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• Introduction- What Does(does not) 
Geometry capture?

• Geometry Topology and Quantum Noise I - 
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• VERY(!) long time correlations. VERY small.
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• AdS5 metric
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• E↵ective temperature

T (r) =
T (0)p

1 + r2/R2

• Black Hole in AdS5 metric
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• For T < 1/R
Only thermal AdS

• For T & 1/R
Thermal AdS plus BH in AdS,
(actually two Black Holes)

• For T > 1/R
BH dominates



Black Hole Information
Paradoxes

• BH formation paradox

• Eternal BH paradox (Maldacena)

Tool for CFT =) AdS



• In Principle

Initial bulk state =) Initial CFT state
. +
Final bulk state (= Final CFT state

Instead consider slight deviation from thermal
equilibrium on the field theory side



Consider

G(t) = Tr [⇢A(t)A(0)]

For very large time scale



2. Quantum Noise Of Temporal Correlation Functions

In our discussion we will use the term ‘quantum noise’ to describe the characteristics

of correlation functions after a certain time; essentially the time that is required for them

to start oscillating around the long time average value they are supposed to attain. To

appreciate how this comes about consider first the example of a time self-correlation for

an Hermitian operator B in an infrared-bounded, unitary quantum system

C(t) = Tr [ ρ B(t)B(0)] = Tr
[
ρ eitH B e−itH B

]
. (2.1)

The correlation (2.1) has a spectral representation

C(t) =
∑

mn

ρm BmnBnm ei(Em−En)t , (2.2)

where we have taken for simplicity a diagonal density matrix in the energy basis. A par-

ticular case is provided by the canonical thermal state, ρn = e−βEn/
∑

k e
−βEk , although

the present discussion goes through for a general choice of ρn.

The bounded character of the system is reflected in the discreteness of the energy

spectrum. Indeed in this case the correlation is maximal at t = 0 and decays away from

there for a time period to be estimated. For times small compared to the inverse level

separation ⟨En −Em⟩ t ≪ 1 we may be able to approximate the discrete sums in (2.2) by

continuous integrals, resulting in either a power law or exponential decay, depending on the

detailed energy dependence of the operator matrix elements. However, the discreteness of

the spectrum cannot be ignored over very long time scales, since the infinite time average

of (2.2) is strictly positive, 1

C(t) ≡ lim
τ→∞

1

τ

∫ τ

0
dt C(t) =

∑

m

ρm|Bmm|2 . (2.3)

In fact, the value of the limiting time average is controlled by the diagonal matrix ele-

ments of B in the energy basis. The same diagonal matrix elements control the one-point

expectation value Tr [ρB]. It will be convenient to work with operators having no expec-

tation values in energy eigenstates. In the following we will arrange for that by dealing

with modified operators B from which the diagonal elements were subtracted. In such a

1 We assume all spectral sums to be sufficiently convergent so that formal manipulations in-

volving commutation of integrals and sums are permitted.
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Aspects of Long Time Scales in Field
Theory

Classical Quantum

Compact Phase Space () Discrete Spectrum

Volume Conservation () Unitarity

Then, If
G(t0) =< ✓1(t0, x1)|✓2(0, x2) >

for any ✏ there is a tP (✏) such that

|G(tP (✏))�G(t0)| < ✏

You See It All!
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We begin in Sect. 2 with an operational definition of quantum correlation noise in various types of
correlation functions, including EPR systems. In Sect. 3 we discuss the most suitable observables to probe
the system once the dynamics is given, with a focus on constraints derived from the theory of quantum
chaos. This leads to a choice of operators characterized by the Eigenvalue Thermalization Hypothesis
(ETH). In Sect. 4 we turn to estimate the value of the quantum noise and its dependence on the dynamics,
the observables and the states. We find a diversity of relations between the value of the noise and the
entropy of the system. In Sect. 5 we apply these results to AdS/CFT systems containing both black holes
and graviton gases in their dual dynamical description. Finally, we conclude offering some speculations on
the interpretation of the EPR=ER conjecture in the light of our results.

