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Consider a CFT2, with central charge c . Let us study the theory
on the cylinder S1 × R. The ground state (Casimir) energy is

E0 = − c

12l
.

For a free boson it comes from
∑

n = −1/12.
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The general proof relies on the observation that S1 × R is
conformally equivalent to R2. The energy-momentum tensor
transforms with a Schwarzian derivative.
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We can study the theory S1 × S1
β and consider the partition

function for large β

lim
β→∞

Z (β) = e−E0β + ... = e
c

12
β + ....

By a modular transformation this can be related to the small β
limit of the partition function. One finds the Cardy formula:

lim
β→0

Z (β) = e
(2π)2c

12β + ...
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We can now consider a d = 4 CFT and put it on S3 × R, which is
conformally flat. We can then compactify the Euclidean time
direction to be S1

β. We can ask the same two questions:

What is the large β limit? (Casimir)

What is the small β limit? (Cardy)
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The conformal anomalies of d = 4 CFT are known to be just a, c

Tµ
µ ∼ aE4 + cW 2

and these fix the analog of the Schwarzian derivative in d = 4.
Following this idea one finds

E0 =
3

4
a .

However, people have done explicit computations of the ground
state energy E0 and got different answers using different
regularizations [Birrell, Davies ; Brown, Cassidy.....]
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One should realize that E0 is actually unphysical in d = 4. It
depends on the regularization scheme. The point is that we can
add

δS ∼ b

∫
d4x
√
gR2 . Tµ

µ = ...+ b�R

This can be viewed as a modification of the Schwarzian derivative.
No such modification exists in d = 2.

This clearly modifies the ground state energy by δE0 ∼ b/r . The
parameter b can be tuned to any desirable value.
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The Casimir energy maps under the AdS/CFT duality to the ADM
mass of AdS5 [Balasubramanian-Kraus]. This is thus scheme
dependent.

Below we will see that with SUSY it becomes physical! It would be
great to compare with an AdS5 computation.
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So one of the points below would be a proof that, for
supersymmetric CFTs, the parameter b disappears! Therefore, the
Casimir energy becomes physical again. And the ground state
energy is not 3

4a. Rather, what we find is

E0 =
4

27r
(a + 3c) .

This is of order N2. The partition function at large β therefore

behaves like e−
4β
27r

(a+3c).

lim
β→∞

Z (β) = e−
4β
27r

(a+3c)
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We will also consider the small β limit of a d = 4 CFT on S3 × S1
β.

We can understand this by a local action for the background fields
in d = 3:

lim
β→0

ZS3×S1
β

= e
a′
β3 l

3+ b′
β
l+...

Sd=3 =

∫
d3x
√
g
(
a′T 3 + b′TR + ...

)
,

where R is the Ricci scalar. Usual high-temperature expansion.

In examples we find that a′, b′ are not given by any combination of
anomalies. For example, a′, b′ depend on the coupling constants.

Below we will see that in supersymmetric theories a′ = 0 and

b′ ∼ (a− c)
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More precisely, we will see that in supersymmetric theories

lim
β→0

Z (β) = lim
β→0

TrH((−1)F e−βH) = e
(4π)2

3β
(c−a)

This is very much reminiscent of the Cardy formula. Does this
suggest some kind of generalized modular invariance in d = 4?
maybe...
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Summary: The Casimir and Cardy problem appear to be natural in
supersymmetric theories in d = 4. To study them we need to
understand supersymmetry in curved space. This is a nice story,
which has lots of other applications.
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Supersymmetric Field Theories have a conserved charge Qα such
that it squares to a translation

{Qα, Q̄α̇} = 2σµαα̇Pµ .

Supersymmetry transformations are generated by

δ ≡ ζαQα + ζ̄α̇Q̄
α̇

where ζα is a constant spinor

∂µζα = 0 .
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The spinors that survive in curved space satisfy some generalized
Killing spinor equation of the form [Festuccia-Seiberg...]

(∇µ − AR
µ )ζ = σµνε

ναβγ∂αBβγζ .

with AR a one-form gauge field and Bµν a Kalb-Ramond gauge
field. The (g ,AR ,B) multiplet is known as the “new minimal”
multiplet [Sohnius, West].

For a general choice of these background fields, the coupling to
curved space breaks supersymmetry. No solutions exist.
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It turns out that a necessary and sufficient condition to preserve at
least one supercharge is that M4 is Hermitian and the G-bundle is
holomorphic. [Closset, Dumitrescu,Festuccia,ZK, Seiberg]

A particularly interesting case to consider is

S3 × S1

This is a Hermitian manifold, and there is a
two-complex-dimensional moduli space of complex structures. One
can also introduce holomorphic gauge bundles.
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Let us specify a four-manifold M4 with some complex structure
J2 = −1, a Hermitian metric gi j̄ , and some holomorphic G -bundle

AG
µ . So we have

ZM4 [J ji , J
j̄

ī , gi j̄ ,A
G
µ ...]

The · · · stand for additional parameters, e.g. coupling constants.
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The Partition Function

Several general properties of the partition function

ZM4 [J ji , J
j̄

ī , gi j̄ ,A
G
µ , ...]: [Closset, Dumitrescu, Festuccia, ZK]

Given the complex structure J2 = −1, the partition function is
independent of the Hermitian metric gi j̄ .

The dependence on the complex structure moduli is
holomorphic.

