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Introduction

Last three years; fairly intensive study of U(N) Chern
Simons theories with fundamental matter.
Initial motivations: AdS/CFT. Limit of ABJ theories. Vasiliev
Duality.
Field theories turn out to be solvable in the large N limit.
Effectively vector like (Chern Simons has matrices but with
no degrees of freedom).
Detailed study has thrown up surprises. First strong weak
(Bose-Fermi) duality even without susy. Second, many
unusual aspects of dynamics.
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Introduction

In particular: recent intensive study of 2× 2 scattering in
purely bosonic and purely fermionic theories.
Results in perfect agreement with duality. However conflict
with unitarity unless we assume two modified structural
features of S matrices. First: delta function term at forward
scattering. Second, modifed rules of crossing symmetry.
This talk: present explicit computations for the in S matrix
of the most general renormalizable N = 1 SUSY Chern
Simons theory at all orders in the t’ Hooft coupling.
Will find results in perfect agreement with duality. Unitarity
requires the same delta function piece at forward
scattering and modification of crossing symmetry
conjectured for the bosonic and fermionic theories.
Strong evidence for universality. Generalization to higher
susy (ABJ) underway. Expect same features. Along the
way make precise expression of the Bose Fermi nature of
Giveon Kutasov dualities.
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Theories

S = −
∫

d3xd2θ

[
κ

2π
Tr
(
−1

4
DαΓβDβΓα − 1

6
DαΓβ{Γα, Γβ} −

1
24
{Γα, Γβ}{Γα, Γβ}

)
− 1

2
(DαΦ̄ + iΦ̄Γα)(DαΦ− iΓαΦ) + m0Φ̄Φ +

πw
κ

(ΦΦ)2
]
, (1)

Gauge multiplet Γα. Single fundamental matter multiplet φ.
Parameters: N, κ (integers).w (dimensionless). m0
(dimensionful). New effectively continuous dimensionless
parameter λ = N

κ in the large N limit.
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Conjectured Duality

Motivated by computations of the thermal partition function
on S2 × S1, about two years ago Jain, Yokoyama and
myself conjectured that this class of theories is self dual.
Conjectured dualiy map as follows. Define

λ′ = λ− Sgn(λ) , w ′ =
3− w
1 + w

m′0 =
−2m0

1 + w
. (2)

N ′ = |κ| − N + 1, κ′ = −κ
Generalization of level rank duality.
Turns out pole mass (see below)

m =
2m0

2 + (−1 + w)λ Sgn(m)
. (3)

Under duality
m′ = −m.
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Scattering amplitudes and the duality map

Would like to understand duality in more detail. Ideally to
construct φD in terms of φ. Question imprecise as φD and
φ are not gauge invariant.
While arbitrary insertions of φ and φD are not meaningful,
insertions that are taken to infinity along lines of equations
of motion - i.e. S matrices - are gauge invariant and well
defined. For this reason the map between S matrices is a
‘poor mans bosonization’ map between these two theories.
This talk: We indpependently compute the S matrix for φ
and φD and examine their interrelationship under duality.
Also uncover interesting structural features along the way.
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S matrices: Susy

Solution

Φ(x , θ) =

∫
d2p√

2p0(2π)2

[(
a(p)(1 + mθ2) + θαuα(p)α(p)

)
eip.x

+

(
ac†(p)(1 + mθ2) + θαvα(p)αc†(p)

)
e−ip.x

]

Susy

−iQα = uα(pi) (a∂α + ac∂αc ) + u∗α(pi) (−α∂a + αc∂ac )

+ vα(pi)
(

a†∂†α + (ac)†∂(αc)†

)
+ v∗α(pi)

(
α†∂†a + (αc)†∂(ac)†

)
(4)
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On Shell Superfield

Ai(p) = ai(p) + αi(p)θi

A†i (p) = a†i (p) + θiα
†
i (p)

(5)

[Qα,Ai(pi , θi)] = Q1
αAi(pi , θi)

[Qα,A
†
i (pi , θi)] = Q2

αA†i (pi , θi)
(6)

Q1
β = i

(
−uβ(p)

−→
∂

∂θ
− vβ(p)θ

)

Q2
β = i

(
vβ(p)

−→
∂

∂θ
− uβ(p)θ

) (7)
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Dual Supersymmetry

Conjectured duality transformation: bose-fermi
interchange. a↔ α

Action of dual susy on A,A†

Q1
β = i

(
−vβ(p,−m)θ − uβ(p,−m)