2 Quantum noise of temporal correlation functions

In our discussion we will use the term ‘quantum noise’ to describe the characteristics of correlation func-
tions after a certain time; essentially the time that is required for them to start oscillating around the long
time average value they are supposed to attain. To appreciate how this comes about consider first the ex-
ample of a time self-correlation for an Hermitian operator B in an infrared-bounded, unitary quantum
system

C(t) = Tr [ ρ B(t)B(0)] = Tr
[
ρ eitH B e−itH B

]
. (2.1)

The correlation (2.1) has a spectral representation

C(t) =
∑

mn

ρm Bmn Bnm ei(Em−En)t , (2.2)

where we have considered for simplicity a diagonal density matrix in the energy basis. A particular case
is provided by the canonical thermal state, ρn = e−βEn/

∑
k e−βEk , although the present discussion goes

through for a general choice of ρn.
The bounded character of the system is reflected in the discreteness of the energy spectrum. Indeed in

this case the correlation is maximal at t = 0 and decays away from there for a time period to be estimated.
For times small compared to the inverse level separation ⟨En −Em⟩ t ≪ 1 we may be able to approximate
the discrete sums in (2.2) by continuous integrals, resulting in either a power law or exponential decay,
depending on the detailed energy dependence of the operator matrix elements. However, the discreteness
of the spectrum cannot be ignored over very long time scales, since the infinite time average of (2.2) is
strictly positive1,

C(t) ≡ lim
τ→∞

1
τ

∫ τ

0
dt C(t) =

∑

m

ρm|Bmm|2 . (2.3)

In fact, the value of the limiting time average is controlled by the diagonal matrix elements of B in the
energy basis. The same diagonal matrix elements control the one-point expectation value Tr [ρB]. It will
be convenient to work with operators having no expectation values in energy eigenstates. In the following
we will arrange for that by dealing with modified operators B from which the diagonal elements were
subtracted. In such a situation the time average of the correlation vanishes and we can define the noise
from the time average of the modulus squared,

|noise| ≡
[
|C(t)|2

]1/2
, (2.4)

1 We assume all spectral sums to be sufficiently convergent so that formal manipulations involving commutation of integrals and
sums are permitted.
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Generically positive. For B with no diagonal terms 
average the square. 

An estimate gives  a normalisation Exp(-S) times

a number. So the decay must stop, the discrete

nature of the spectrum felt and the magnitude 

is Exp(-S) *
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The Noise is defined by
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where

|C(t)|2 =
∑

mnrs

ρmρr|Bmn|2 |Brs|2 ei(Em−En+Es−Er)t . (2.5)

When the spectrum is generic, that is when no rational relations exist between energy levels, the time
average of the phase elements in (2.5) vanishes unless Em = Er and En = Es or Em = En and Er = Es.
The second option is discarded because we now assume Bnn = 0. We are thus left with an average noise
amplitude

|noise| =

[
∑

mn

ρ2
m |Bmn|4

]1/2

, (2.6)

which measures the average fluctuation amplitude of the function C(t).
In general, any two-point function has the structure

C(t) =
∑

mn

Cmn(t) =
∑

mn

Cmn ei(En−Em)t , (2.7)

with Cmn depending quadratically on the operator matrix elements. The component Fourier periods range
from the shortest time scales tshort ∼ (∆E)−1

max, determined by the largest energy difference in the the
matrix elements of B, up to the longest time scales (∆E)−1

min determined by the smallest energy differences.
The oscillatory structure is actually dominated by the Heisenberg time scale tH ∼ ((∆E)average)−1, which
characterizes the average energy differences.

