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The Conformal Bootstrap

Solve theories bottom up requiring only basic ingredients: unitarity, conformal
symmetry, crossing.
Initiated in the 70’s with Ferrara, Gatto, Grillo, Parisi and Polyakov.
Modern approach initiated by Rattazzi, Rychkov, Tonni and Vichi in 2008.

Constrains and can even determine possible spectra of CFTs. El-Showk, MFP ’12

Provides broad, non-perturbative results.
Some analytic results (large spin, large N), but mostly numerics.

Fitzpatrick,Kaplan,Poland,Simmons-Duffin ’12; Komargodski,Zhiboedov ’12; Alday, Bissi, Lukowski ’14 ’15

Progress made possible due to computational as well as important technical
advances, most notably the work of F. Dolan and H. Osborn.

Dolan, Osborn (et al) ’00 – ’11

Public bootstrap packages are now available! – JuliBootS and SDPB.
MFP ’14; D. Simmons-Duffin ’15
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Exhibit 1: Bounds
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Bounding conformal dimension of leading scalar operator in the operator
product expansion:

σ × σ = 1+ ε+ . . .
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Exhibit 2: Spectra
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Adding symmetries

Both flavour and spacetime (i.e. super) symmetries have been considered.
Rattazzi, Rychkov, Vichi ’10; Poland, Simmons-Duffin, Vichi ’10, ’11

Results less general, but in principle more constraining. Technically, symmetry
fixes relative OPE coefficients of conformal primaries.
Supersymmetry allows interplay between exact results from SUSY, and
non-pertubative information from bootstrap: e.g. non-renormalization of
superpotential (possibly with a or F maximization) can fix dimensions of chiral
operators, and in some cases even the stress tensor two point function.
The promise of bootstrap: to determine the dimensions of unprotected operators
to high accuracy. Protected quantities allow us to zoom in on a desired theory,
and/or act as a cross-check of results.
More generally, clearly interesting to constrain the space of superconformal field
theories from several perspectives, be they theoretical or phenomenological.

M.F.Paulos (CERN) The four-supercharge bootstrap EuroStrings, 26/03/2015 7 / 41



Bootstrapper’s To-Do-List

Spacetime
SUSY (Q’s) D=1 D=2 D=3 D=4

0 3 3 3 3

2 7 7 3 –
4 7 7 7 3

8 7 7 7 3

16 7 7 3 3
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Bootstrapper’s To-Do-List

Spacetime
SUSY (Q’s) D=1 1<D<2 D=2 2<D<3 D=3 3<D<4 D=4

0 3 3 3 3 3 3 3

2 7 7 7 7 3 – –
4 7 7 3 3 3 3 3

8 7 7 7 7 7 7 3

16 7 7 7 7 7 3 3
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Motivation: D = 4

∆Φ

∆0 = 2∆Φ

In D = 4 a mysterious kink appears around ∆Φ = 1.41. Poland, Simmons-Duffin, Vichi ’11

We will determine spectrum of chiral operators of this theory as well as its
central charge, and examine the fate of the kink as D→ 2.

Spoiler: we still don’t know what it is!
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Motivation: D = 2
In D = 2, we explore NS-NS sector of N = (2, 2) theories.
Infinite family of minimal models, superpotentialW = Υk+2, Υ|θ=0 = Φ.

c =
3k

k + 2

In general (k ≥ 2), have a family

∆Φ =
1

k + 2
, ∆[ΦΦ̄] =

4
k + 2

, ⇒ ∆[ΦΦ̄] = 4∆Φ

For k = c = 1, minimal model is special. Virasoro primaries include identity and
single chiral Φ, with

∆Φ = 1/3, Φ× Φ̄ = 1

First (quasi)-primary in OPE above is scalar with dimension 2 inside identity
multiplet.
If we recover the minimal models with our methods this will act as a cross-check
on other results!
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Motivation: D = 3

Our work will constrain the general landscape of N = 2 SCFT theories in
D = 3.
There is huge set of such theories! But a particularly simple example is the
Wess-Zumino model with cubic superpotential – the N = 2 3d Ising model.
This model has become of interest as it can seemingly be realized in nature. It
describes a certain quantum critical point on the surface of 3d topological
insulators. S.-S. Lee, ’06; P. Ponte and S.-S Lee ’14; Grover,Sheng, Vishwanath ’13

We will be able to determine unprotected quantities in this model, which
determine approach to criticality – i.e. critical exponents.
Theory of a single chiral field, cubic superpotential:

[Φ] =
D− 1

3
, Φ2 = 0, [ΦΦ̄] = 2 +O(ε2)

From our point of view this is a useful goal in what should be thought of as
initial investigations of SCFTs in D = 3, one that in particular is accessible
perturbatively via ε-expansion.
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Why arbitrary D?