−→
∂

∂θ

)

Q2
β = i

(
uβ(p,−m)θ − vβ(p,−m)

−→
∂

∂θ

) (8)

Using

u(m,p) = −v(−m,p), v(m,p) = −u(m,p)

we see that the dual and original susy generators are
proportional to each other. So an S matrix invariant under
original susy is automatically invariant under dual susy.
Susy compatable with Bose-Fermi interchange.
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S matrix in onshell superspace

Consider the S matrix

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4)(2π)3δ(p1 + p2 − p3 − p4) =

〈0|A4(p4, θ4)A3(p3, θ3)UA†2(p2, θ2)A†1(p1, θ1)|0〉
(9)

Invariance under susy implies(−→
Q 1
α(p1, θ1) +

−→
Q 1
α(p2, θ2)

+
−→
Q 2
α(p3, θ3) +

−→
Q 2
α(p4, θ4)

)
S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = 0

(10)
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Solution to susy equation

We have explicitly solved (10); the solution is given by

S(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = f1 + F2 θ1θ2θ3θ4+(
1
2

C12f1 −
1
2

C∗34F2

)
θ1θ2

+

(
1
2

C13f1 −
1
2

C∗24F2

)
θ1θ3 +

(
1
2

C14f1 +
1
2

C∗23F2

)
θ1θ4

+

(
1
2

C23f1 +
1
2

C∗14F2

)
θ2θ3 +

(
1
2

C24f1 −
1
2

C∗13F2

)
θ2θ4

+

(
1
2

C34f1 −
1
2

C∗12F2

)
θ3θ4

(11)

Shiraz Minwalla



Solution to susy equation

Where

1
2

C12 = − 1
4m

v∗(p1)v∗(p2)
1
2

C23 = − 1
4m

v∗(p2)u∗(p3)

1
2

C13 = − 1
4m

v∗(p1)u∗(p3)
1
2

C24 = − 1
4m

v∗(p2)u∗(p4)

1
2

C14 = − 1
4m

v∗(p1)u∗(p4)
1
2

C34 = − 1
4m

u∗(p3)u∗(p4)

(12)

Note that susy determines 6 of the 8 scattering amplitudes
in terms of the other two. Indpendent data = four boson
and four fermion scattering.
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Scattering Amplitudes: Colour Kinematics

We refer to a quantum (bosonic or ferionic) that transforms
in the fundamental of U(N) as a particle and a quantum
that tranforms in the antifundamental of U(N) as an
antiparticle.
We study the most general 2× 2 scattering process. There
are three such processes

Pi + Pm → Pj + Pn

Pi + Aj → Pn + An

Aj + An → Ai + Aj

(13)

All these S matrices are contained in appropriate on shell
limits of the single correlator

< φiφmφ̄
j φ̄n >
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Color Kinematics

It follows from U(N) invariance that

< φiφmφ̄
j φ̄n >= aδj

i δ
n
m + bδn

i δ
j
m

Consequently, in each channel we need to compute 2
distinct scattering amplitudes. For particle-particle
scattering it is convenient to work in the following basis for
U(N) singlets

< φiφmφ̄
j φ̄n >= Tsym

(
δj

i δ
n
m + δn

i δ
j
m

)
+ Tas

(
δj

i δ
n
m − δn

i δ
j
m

)
TSym = a+b

2 is the S matrix in the channel of symmetric
exchange, while Tas = a−b

2 is the S matrix in the channel of
antisymmetric exchange.
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Colour Kinematics, 1
N

On the other hand for particle - antiparticle exchange the
following basis is most useful

< φiφmφ̄
j φ̄n >= TSing

δj
i δ

n
m

N
+ TAdj

(
δn

i δ
j
m −

δj
i δ

n
m

N

)
TSing = Na + b is the scattering matrix in the singlet
channel, while TAdj = b is the scattering matrix in the
adjoint channel.
It is not difficult to convince oneself that, at leading order in
the 1

N expansion

a ∼ b ∼ Tsym ∼ Tas ∼ TAdj ∼
1
N

On the other hand
SSing ∼ O(1)
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Unitarity and 1
N

We have chosen the colour structures multiplying TSing etc
to be simply projectors onto the exchange representations.
As projectors square to unity it follows from unitarity that

i(Tc − T †c ) = TcT †c

Tc is any one of the four T matrices described above. We
have used the fact that e.g. 2→ 4 production contributes
to unitarity only at subleading order in 1