On time scales in excess of the Heisenberg time most of the oscillation components in (2.7) have updated
their phases by an amount of O(1). In the absence of rational relations between the energy differences, the
erratic behavior of ei(Em−En)t will eventually erase any phase correlations that could exist at t = 0 among
the Cmn coefficients, such as their uniform positive sign for the example at hand, Cmn = ρm|Bmn|2. This
means that, on time scales larger than tH, all Cmn(t) can be regarded as having uncorrelated phases. In
this case the noise can be estimated by viewing each term in (2.7) as a step in random walk, i.e. by the
root-mean-square (

∑
mn |Cmn|2)1/2. This heuristic method of analysis captures the properties that result

from the more formal definition (2.4).
A useful measure of the noise amplitude is obtained by comparison with the peak value, occurring at

t = 0 for the particular case of the correlation (2.1):

|peak| ∼ |C(t)|max =
∑

mn

ρm |Bmn|2 . (2.8)

We then define the ratio

|noise|
|peak| =

[ ∑
mn ρ2

m |Bmn|4(∑
mn ρm |Bmn|2

)2

]1/2

. (2.9)

Very roughly, there are two more index sums in the denominator than in the numerator, so we expect (2.9)
to scale as 1/Neff , where Neff is some measure of the number of states that are efficiently excited by the
operator. Following usual practice, we can define an effective ‘entropy’ associated to this Hilbert-space
dimensionality by the formula Seff = log (Neff), so that noise levels are expected to amount a fraction of
order e−Seff of the peak value.

A more detailed estimate of Seff requires some knowledge of the spectral properties of the system,
the operator and the particular quantum state. At any rate, if the long-time decay from the peak is of an
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from the shortest time scales tshort ∼ (∆E)−1

max, determined by the largest energy difference in the the
matrix elements of B, up to the longest time scales (∆E)−1

min determined by the smallest energy differences.
The oscillatory structure is actually dominated by the Heisenberg time scale tH ∼ ((∆E)average)−1, which
characterizes the average energy differences.

On time scales in excess of the Heisenberg time most of the oscillation components in (2.7) have updated
their phases by an amount of O(1). In the absence of rational relations between the energy differences, the
erratic behavior of ei(Em−En)t will eventually erase any phase correlations that could exist at t = 0 among
the Cmn coefficients, such as their uniform positive sign for the example at hand, Cmn = ρm|Bmn|2. This
means that, on time scales larger than tH, all Cmn(t) can be regarded as having uncorrelated phases. In
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∑
mn |Cmn|2)1/2. This heuristic method of analysis captures the properties that result

from the more formal definition (2.4).
A useful measure of the noise amplitude is obtained by comparison with the peak value, occurring at

t = 0 for the particular case of the correlation (2.1):

|peak| ∼ |C(t)|max =
∑

mn

ρm |Bmn|2 . (2.8)

We then define the ratio

|noise|
|peak| =

[ ∑
mn ρ2

m |Bmn|4(∑
mn ρm |Bmn|2

)2

]1/2

. (2.9)

Very roughly, there are two more index sums in the denominator than in the numerator, so we expect (2.9)
to scale as 1/Neff , where Neff is some measure of the number of states that are efficiently excited by the
operator. Following usual practice, we can define an effective ‘entropy’ associated to this Hilbert-space
dimensionality by the formula Seff = log (Neff), so that noise levels are expected to amount a fraction of
order e−Seff of the peak value.

A more detailed estimate of Seff requires some knowledge of the spectral properties of the system,
the operator and the particular quantum state. At any rate, if the long-time decay from the peak is of an
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2. Quantum Noise Of Temporal Correlation Functions

In our discussion we will use the term ‘quantum noise’ to describe the characteristics

of correlation functions after a certain time; essentially the time that is required for them

to start oscillating around the long time average value they are supposed to attain. To

appreciate how this comes about consider first the example of a time self-correlation for

an Hermitian operator B in an infrared-bounded, unitary quantum system

C(t) = Tr [ ρ B(t)B(0)] = Tr
[
ρ eitH B e−itH B

]
. (2.1)

The correlation (2.1) has a spectral representation

C(t) =
∑

mn

ρm BmnBnm ei(Em−En)t , (2.2)

where we have taken for simplicity a diagonal density matrix in the energy basis. A par-

ticular case is provided by the canonical thermal state, ρn = e−βEn/
∑

k e
−βEk , although

the present discussion goes through for a general choice of ρn.