Conformal blocks, and indeed bootstrap naturally allows for any D.
In principle, theories could be defined in these dimensions – via systems on
fractal lattices. Golden, MFP ’14; Mandelbrot et al ’80, ’84.

Three birds (D = 2, 3, 4) with one stone. Actually,∞ birds.
Fractional D allows us to track theories across dimensions, compare with
ε-expansion. El-Showk,MFP,Poland,Rychkov,Simmons-Duffin,Vichi ’13
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Anomalous dimensions of σ and ε for Wilson-Fisher fixed point – bootstrap in
black, 5-loop Borel resummed ε-expansion in orange.
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Superconformal algebra in any D.

Our construction relies on a (somewhat) formal construction of the
superconformal algebra for arbitrary D.
Similar constructions exist (trivially) for non-supersymmetric case (it’s just
so(d + 1, 1)), and also for super-Poincaré algebras.
Our results are consistent at the level of traces, and reproduce correct algebras in
integer dimensions – at the end of the day you may argue this is what matters.
The superalgebra allows for determination of representations in OPE of chiral
operators; unitarity bounds; construction of the conformal Casimir. This
information is required for the bootstrap.
A non-trivial cross-check is that using the (super)-conformal blocks obtained
using the algebra, one can decompose (generalized) free field correlation
functions in any dimension with positive coefficients – much like in the non-susy
case.
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Superconformal algebra in any D.

The list of generators includes:
Pi,Ki,D, Mij, i, j = 1, . . .D – conformal group generators.
The U(1) R-charge generator R.
Poincaré supercharges Q+

α ,Q
−
α̇ .

Superconformal charges Sα̇+, Sα−.
Mî̂j, î, ĵ = D + 1, . . . , 4 rotations in internal space (act as R-symmetries).

The +,− supercharges can transform a priori under different spinor representations of
SO(D)× SO(4− D), which however should be two-dimensional (indices run from 1
to 2).
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Superconformal algebra in any D.

The starting point is the anticommutators

{Q+
α ,Q

−
α̇ } = Σi

αα̇Pi ,

{Sα̇+, Sα−} = Σ̄α̇αi Ki ,

The Σ, Σ̄ play the role of gamma matrices in generic dimensions.
The supercharges transform under rotations as

[Mij,Q+
α ] = (mij)

β
α Q+

β ,

[Mij,Q−α̇ ] = (m̃ij)
β̇
α̇Q−

β̇
,

[Mij, Sα̇+] = −(m̃ij)
α̇
β̇

Sβ̇+ ,

[Mij, Sα−] = −(mij)
α
β Sβ− ,
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Superconformal algebra in any D.
Jacobi identities for the triplets [Pi,Kj,Q+

α ] and [Pi,Kj,Q−α̇ ] imply

ΣjΣ̄i = δij + 2imij ,

Σ̄iΣj = δij + 2im̃ij .

Taking the symmetric parts implies that the Σi tensors satisfy the Clifford algebra

ΣiΣ̄j + ΣjΣ̄i = 2δij ,

Σ̄iΣj + Σ̄jΣi = 2δij ,

Taking the antisymmetric parts leads to explicit formulas for the rotation
generators in terms of Σi

mij = − i
4

(ΣjΣ̄i − ΣiΣ̄j) ,

m̃ij = − i
4

(Σ̄iΣj − Σ̄jΣi) .

We will take the tensors with hatted indices to satisfy the same relations, so that
different algebras relate by dimensional reduction.
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Superconformal algebra for any D

It remains to fix {S,Q}. General form consistent with all Jacobis except those
involving three fermions:

{Sα−,Q+
β } = δαβ(iD− aR) + (mij)

α
β Mij + b(mî̂j)

α
β Mî̂j ,

{Sα̇+,Q−
β̇
} = δα̇

β̇
(iD + aR) + (m̃ij)

α̇
β̇

Mij + b(m̃î̂j)
α̇
β̇

Mî̂j ,

From [Q+,Q−, S−] we get

Σ̄α̇αi Σi
ββ̇

=
2a + 1

2
δαβδ

α̇
β̇

+ (mij)
α
β (m̃ij)

α̇
β̇

+ b(mî̂j)
α
β (m̃î̂j)

α̇
β̇
.

Taking trace and using Clifford algebra we get

tr(ΣiΣ̄i) = 2d , a =
d − 1

2
.