N .
The unitarity equation is rather trivial for Tsym, Tas, Tadj , as
the RHS is subleading in 1

N . However it imposes a highly
nontrivial nonlinear constraint on Tsing , the most nontrivial
of the four scattering matrices.
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Scattering: non relativistic Limit

The S matrix for non relativistic particles interacting via
Chern Simons exchange was worked out in the early 90s,
most notably by Bak, Jackiw and collaborators.
The main result is strikingly simple. Consider the scattering
of two bosonic particles in representations R1 and R2, in
exchange channel R. It was demonstrated that the S
matrix equals the scattering matrix of a U(1) charged
particle of unit charge scattering off a point like flux tube of
magnetic field strength ν = c2(R1)+c2(R2)−c2(R)

κ .
This quantum mechanical S matrix was computed
originally by Aharonov and Bohm and generalized by Bak
and Camillio to take account of possible point like
interactions between the scattering particles.
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Non Relativistic Scattering Amplitude

TNR = −16πicB (cos (πν)− 1) δ(θ) + 8icB sin(πν)Pv
(

cot
θ

2

)
+ 8cB| sinπν|

1 + eiπ|ν| ANR
k2|ν|

1− eiπ|ν| ANR
k2|ν|

,

ANR =
−1
w

(
2
R

)2|ν| Γ(1 + |ν|)
Γ(1− |ν|) .

(14)

Here wR|2ν| is a measure of the strength of the
Bak-Camillio contact interaction between the scattering
particles. In the limit w(kR)|2ν| → 0 ANR →∞ and the
second line of the scattering amplitude simplifies to

8cB| sinπν|,
the original Aharonov Bohm result.
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The δ function and its physical interpretation

The non relativistic amplitude above has a very unusual
feature, a piece in the scattering amplitude proportional to
the δ(θ).
This term in the scattering amplitude was missed in the
original paper of Aharonov and Bohm. The amplitude was
corrected with the addition of this piece in the early 80s. In
the early 90s Jackiw and collabortors emphasized that is
term is necessary to unitarize Aharonov Bohm scattering.
Infact this term has a simple physical interpretation . The
physical interpretation makes no reference to the non
relativistic limit, so we assume that the δ function piece is
present unmodified even in relativistic scattering.
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Effective value of ν

In the large N limit there is a simple formula for the
quadratic Casimir of representations with a finite number of
boxes plus a finite number of antiboxes.

c2(R) =
N(nb + na)

2

using this result in the formula for ν we find

νsym ∼ νas ∼ νAdj ∼ O(1/N)

On the other hand
νSing = λ

Now the non relativistic limit is obtained by taking k → 0 at
fixed ν. If ν ∼ O(1/N) and if we work to leading order in 1

N
we effectively take ν → 0 first. In other words the results of
Aharonov Bohm Bak Camillio yield a sharp prediction for
the non relativistic limit only of Tsing .
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Exact Propagators: method

Work in Lorentzian space. Set gauge Γ− = 0. In particular
implies A− = 0. Supersymmetric generalization of
lightcone gauge. Main advantage: No gauge boson self
interactions.
If we want to understand scattering we first have
understand free propagation.
No gauge self interactions plus planarity gives a simple
Schwinger Dyson equation (like t’ Hooft model). Nonlinear
integral equation. Quite remarkably admits simple exact
solution
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Bare Propagators

The bare scalar superfield propagator in momentum space
is

〈Φ̄(θ1,p)Φ(θ2,−p′)〉 =
D2
θ1,p −m0

p2 + m2
0
δ2(θ1−θ2)(2π)3δ3(p−p′) .

(15)
where m0 is the bare mass
The gauge superfield propagator in momentum space is

〈Γ−(θ1,p)Γ−(θ2,−p′)〉 = −8π
κ

δ2(θ1 − θ2)

p−−
(2π)3δ3(p − p′) ,

(16)
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Equation for Exact Propagator

Figure : Integral equation for self energy

+Σ(p, θ1, θ2) =

Σ(p, θ1, θ2) = 2πλw
∫

d3r
(2π)3 δ

2(θ1 − θ2)P(r , θ1, θ2)

− 2πλ
∫

d3r
(2π)3 Dθ2,−p

− Dθ1,p
−

(
δ2(θ1 − θ2)

(p − r)−−
P(r , θ1, θ2)