The bounded character of the system is reflected in the discreteness of the energy

spectrum. Indeed in this case the correlation is maximal at t = 0 and decays away from

there for a time period to be estimated. For times small compared to the inverse level

separation ⟨En −Em⟩ t ≪ 1 we may be able to approximate the discrete sums in (2.2) by

continuous integrals, resulting in either a power law or exponential decay, depending on the

detailed energy dependence of the operator matrix elements. However, the discreteness of

the spectrum cannot be ignored over very long time scales, since the infinite time average

of (2.2) is strictly positive, 1

C(t) ≡ lim
τ→∞

1

τ

∫ τ

0
dt C(t) =

∑

m

ρm|Bmm|2 . (2.3)

In fact, the value of the limiting time average is controlled by the diagonal matrix ele-

ments of B in the energy basis. The same diagonal matrix elements control the one-point

expectation value Tr [ρB]. It will be convenient to work with operators having no expec-

tation values in energy eigenstates. In the following we will arrange for that by dealing

with modified operators B from which the diagonal elements were subtracted. In such a

1 We assume all spectral sums to be sufficiently convergent so that formal manipulations in-

volving commutation of integrals and sums are permitted.
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Log S - Scrambling time BH, 1/S boundary(UP,T)
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• L̄ reasonable course grained

• L(t) not reproduced

• Stretched horizon, Brick Wall?



Conclusions

• The Burden of Proof That a Well Defined
Information Paradox Exists Shifts to Claimer

• Topological Diversity is Required

• String theory is Quite a Formidable Bastion
of Consistency



Geometry Reproduces Average Result

Geometry May Well Miss some Exp(-S)

Features. 

Question: Is the failure of the thermodynamically

dominant contribution to reproduce the average quantum 

noise accidental?
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More General Case
• Two different operators.

• If the density matrix is diagonal in the energy basis-there is only 
dependence on time differences.

• Otherwise there is a dependence on both times. 

• Even for a diagonal density matrix there is no generic peak at t=0  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and/or states of the form

GBB′(t, t′) = Tr
[
ρ B(t)B′(t′)

]
=

∑

mnr

ρmn Bnr B′
rm ei(En−Er)(t−t′) e−i(Em−En)t′ , (2.12)

where ρmn is a general density matrix characterizing the state of the system. If the state (density matrix)
is stationary, i.e. diagonal in the energy basis, the correlation only depends on t − t′ and we can set t′ = 0
with no loss of generality. For general non-stationary density matrices we can rewrite (2.12) as

GBB′(t, t′) = Tr
[
ρ(t′)B(t − t′)B(0)

]
, (2.13)

with ρ(t′) = e−it′Hρ eit′H , and ascribe the t′ dependence to the specification of the state. If we are
interested in generic properties, we may put t′ = 0 and absorb the t′ dependence on the generic choice
of ρ.

We shall denote correlations in stationary states by DBB′(t), to signify the diagonal character of the
density matrix. In general, (2.12) does not peak at t = t′, even for [ρ, H ] = 0. This would require conditions
on the matrix elements of B and B′, i.e. a concrete correlation between the operators, which in general
will be state-dependent.

In many situations it is interesting to consider the doubled version of the system to purify the mixed state
ρ. We refer to the original system as ‘Bob’ and to the purification copy as ‘Alice’. A general normalized
state of the form

|G⟩ =
∑

mn

gmn |m⟩A ⊗ |n⟩B , (2.14)

defines a density matrix on Bob’s side

ρnn′ =
∑

m

gmn g∗mn′ , (2.15)

so that (2.12) can be obtained as a G-expectation value of Bob-side operators B and B′.
More generally, we can consider the so-called EPR correlations between ‘Alice’ and ‘Bob’ operators

GAB(tA, tB) = ⟨A(tA)B(tB)⟩G = ⟨G|e−itAH AeitAH eitBH B e−itBH |G⟩ , (2.16)

where we adopt the common convention of inverted time flow on the Alice side. With this definition (2.16)
has similar time-dependence properties as (2.12), since we can rewrite (2.16) as

GAB(tA, tB) = ⟨G(tB) |A(tA − tB)B(0) |G(tB)⟩ , (2.17)

where

|G(t)⟩ ≡
∑

mn

gmn eitH |m⟩A ⊗ e−itH |n⟩B .

