well-developed theory of
quantum error correcting codes, with well-understood necessary and
sufficient conditions for when the analogue of U12 exists.

I don’t have time to discuss this theory in detail today, but there is a good
“rule of thumb” that can be justified fairly rigorously:

Say that we have n physical qubits, and we want to protect a k-qubit
message from an erasure of ` or fewer of the physical qubits. Then we
need

n ≥ k + 2`,

and in fact for a typical 2k -dimensional code subspace this is
sufficient.

This is quite intuitive; sending a bigger message that is better protected
requires more qubits!
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Back to AdS

I also don’t have time to explain how to embed this formalism in
AdS/CFT in detail, but I will explain how we can test this inequality.

For simplicity we can take our code subspace be spanned by the states
obtained by acting with at most ∼ k local operators within a central
region whose size is ∼ Lads .
The UV degrees of freedom are not used in constructing fields in this
region, so for example in N = 4 SYM we can take n ∼ N2.
Let’s first consider the case where k ∼ 1:

Indeed we need ≈ 1/2 of the system to reconstruct the center.
Notice however that if we are NOT in the center we correct less well: this
is a precise realization of the “radial direction ↔ scale” correspondence.
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Back to AdS

We can now ramp up k:

Clearly the answer will not change from 1/2 until k ∼ N2, but on the bulk
side this is just when we expect to create a huge black hole in the center!
Thus we see that we are able to push our reconstruction of bulk operators
just until the point where the old holographic arguments become relevant...
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Back to AdS

What Next?

So far what I have given is a proposal for how bulk locality is realized
in the CFT. In some sense it is a cartoon, which seems to be
quantitatively consistent with everything we know about both sides.
But can we really check it in detail?

In the CFT this seems to be currently beyond reach, but together
with Pastawski, Preskill, and Yoshida, we have just put out an explicit
model of a set of error correcting codes that provably implement
many of the expected features of AdS/CFT. They are based on
methods developed in condensed matter theory and quantum
information theory, called tensor networks.

The basic idea is to replace the CFT by a spin system and then just
write down a set of states whose entanglement structure closely
resembles that of the low energy states of a CFT.
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Back to AdS

Here is a picture:
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Back to AdS

Here is another one:
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Back to AdS

Because these are toy models, there are many features of AdS/CFT that
they do not capture:

No boundary translation invariance

No dynamics

No bulk diffeomorphism invariance

No sub-AdS scale locality

Nonetheless I think they do illustrate the error-correcting properties of
AdS/CFT quite clearly, and it would be interesting to see if they might be
generalized to include these other features.
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Back to AdS

Of course if we generalize them too far we will just get back to the
CFT!

In fact in the condensed matter community, that is one of the goals
Cirac, Vidal, Verstraete, Swingle, etc..

Even if that does not work however, the codes we already have are a
generalization of those currently used in designing quantum computer
algorithms, and they may be superior. An engineering application for
quantum gravity?

Thanks!
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