)
+ 2πλ

∫
d3r

(2π)3
δ2(θ1 − θ2)

(p − r)−−
Dθ1,r
− Dθ2,−r

− P(r , θ1, θ2)

(17)
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Exact Solution for propagator

The solution for the exact propagator is incredibly simple. It
is given by

P(p, θ1, θ2) =
D2 −m
p2 + m2 δ

2(θ1 − θ2) (18)

m =
2m0

2 + (−1 + w)λ Sgn(m)
. (19)
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Integral equation for four point functions

p + q

p

k + q

k

θ1 θ3

θ2 θ4

=
+p− k

θ1

θ2

θ3

θ4

p+ q

p

p− r

k + q

k

r + q

r

r − k

θa

θb

θA

θB

+

p

k + q

k

θ3

θ4

p+ qθ1

θ2

p− k

θ1 θ3

θ2
θ4

p+ q

p

k + q

k
=

θ1 θ3

θ2 θ4

p− r

θ1 θ3

θ2 θ4

p− k

θ1 θ3

θ2 θ4

p− k

Figure : Four point function: Schwinger-Dyson equation for offshell
four point function. The second line represents the tree level
contributions from the gauge superfield interaction and the quartic
interactions, The first line is the pictorial representation of the integral
equation
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Restrictions on soln of 4 point function

Now turn to evaluating the 4 point function needed for
computing scattering. Linear integral equation. Unable to
solve in general. Exact solution for the special case
q± = 0.
Defect has different implications in different channels
In the singlet exchange channel it turns out that qµ is the
centre of mass energy. If q± = 0 then momentum centre of
mass momentum is spacelike. Incompatable with putting
onshell. Solution not useful for directly computing Tsing .
In the other three channels qµ is the momentum transfer.
In the scattering of two particles of equal mass, the
momentum exchange is always spacelike. Setting q± = 0
is simply a choice of Lorentz frame. Assuming the answer
is covariant, there is no loss of information. Can read off
full results for TAdj , Tsym, Tas.
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Results: 4 point function

Evaluating the onshell 4 pt function subject to this
restriction and taking the onshell limit we find

TB =
4iπ
κ
εµνρ

qµ(p − k)ν(p + k)ρ

(p − k)2 + JB(|q3|, λ) , (20)

TF =
4iπ
κ
εµνρ

qµ(p − k)ν(p + k)ρ

(p − k)2 + +JF (|q3|, λ) , (21)

where the J functions are

JB(|q|, λ) =
4π|q|
κ

N1N2 + M1

D1D2

JF (|q|, λ) =
4π|q|
κ

N1N2 + M2

D1D2
(22)
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Explicit Solution

N1 =

((
2m + iq
2m − iq

)−λ
(w − 1)(2m + iq) + (w − 1)(2m − iq)

)

N2 =

((
2m + iq
2m − iq

)−λ
(q(w + 3) + 2im(w − 1)) + (q(w + 3)

(23)

− 2im(w − 1))

)
M1 =− 8mq((w + 3)(w − 1)− 4w)

(
2m + iq
2m − iq

)−λ
M2 =− 8mq(1 + w)2

(
2m + iq
2m − iq

)−λ
D1 =

(
i
(

2m + iq
2m − iq

)−λ
(w − 1)(2m + iq)− 2im(w − 1) + q(w + 3)

)

D2 =

((
2m + iq
2m − iq

)−λ
(−q(w + 3)− 2im(w − 1)) + (w − 1)(q + 2im)

)
(24)
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Duality

It is not too difficult to verify that the S matrices above map
to themselves under the duality map, if we also make the
identifications

T B
Adj = T F

Adj , T B
sym = T F

as, T B
as = T F

sym

This is the result we should have expected both from level
rank duality as well as from basic statisitics.
This matching is an impressive verification of the duality
conjecture.
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N=2 Limit

The supersymmetry in our Lagrangian is enhanced to
N = 2 when w is set to unity.
In this limit the S matrix simplies very dramatically

T w=1
B =

4iπq3

κ

(k + p)−
(k − p)−

− 8πm
κ

,

T w=1
F =

4iπq3

κ

(k + p)−
(k − p)−

+
8πm
κ

(25)

No loop corrections. Non renormalization in the three
channels in which we can directly compute.
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Scattering in the singlet channel