States with diagonal entanglement in the energy basis, gmn ∝ δmn, are stationary and the corresponding
EPR correlation (2.17) only depends on tA − tB . In this stationary situation we can set tA − tB = t
and denote the correlation as DAB(t). One such example is the ‘thermo-field double’ state (TFD) with
gmn = Z(β)−1/2 e−βEn/2δmn, whose ‘one-sided’ density matrix is the standard canonical ensemble ρT .
If we are interested in properties of (2.17) for generic choices of gmn we can also absorb the tB dependence
in the choice of state |G⟩ and set t = tA − tB .

EPR correlations can always be pulled back to ‘one-side’ correlations if the detailed double state is
known. This is achieved by diagonalizing the entanglement in the so-called Schmidt basis:

gmn =
∑

α

(ΩA)mα
√

ρα (ΩB)nα , (2.18)
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known. This is achieved by diagonalizing the entanglement in the so-called Schmidt basis:

gmn =
∑

α

(ΩA)mα
√

ρα (ΩB)nα , (2.18)
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and/or states of the form

GBB′(t, t′) = Tr
[
ρ B(t)B′(t′)

]
=

∑

mnr

ρmn Bnr B′
rm ei(En−Er)(t−t′) e−i(Em−En)t′ , (2.12)

where ρmn is a general density matrix characterizing the state of the system. If the state (density matrix)
is stationary, i.e. diagonal in the energy basis, the correlation only depends on t − t′ and we can set t′ = 0
with no loss of generality. For general non-stationary density matrices we can rewrite (2.12) as

GBB′(t, t′) = Tr
[
ρ(t′)B(t − t′)B(0)

]
, (2.13)

with ρ(t′) = e−it′Hρ eit′H , and ascribe the t′ dependence to the specification of the state. If we are
interested in generic properties, we may put t′ = 0 and absorb the t′ dependence on the generic choice
of ρ.

We shall denote correlations in stationary states by DBB′(t), to signify the diagonal character of the
density matrix. In general, (2.12) does not peak at t = t′, even for [ρ, H ] = 0. This would require conditions
on the matrix elements of B and B′, i.e. a concrete correlation between the operators, which in general
will be state-dependent.

In many situations it is interesting to consider the doubled version of the system to purify the mixed state
ρ. We refer to the original system as ‘Bob’ and to the purification copy as ‘Alice’. A general normalized
state of the form

|G⟩ =
∑

mn

gmn |m⟩A ⊗ |n⟩B , (2.14)

defines a density matrix on Bob’s side

ρnn′ =
∑

m

gmn g∗mn′ , (2.15)

so that (2.12) can be obtained as a G-expectation value of Bob-side operators B and B′.
More generally, we can consider the so-called EPR correlations between ‘Alice’ and ‘Bob’ operators

GAB(tA, tB) = ⟨A(tA)B(tB)⟩G = ⟨G|e−itAH AeitAH eitBH B e−itBH |G⟩ , (2.16)

where we adopt the common convention of inverted time flow on the Alice side. With this definition (2.16)
has similar time-dependence properties as (2.12), since we can rewrite (2.16) as

GAB(tA, tB) = ⟨G(tB) |A(tA − tB)B(0) |G(tB)⟩ , (2.17)

where

|G(t)⟩ ≡
∑

mn

gmn eitH |m⟩A ⊗ e−itH |n⟩B .