Similar considerations involving [Q+,Q+, S−] fix b = −1
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Superconformal algebras in any D

We can check the algebra in integer D:
In D = 4 we obtain by construction the super algebra sl(4|1). The value
a = (D− 1)/2 = 3/2 leads to the usual chirality condition ∆ = 3q/2.
In D = 3 we obtain osp(2|4), with the identification Σi

αα̇ = (σi)
α̇
α the Pauli

matrices. Dotted and undotted indices are equivalent.
In D = 2 obtain NS-NS sector of N = (2, 2) superalgebra, sl(2|1)l × sl(2|1)r.
Rotation in 3,4 become extra R-symmetry.
Bonus: in D = 1 obtain psu(1, 1|2). U(1) R-symmetry may be projected out, but
rotations in 2, 3, 4 become SU(2) R-symmetry.
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Crossing and conformal blocks

Conformal symmetry fixes kinematic dependence of four-point function.

〈Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4)〉 =
|x24|∆12 |x14|∆34

|x14|∆12 |x13|∆34

g(z, z̄)
|x12|∆1+∆2 |x34|∆3+∆4

with zz̄ = x2
12x2

34/x2
13x2

24, (1− z)(1− z̄) = x2
14x2

23/x2
13x2

24.
On the other hand, the Operator Product Expansion gives

Φ1 × Φ2 '
∑
O

cO12O

Primary operators and their derivatives (descendants) come together in
conformal blocks:

g(z, z̄) =
∑
O

cO12cO34GO(z, z̄)

For instance, in D = 2 blocks are known products of hypergeometric functions.
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The superconformal Casimir

Using the superconformal algebra one constructs the Casimir operator.

C2 = Cb
2 −

1
2

Mî̂jMî̂j −
d − 1

4
R2 +

1
2
([

Sα̇+,Q−α̇
]

+
[
Sα−,Q+

α

])
.

with Cb
2 the non-SUSY Casimir. Coefficients above are fixed by the

superconformal algebra.
We consider its action on a correlation function involving two chiral fields,
∆1,3 = D−1

2 q1,3:

〈Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4)〉 =
|x24|∆12 |x14|∆34

|x14|∆12 |x13|∆34

g(z, z̄)
|x12|∆1+∆2 |x34|∆3+∆4

Chirality condition is necessary so that action of Casimir does not map to
correlator of fermions. Dimensions are otherwise arbitrary.
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The superconformal blocks

Conformal block expansion in (13) channel is usual one (non-SUSY), but in
(12), (14) we get superconformal blocks.

g(z, z̄) =
∑
O

cO12c34O G∆12,∆34
∆O,sO (z, z̄).

Conformal blocks are eigenfunctions of Casimir operator. Action of Casimir
takes form of second order differential operator:

D̃2(z, z̄, ∂z, ∂z̄)G∆12,∆34
∆O,sO (z, z̄) = 0

Can be solved:

G∆,s = G∆,s + a G∆+1,s+1 + b G∆+1,s−1 + c G∆+2,s

[O]s.c. = [O] + [QQ̄O] + [QQ̄O] + [Q2Q̄2O]

Matches previously known results in D = 2, 4. Also, leads to positive
decomposition of generalized free field correlation function in arbitrary
dimension.
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Crossing Symmetry

Crossing, or associativity of the OPE implies sum of blocks in one of the
channels matches sum in another one.
Non-trivial constraint on both OPE coefficients and spectrum.
Bootstrap: solve these constraints numerically in a Taylor series.
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Crossing Equations

Equality of the OPEs in the three channels (12), (13), (14) leads to three crossing
equations:

∑
O
|cOΦΦ̄|

2

 F∆Φ

∆,s

F̃∆Φ

∆,s

H̃∆Φ

∆,s

+
∑
P
|cPΦΦ|2

 0
F∆Φ

∆,s

−H∆Φ

∆,s

 = 0 ,

with the operators

O : ∆ ≥ s + d − 2 s = 0, 1, 2, . . . ,

P :

 ∆ = 2∆Φ + s ,
∆ = d − 2∆Φ ,
∆ ≥ |2∆Φ − (d − 1)|+ s + (d − 1) ,

s = 0, 2, . . . ,
s = 0, ∆Φ ≤ d/4 ,
s = 0, 2, . . . .

F,H, F̃, H̃ are kinematically determined functions which are related to
(super)conformal blocks.
Structure above relies on the precise form of the superconformal algebra.
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Charged OPE

P operators appearing in Φ× Φ OPE (dashed operator only appears for s = 0).
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Expect something interesting may happen at D/4 and (D− 1)/2.
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Scalar operator bounds
These are bounds from analysing correlator of (anti-)chirals 〈ΦΦ̄ΦΦ̄〉, with OPE
Φ× Φ̄ = 1 + [ΦΦ̄] + . . ..
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The dashed vertical lines correspond to ∆Φ = D−1
3 . This is dimension of chiral

in WZ model with cubic superpotential. Lines perfectly line up with kinks in the
bounds.
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Closer look: D = 2
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]

d=2.0 bound

min model operator

Mean field

The blue crosses mark the exact dimensions of operators from various
superconformal minimal models. The cross at ( 1

3 , 2) corresponds to the
super-Ising model (i.e. the k = 1 super-Virasoro minimal model). Close to the
origin the bound approaches ∆Φ̄φ = 4∆Φ as for superminimal models.
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Closer look: D = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

∆Φ
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C
T

CT =3∆Φ

Central charge from ∆[ΦΦ] bound.

