EUCLIDEAN SUPERGRAVITY

Owen Vaughan

Analysis and Differential Geometry, Department of Mathematics, University of Hamburg

with Prof. Vicente Cortés (Hamburg), Dr. Thomas Mohaupt (Liverpool), Prof. Wafic Sabra (Beirut)

Motivation

Physics

1. Related to Lorentzian theories by **dim. reduction/lifting over time. 2.** Construct and (geometrically) classify soliton and instanton solutions. **3.** New types of compactifications, extend concepts of 'stringy' geometry.

Theorem: (Cortés, Dempster, Mohaupt & **OV**, 2015 [2]) Manifolds in the images of the temporal and Euclidean c-maps are paraquaternionic Kähler.

Open Problems:

- Does the diagram in figure 1 commute?
- Construction of para-HQ/para-QK correspondence?

Mathematics

1. Interesting para-complex and para-quaternionic special geometry. **2.** Maps between special geometries induced by dimensional reduction. **3.** Geometric structure of solutions, e.g. Einstein, Kähler and SU(n) strs.

4D Euclidean Supergravity

The action of 4D, $\mathcal{N} = 2$ supergravity coupled to vector-multiplets with spacetime signature $(\varepsilon + + +)$ is given by [1]

$$\mathcal{L}_4 \sim R - \frac{1}{2} g_{A\bar{B}} \partial_\mu z^A \partial^\mu \bar{z}^B - \frac{1}{4} \mathcal{I}_{IJ} F^I_{\mu\nu} F^{J\mu\nu} - \frac{1}{4} \mathcal{R}_{IJ} F^I_{\mu\nu} \tilde{F}^{J\mu\nu} \qquad (*)$$

The scalar fields z^A are complex if $\varepsilon = -1$ and para-complex if $\varepsilon = +1$. **Definition:** Para-complex numbers C (a.k.a. split-complex)

 $C = \mathbb{R}\underline{1} + \mathbb{R}\underline{e}$ where $\underline{1}.\underline{1} = \underline{1}$ $\underline{1}.\underline{e} = \underline{e}.\underline{1} = \underline{e}$ $\underline{e}.\underline{e} = \underline{1}$

Remark: Para-cx numbers contain zero-divisors, e.g. $(\underline{1} + \underline{e}).(\underline{1} - \underline{e}) = 0.$ **Remark:** One can identify $C = \mathbb{R} \oplus \mathbb{R}$ through $x\underline{1} + y\underline{e} \mapsto (x + y, x - y)$.

New 4D Solitons and Instantons

Idea:

Reduce 4D, $\mathcal{N} = 2$ supergravity (*) over timelike or spacelike S^1 to obtain 3D Euclidean supergravity. Spacetime metrics related by

 $G_4 = \varepsilon e^{\phi} (dt + w)^2 + e^{-\phi} G_3 .$

The 3D equations of motion are easier to solve (vectors dualise to scalars). Solutions correspond to geodesics in para-quaternionic Kähler target mf. New 3D instanton solutions lift to either new soliton or instanton solutions in 4D (depending on the signature of 4D spacetime).

New constructions:

1. Non-extremal AdS black holes in gauged supergravity [4, 5, 6].

2. Euclidean analogues of AdS black holes and dS spaces. Generalise singlecentre Gibbons-Hawking instantons.

10D to 4D Euclidean Supergravity over a CY_3

Special Geometry

Theories with extended supersymmetry ($\mathcal{N} \geq 2$) have two types of geometry:

1) Geometry of spacetime Σ 2) 'Special' geometry of scalar target space M (M, g)

 (Σ, G) Interesting types of special geometry occur in $D = 3, 4, 5, \mathcal{N} = 2$ supergravity coupled to vector-multiplets, with Lorentzian or Euclidean spacetime sigs.

Note: in D = 3 vector-multiplets are dual to hyper-multiplets.

Theorem: (Sabra & **OV**, 2015 [3]) Reduction of 11D supergravity over a timelike circle followed by a CY_3 results in $4D, \mathcal{N} = 2$ Euclidean supergravity coupled to vector- and hyper-multiplets.

Open Problems

- How does this fit into generalised geom.?
- New instanton solutions of string theory, and soliton solutions of *M*-theory?
- Euclidean string theories?
- Euclidean gauge/gravity duality?

References

FIGURE 2: Possible reductions of 11D supergravity to 4D. [1] V. Cortés and T. Mohaupt, JHEP 0907 (2009) 066 [arXiv:0905.2844]. [2] V. Cortés, P. Dempster, T. Mohaupt and **OV**, in preparation. [3] W. A. Sabra and **OV**, [arXiv:1503.05095]. [4] D. Klemm and **OV**, JHEP 1301 (2013) 053 [arXiv:1207.2679]. [5] D. Klemm and **OV**, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618]. [6] A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and **OV**, JHEP 1401 (2014) 127 [arXiv:1311.1795].

FIGURE 1: Maps between various types of special geometry induced by dim. reduction.

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