States with diagonal entanglement in the energy basis, gmn ∝ δmn, are stationary and the corresponding
EPR correlation (2.17) only depends on tA − tB . In this stationary situation we can set tA − tB = t
and denote the correlation as DAB(t). One such example is the ‘thermo-field double’ state (TFD) with
gmn = Z(β)−1/2 e−βEn/2δmn, whose ‘one-sided’ density matrix is the standard canonical ensemble ρT .
If we are interested in properties of (2.17) for generic choices of gmn we can also absorb the tB dependence
in the choice of state |G⟩ and set t = tA − tB .

EPR correlations can always be pulled back to ‘one-side’ correlations if the detailed double state is
known. This is achieved by diagonalizing the entanglement in the so-called Schmidt basis:

gmn =
∑

α

(ΩA)mα
√

ρα (ΩB)nα , (2.18)
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state |G⟩ and set t = tA − tB.

EPR correlations can always be pulled back to ‘one-side’ correlations if the detailed

double state is known. This is achieved by diagonalizing the entanglement in the so-called

Schmidt basis:

gmn =
∑

α

(ΩA)mα
√
ρα (ΩB)nα , (2.18)

where the notation reflects our ability to define the ‘entanglement eigenvalues’
√
ρα as

positive definite by absorbing phases in the independent unitary matrices ΩA and ΩB.

The ρα are also the eigenvalues of the Bob-side density matrix,2 so that they satisfy
∑

α ρα = 1,

ρnn′ =
∑

α

ρα (ΩB)nα (ΩB)
∗
n′α . (2.19)

In the case of doubled EPR states, the ρα measure the degree of entanglement, ranging

from zero in the case that only one ρα is non-zero, to maximal entanglement when all of

them are equal to one another. The matrices ΩA and ΩB measure the departure from

‘diagonal’ entanglement, by which we refer to the alignment between the Schmidt basis

which diagonalizes entanglement and the energy basis which diagonalizes the Hamiltonian.

On Bob’s side, ‘alignment’ is equivalent to [ρ, H] = 0, i.e. stationarity of the Bob-side state.

We can rewrite (2.12) in the Schmidt basis as

Tr [ρB(t)B′(t′)] =
∑

αβ

ρα
(
Ω†

B B(t)ΩB

)

αβ

(
Ω†

B B′(t′)ΩB

)

βα
, (2.20)

while the EPR correlation (2.16) takes the form

⟨A(tA)B(tB)⟩G =
∑

αβ

√
ραρβ

(
Ω†

AA(tA)ΩA

)

αβ

(
Ω†

B B(tB)ΩB

)

αβ
. (2.21)

If the G-state has sufficient entanglement so that all ρα ̸= 0, knowledge of ΩA can be used

to construct a surrogate of Alice on Bob’s side which gives the same EPR correlation with

the rule

⟨A(tA)B(tB) ⟩G = Tr
[
ρB(tB)BA(tA)

]
, (2.22)

with
(
BA(tA)

)
αβ

=
√
ρα

(
Ω†

AA(tA)ΩA

)

βα

1
√
ρβ

. (2.23)

2 Notice that Bob and Alice can have different density matrices in the energy basis, but both

have the same eigenvalues.
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where the notation reflects our ability to define the ‘entanglement eigenvalues’
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ρα as

positive definite by absorbing phases in the independent unitary matrices ΩA and ΩB.

The ρα are also the eigenvalues of the Bob-side density matrix,2 so that they satisfy
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α ρα = 1,
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α
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∗
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them are equal to one another. The matrices ΩA and ΩB measure the departure from

‘diagonal’ entanglement, by which we refer to the alignment between the Schmidt basis

which diagonalizes entanglement and the energy basis which diagonalizes the Hamiltonian.

On Bob’s side, ‘alignment’ is equivalent to [ρ, H] = 0, i.e. stationarity of the Bob-side state.