The partition function depends holomorphically on the moduli
of the holomorphic G-bundle.

The partition function is independent of small variations of
the coupling constants.
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Let us therefore consider S3 × S1 in more detail. We can choose
the round metric,

ds2 = dθ2 + (dS3)2 .

To preserve supersymmetry we need to turn on some flux of Bµν
through the S3 as well as to turn on AR = 1

r dθ.

The flux through S3 is not crucial but the flat AR gauge field is a
chemical potential. This chemical potential must exist in order to
preserve SUSY.
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There are four supercharges, which transform under
SU(2)L × SU(2)R in

(1/2, 0)⊕ (1/2, 0)

The superalgebra is

{Qα,Q†α̇} = σ0
αα̇(H − 1

r
R) +

1

r
σiαα̇J

i
L

In the limit of r →∞ we recover the flat space algebra.
Let us specialize to one particular supercharge Q2,

{Q2,Q
†
2̇
} = H − 1

r
R +

1

r
J3
L
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We can interpret the partition function as a trace over the Hlibert
space, H, on S3,

Z (β) = TrH((−1)F e−βH)

From the superalgebra we see that we only receive contributions
from states on S3 that satisfy

H − 1

r
R +

1

r
J3
L = 0 .

These are in short representations.
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We start from the small β limit. Then, we get a local action in
d = 3 (at least as far as negative powers of β are concerned). We
therefore need to supersymmetrize the 3d action on S3

Sd=3 =

∫
d3x
√
g
(
a′T 3 + b′TR + ...

)
,

(where R is the Ricci scalar) such that it enjoys N = 2
supersymmetry.

Zohar Komargodski The Casimir and Cardy Problems in d = 4 Quantum Field Theories



Sd=3 =

∫
d3x
√
g
(
a′T 3 + b′TR + ...

)
,

a′ = 0 because the cosmological constant is not compatible
with new-minimal supergravity.

The supersymmetric Einstein-Hilbert term is in the same
multiplet as a Chern-Simons term A ∧ dG (G being the KK
graviphoton). The coefficient of a Chern-Simons term cannot
depend on coupling constants. We can compute it in free field
theory. This gives

b′ ∼ (a− c) .
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Therefore, the coefficient of R is protected and we can make a
prediction about the asymptotics of the number of states on S3:

lim
β→0

TrH((−1)F e−βH) = e
(4π)2

3β
(c−a)

If c > a there is a proliferation of bosonic BPS states. Otherwise,
there is a dramatic cancelation with exponential precision. SUSY
does not imply any such cancelations at the kinematical level. This
may explain why theories with a > c are so hard to construct.
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Let us now consider the opposite, Casimir, limit, i.e. β →∞.

We explained that it is unphysical in the general case. Let us prove
that it is universal once we add supersymmetry.

In the limit β →∞ it is natural to reduce on the three-sphere in
S3 × R. Then, we need to compute the ground state energy in
Quantum Mechanics.
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The Quantum Mechanics that we get has four supercharges and
R-symmetry group SU(2)× U(1). The algebra contains for
example

{Q2,Q
†
2̇
} = H − 1

r
R +

1

r
J3
L

Clearly the vacuum has J3
L |VAC 〉 = 0, for otherwise, it would not

be unique.

If we just had QM with finitely many degrees of freedom we could
not fix E0 because we can add a normal ordering constant to
H → H + c/r and R → R + c
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Shifting the R-charge by a constant R → R + c corresponds to
adding a Chern-Simons term in Quantum Mechanics

δS = c

∫
dtAR

0

However, the allowed counter-terms must descend from
counter-terms in four dimensions. The only possible
four-dimensional term from which it could descend is∫

d4x
√
g AR

µ ε
µνρσ∂νBρσ

which gives a dependence on r which is different than what we
need.
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This therefore proves that the Casimir energy on S3 is physical in
supersymmetric theories. (A different proof can be constructed
using the classification of counter-terms in [Assel, Cassani,
Martelli].)

The relation to the Chern-Simons term in Quantum Mechanics
shows that the Casimir energy is independent of coupling
constants.

From the superalgebra we see that H = 1
r R in the vacuum. So

instead of computing the energy we can compute the R-charge of
the vacuum.
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A single fermion contributes to the Chern-Simons coupling κ
∫
dt A

κir − κuv = −q

2
sgn(M) .

In QM we cannot determine κuv . But here we know κuv = 0
because the theory comes from d = 4.

In the reduction to quantum mechanics, one encounters long
multiples, chiral multiplets, and Fermi multiplets. Long multiplets
always have fermions of opposite mass. So the R-charge of the
vacuum only comes from chiral and Fermi multiplets. One finds

2rE0 = lim
t→0

(∑
l

(l + 1)(l + r)e−t(l+r)

)
− (r → 2− r)

=
8

27
(a + 3c) .
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In AdS/CFT, E0 is interpreted as the (ADM) mass of AdS5. In
general, the ADM mass of AdS5 is not meaningful.

But our discussion shows that for supersymmetric theories it
should be meaningful. It would be interesting to compute it and
compare with the prediction

E0 =
4

27r
(a + 3c)

We have also computed the Casimir energy for the most general
complex structure on the cylinder S3 × R.

Another obvious extension would be to compute the Casimir energy
on M3 × R with arbitrary M3 that is Seifert. This looks doable.
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Thank you for your attention
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