The results in the adjoint, symmetric and antisymmetric
channels may be rewritten in a way that makes it manifest
that they transform into each under under crossing
symmetry. Though we do not have an explicit computation
of Tsing , according to standard QFT lore one should be
able to obtaine it from the naive analytic continuation.
Performing the naive analytic continuation gives a result
that cannot be right. To start with it does not have the delta
function piece that we know must be there on physical
grounds. Indeed no analytic continuation can give this
piece as it is not analytic.
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Crossing in the Singlet Channel

Clearly the rules for crossing symmetry must be modified.
Our previous studies of scattering in purely bosonic and
fermionic theories led us to conjecture

Tsing =
sin(πλB)

πλB
T ac

sing − i(cos(πλB)− 1)I(p1,p2,p3,p4).

where T ac
sing is the singlet amplitude one obtains from naive

analytic continuation

Two unusual features. δ function. sin(πλB)
πλB

. Conjecture for
consistency of earlier computations. Physical interpretation
of both terms, applies universally. Therefore no wiggle
room. Conjecture above is forced on us and cannot further
be modified. Either Tsing defined passes all consistency
tests or it does not.
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Explicit conjecture for Singlet Scattering

TB = i4
√

s sin(πλ)

(
cot

θ

2

)
+−i8π

√
s(cos(πλ)− 1)δ(θ)

sin(πλ)

πλ
JB(
√

s, λ)

TF = i4
√

s sin(πλ)

(
cot

θ

2

)
− i8π

√
s(cos(πλ)− 1)δ(θ) (26)

sin(πλ)

πλ
JF (
√

s, λ)

JB(
√

s, λ) =− 4πiλ
√

s
N1N2 + M1

D1D2

JF (
√

s, λ) =− 4πiλ
√

s
N1N2 + M2

D1D2
(27)
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Form of JB and JF

N1 =(w − 1)(2m +
√

s) + (w − 1)(2m −
√

s)eiπλ
(√

s + 2m√
s − 2m

)λ
N2 =(−i

√
s(w + 3) + 2im(w − 1)) + (−i

√
s(w + 3) (28)

− 2im(w − 1))eiπλ
(√

s + 2m√
s − 2m

)λ
M1 =8mi

√
s((w + 3)(w − 1)− 4w)eiπλ

(√
s + 2m√
s − 2m

)λ
M2 =8mi

√
s(1 + w)2eiπλ

(√
s + 2m√
s − 2m

)λ
(29)
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Form of JB and JF

D1 =i(w − 1)(2m +
√

s)− (2im(w − 1)

+ i
√

s(w + 3))eiπλ
(√

s + 2m√
s − 2m

)λ
D2 =(

√
s(w + 3)− 2im(w − 1))

+ (w − 1)(−i
√

s + 2im)eiπλ
(√

s + 2m√
s − 2m

)λ
(30)
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Unitarity

In order to check supersymmetry, it is useful to define the
product of two S matrix superfields.

S1 ? S2 ≡
∫

dΓS1(p1, θ1,p2, θ2,k3, φ1,k4, φ2)

exp(φ1φ3 + φ2φ4)2k0
1 (2π)2δ(2)(k3 − k1)2k0

2 (2π)2δ(2)(k4 − k2)

S2(k1, φ3,k2, φ4,p3, θ3,p4, θ4) =

exp(θ1θ3 + θ2θ4)2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4)

(31)

where the measure dΓ is

dΓ =
d2k3

2k0
3 (2π)2

d2k4

2k0
4 (2π)2

d2k1

2k0
1 (2π)2

d2k2

2k0
2 (2π)2

dφ1dφ3dφ2dφ4

(32)
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Unitarity: Properties of star product

Define

I(p1, θ1,p2, θ2,k3, φ1,k4, φ2) = exp(θ1θ3 + θ2θ4)

2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4)
(33)

It is easy to check that

S ? I = I ? S = S (34)

And I is supersymmetric.
Also define

S†(p1, θ1,p2, θ2,p3, θ3,p4, θ4) = S∗(p3, θ3,p4, θ4,p1, θ1,p2, θ2)

(35)

If S is susy can show S† is susy

Shiraz Minwalla



Unitarity

With these definitions, unitarity is the equation

S ? S† − I = 0

Since the LHS of this equation is supersymmetric, in order
to establish it is sufficient to show that the θ0 and the θ4

tersm vanish.
These two conditions are easily written in terms of F and f .
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Unitarity

∫
dΓ′
[
f1(p1,p2,k3,k4)f ∗1 (p3,p4,k3,k4)