Min model central charge (k=1-12)

Perfect agreement for k = 1, k = 2 minimal models. For others agreement is
only asymptotic.
Leading OPE coefficients can be also be checked for k = 1 model, with good
agreement. We’re on the right track!
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Closer look: D = 3

0.5 0.6 0.7 0.8 0.9 1.0
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∆
[Φ
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]

Three kinks: first we conjecture to be the critical Wess-Zumino model. Second
occurs at ∆Φ = D/4 = 3/4. Third is the continuation of the mysterious kink in
D = 4.
The value D/4 coincides with the decoupling of a possible operator in the
charged OPE, namely Q2Ψ (Ψ becomes free field).
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Closer look: D = 3
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Hills: upper bounds on [ΦΦ̄]. Valleys: central charge of the solution saturating
the bound. As accuracy is increased, both sets of curves converge, with a sharp
transition at 2/3 = (D− 1)/3
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Closer look: D = 3
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The operator Φ2 decouples from OPE precisely at ∆Φ = 2/3. Consistent with
chiral ring relation Φ2 = 0 for WZ model.
There is also decoupling at the location of the third kink ∆Φ ∼ 0.86. Suggests
this might be a physical solution.
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ε-expansion

0.980 0.985 0.990 0.995 1.000
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∆
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d=3.99

∆[ΦΦ̄] − 2 = −0.283 ε2 + 7.76× 10−3ε+ 7.17× 10−5

Results consistent with ∆ΦΦ̄ = 2 +O(ε2) derived from ε expansion.
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Summary: Wess-Zumino model in D = 3

These are our most accurate results so far:

∆Φ = 1/2 + η/2 2
3 (exact)

∆[Φ̄Φ] = 3− 1/ν 1.9098(20)

∆[Q4Φ̄Φ] = 3 + ω 3.9098(20)

∆[Φ̄Φ]′ 5.3(1)

∆J′ 5.25(25)
CT 4.3591(20)

Our CT is consistent with exact results from localization on a squashed sphere:
Imamura, Yokoyama ’11

CT

Cfree
T

∣∣∣∣
exact

= 0.7268,
CT

Cfree
T

∣∣∣∣
bootstrap

= 0.72652(33)

Furthermore we have agreement with ε-expansion, and the relation Φ2 = 0.
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Second kink?

Properties: chiral of dimension D/4; decoupling of field (Q2Ψ) from OPE;
central charge becomes that of three chiral fields in D = 4
Suggests there exists weakly coupled fixed point in ε expansion.
Non-trivial check on a possible guess: central charge can be computed in D = 3
given superpotential.
We were able to find precise agreement only for strange choice: field theory
actually contains five chiral superfields, but one of them has the wrong sign
kinetic term, so that in terms of CT , they effectively appear as three chiral
superfields.
Superpotential W = (X2 + Z2 + W2 + V2)Y , F-maximization leads to
∆Y < 1/2, which is below the unitarity bound, and signals that the field Y is
actually free⇒ ∆X = ∆Z = ∆W = ∆V = 3/4.
Admittedly odd, but at the fixed point non-unitary field decouples so maybe ok...
(someone) should check ε-expansion.
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The third kink
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Theory corresponds to local minima of CT – same behaviour as say Ising model.
Φ2 = 0 decouples.
In D = 2 seems to merge onto k = 1 minimal model. 2 + ε expansion?
Several hints that this may be physical. Φ2 = 0 is important hint, but we haven’t
been able to make a good guess for the theory.

M.F.Paulos (CERN) The four-supercharge bootstrap EuroStrings, 26/03/2015 39 / 41



Conclusions

We constructed superconformal algebra in any D.
We have conjecturally found the Wess-Zumino model in any D, and determined
low lying spectrum.
We have found a possible new (interesting?) theory accessible in perturbation
theory. More generally, idea of exploring non-unitarily driven fixed points is
interesting.
Our approach to superalgebras generalizes to 8 supercharge case – bootstrap
(4, 4) in D = 2, N = 4 in D = 3, N = 2 in D = 4, N = 1 in D = 5 and (1, 0)
in D = 6.
What is the third kink? Is it physical?
In D = 3 many interesting theories for which we know CT and protected
spectrum. Imposing extra constraints may lead us to find them in our bounds,
determine unprotected spectrum.
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