We can rewrite (2.12) in the Schmidt basis as

Tr [ρB(t)B′(t′)] =
∑

αβ

ρα
(
Ω†
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)
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(
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B B′(t′)ΩB

)
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, (2.20)

while the EPR correlation (2.16) takes the form
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AA(tA)ΩA

)
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(
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)
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. (2.21)

If the G-state has sufficient entanglement so that all ρα ̸= 0, knowledge of ΩA can be used

to construct a surrogate of Alice on Bob’s side which gives the same EPR correlation with

the rule

⟨A(tA)B(tB) ⟩G = Tr
[
ρB(tB)BA(tA)

]
, (2.22)

with
(
BA(tA)

)
αβ

=
√
ρα

(
Ω†
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)

βα

1
√
ρβ

. (2.23)

2 Notice that Bob and Alice can have different density matrices in the energy basis, but both

have the same eigenvalues.
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where the notation reflects our ability to define the ‘entanglement eigenvalues’
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ρα as

positive definite by absorbing phases in the independent unitary matrices ΩA and ΩB.

The ρα are also the eigenvalues of the Bob-side density matrix,2 so that they satisfy
∑

α ρα = 1,
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α

ρα (ΩB)nα (ΩB)
∗
n′α . (2.19)

In the case of doubled EPR states, the ρα measure the degree of entanglement, ranging

from zero in the case that only one ρα is non-zero, to maximal entanglement when all of

them are equal to one another. The matrices ΩA and ΩB measure the departure from

‘diagonal’ entanglement, by which we refer to the alignment between the Schmidt basis

which diagonalizes entanglement and the energy basis which diagonalizes the Hamiltonian.

On Bob’s side, ‘alignment’ is equivalent to [ρ, H] = 0, i.e. stationarity of the Bob-side state.

We can rewrite (2.12) in the Schmidt basis as

Tr [ρB(t)B′(t′)] =
∑

αβ

ρα
(
Ω†

B B(t)ΩB

)

αβ

(
Ω†

B B′(t′)ΩB

)

βα
, (2.20)

while the EPR correlation (2.16) takes the form

⟨A(tA)B(tB)⟩G =
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ραρβ

(
Ω†

AA(tA)ΩA

)
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(
Ω†

B B(tB)ΩB

)
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. (2.21)

If the G-state has sufficient entanglement so that all ρα ̸= 0, knowledge of ΩA can be used

to construct a surrogate of Alice on Bob’s side which gives the same EPR correlation with

the rule

⟨A(tA)B(tB) ⟩G = Tr
[
ρB(tB)BA(tA)

]
, (2.22)

with
(
BA(tA)

)
αβ

=
√
ρα

(
Ω†

AA(tA)ΩA

)

βα

1
√
ρβ

. (2.23)

2 Notice that Bob and Alice can have different density matrices in the energy basis, but both

have the same eigenvalues.

7

A particular case of this relation is well known for the case of the TFD state, where it can

be written as an analyticity property:

⟨A(tA)B(tB)⟩TFD = Tr
[
ρT Ã(tA − iβ/2)B(tB)

]
, (2.24)

where Ãmn = Anm and the time evolution in the r.h.s. is defined with Bob’s time arrow.

This convention is different from the one implicit in (2.23), where the time evolution of

A(tA) is performed on the Alice side and the result is mapped to Bob’s side with (2.23).

The analyticity relation (2.24) is very important in AdS/CFT calculus, since all cor-

relation functions computed via bulk rules can be obtained as analytic continuations of

Euclidean bulk correlations on the Euclidean bulk saddle point manifolds, such as the eter-

nal black hole ‘cigar’ metric. This means that the bulk computational rules are implicitly

designed for a large-N limit of TFD states (or appropriate deformations thereof.) It is for

these states for which there is a strong case for the EPR=ER conjecture of [3], while the

‘geometric’ status of more general highly entangled states is still under study [7,8,9].

3. Representative Dynamics And Observables

Noise levels in correlations depend on detailed dynamical properties regarding both

the spectrum of the Hamiltonian and the particular choice of quantum state and operators.

With a very broad brush we can distinguish two extreme cases. One extreme case occurs

when the system is close to being integrable, like a gas of almost free quasiparticles. In

this familiar situation it is natural to choose B as a one-particle operator, whose matrix

elements in the energy basis are very sparse, connecting only states differing by one unit

of quasiparticle number.