− Y (p3,p4)

(
f1(p1,p2,k3,k4) + 4Y (p1,p2)f2(p1,p2,k3,k4)

)
(

f ∗1 (p3,p4,k3,k4) + 4Y (p3,p4)f ∗2 (p3,p4,k3,k4)

)]
= 2p0

3(2π)2δ(2)(p1 − p3)2p0
4(2π)2δ(2)(p2 − p4)∫

dΓ′
[
− 16Y 2(p3,p4)f2(p1,p2,k3,k4)f ∗2 (p3,p4,k3,k4)

+ Y (p3,p4)

(
f1(p1,p2,k3,k4) + 4Y (p1,p2)f2(p1,p2,k3,k4)

)
(

f ∗1 (p3,p4,k3,k4) + 4Y (p3,p4)f ∗2 (p3,p4,k3,k4)

)]
=

− 2p0
3(2π)2δ(2)(p1 − p3)2p0

4(2π)2δ(2)(p2 − p4).
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Unitarity and other consitency checks

Very complicated nonlinear relation. Since our scattering
amplitudes are also quite complicated, having this
equation obeyed requires a minor algebraic miracle, which
indeed occurs, and unitarity is obeyed. Note that the
relation does not work at all without the contact term and
the factor of sinπλ

πλ .
Other checks? It can be shown that the conjecture is also
consistent with duality.
Our conjecture also has the correct nonrelativistic limit, as
we explain now.
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Straight forward non relativistic limit

The straight forward non relativistic limit is taken by taking√
s → 2m. In this limit F = sgn(λB) and

Tsing = 8πi
√

s(1− cos(πλB))δ(θ) + 4i
√

s sin(πλB)Pv
(

cot
(
θ

2

))
+ 4
√

s| sin(π|λB|)|
(36)

This is in perfect agreement with the Aharonov Bohm
result. Natural quesiton: is there any way to get the Bak-
Camillio modification out of our formula? Ans: yes! There
is a second, more sophisiticated non relativistic limit one
can take.
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Poles in the S Matrix

Can show that the S matrix (both 4 boson and 4 fermions)
have a pole for w ≤ −1.
For w = −1− ε the pole is very near threshhold
As w is decreased the mass of the pole decreases from
2m downto zero. The pole mass hits zero at

wc = −2
λ

+ 1 (37)

As w is decreased further the pole mass rises again, and
approaches 2m as w → −∞.
The appearance of a massless bound state in our
aparently massive theory is fascinating. Would be nice to
understand further.
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Tuned Non Relativistic limit

Consider the theory at w = −1− δw for δw small. It turns
out that EB ∼ (δw)1/|λB |) at small δw .
This observation motivates study of the scaled non
relativistic limit

δw
m
→ 0,

k
m
→ 0,

k
m

( m
δw

) 1
2|λB |

= fixed. (38)

In this limit the 4 boson scattering amplitude may be shown
to agree precisely with the Bak-Camillio form with the
identification

ANR =
δw
2

(2m)2λ . (39)
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Physical explanation of sinπλ
πλ

Interesting observation: sinπλ
πλ equals Witten’s result for the

expectation value of a circular Wilson loop on S3 in pure
Chern Simons theory in the large N limit.
This observation suggests a possible explanation of the
modified crossing symmetry rules (details on white board)
If this is right it is the tip of the iceberg. Finite N and κ.
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Bosons-Fermions?

Let us accept the conjecture for the moment. How did
fermions turn into bosons? Different answers in different
channels.
Adjoint channel. Boring. No phase, no statistics.
Sym and as channel. No phase but statistics. Level rank
duality on Young Tableax of exchange representations
Singlet channel. Most interesting. Anyonic phase. Neither
bosons nor fermions. eiπλB = eiπλF e−iπsgnλF implies
λB = λF − sgnλF . Equating anyonic phases in the singlet
channel gives a derivation of the anyonic phase!
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Conclusions

Presented computations and conjectures for all orders
scattering matrices in Chern Simons matter theories.
Results in perfect agreement with duality
Results are in impressive agreement with the modified
crossing symmetry properties conjectured in earlier
studies. Current conjectures are large N results.
Presumably a consequence of the fact that we are
scattering Anyons. Study of crossing at finite N and k a
very interesting problem.
Generalizations to theories with higher susy - like N = 6
ABJ theories with M � N - should be straightforward and
are currently underway. Hope to soon confront puzzles in
these results.
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