The other extreme is a more generic non-integrable system with chaotic dynamics in

the quantum sense. A practical criterion for quantum chaos has been proposed in [10,11,12]

along the following lines: given a generic observable B which does not commute with the

Hamiltonian, we have chaotic dynamics when the eigenstates of B can be considered as

uncorrelated with the eigenstates of H, so that both basis are related by a random unitary

transformation. This suggests that those B eigenstates will be very efficiently mixed under

the time evolution generated by H.

More formally, let us restrict B to the subspace generated by a narrow band with eS

energy eigenstates. We say the band is ‘chaotic’ with respect to the observable B if the

8
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√
ρα (ΩB)nα , (2.18)

where the notation reflects our ability to define the ‘entanglement eigenvalues’
√
ρα as

positive definite by absorbing phases in the independent unitary matrices ΩA and ΩB.

The ρα are also the eigenvalues of the Bob-side density matrix,2 so that they satisfy
∑

α ρα = 1,
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α

ρα (ΩB)nα (ΩB)
∗
n′α . (2.19)
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from zero in the case that only one ρα is non-zero, to maximal entanglement when all of

them are equal to one another. The matrices ΩA and ΩB measure the departure from

‘diagonal’ entanglement, by which we refer to the alignment between the Schmidt basis

which diagonalizes entanglement and the energy basis which diagonalizes the Hamiltonian.

On Bob’s side, ‘alignment’ is equivalent to [ρ, H] = 0, i.e. stationarity of the Bob-side state.

We can rewrite (2.12) in the Schmidt basis as

Tr [ρB(t)B′(t′)] =
∑

αβ

ρα
(
Ω†

B B(t)ΩB

)

αβ

(
Ω†

B B′(t′)ΩB

)

βα
, (2.20)

while the EPR correlation (2.16) takes the form

⟨A(tA)B(tB)⟩G =
∑

αβ

√
ραρβ

(
Ω†

AA(tA)ΩA

)

αβ

(
Ω†

B B(tB)ΩB

)

αβ
. (2.21)

If the G-state has sufficient entanglement so that all ρα ̸= 0, knowledge of ΩA can be used

to construct a surrogate of Alice on Bob’s side which gives the same EPR correlation with

the rule

⟨A(tA)B(tB) ⟩G = Tr
[
ρB(tB)BA(tA)

]
, (2.22)

with
(
BA(tA)

)
αβ

=
√
ρα

(
Ω†
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)

βα

1
√
ρβ

. (2.23)

2 Notice that Bob and Alice can have different density matrices in the energy basis, but both

have the same eigenvalues.
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and/or states of the form

GBB′(t, t′) = Tr
[
ρ B(t)B′(t′)

]
=

∑

mnr

ρmn Bnr B′
rm ei(En−Er)(t−t′) e−i(Em−En)t′ , (2.12)

where ρmn is a general density matrix characterizing the state of the system. If the state (density matrix)
is stationary, i.e. diagonal in the energy basis, the correlation only depends on t − t′ and we can set t′ = 0
with no loss of generality. For general non-stationary density matrices we can rewrite (2.12) as

GBB′(t, t′) = Tr
[
ρ(t′)B(t − t′)B(0)

]
, (2.13)

with ρ(t′) = e−it′Hρ eit′H , and ascribe the t′ dependence to the specification of the state. If we are
interested in generic properties, we may put t′ = 0 and absorb the t′ dependence on the generic choice
of ρ.

We shall denote correlations in stationary states by DBB′(t), to signify the diagonal character of the
density matrix. In general, (2.12) does not peak at t = t′, even for [ρ, H ] = 0. This would require conditions
on the matrix elements of B and B′, i.e. a concrete correlation between the operators, which in general
will be state-dependent.

In many situations it is interesting to consider the doubled version of the system to purify the mixed state
ρ. We refer to the original system as ‘Bob’ and to the purification copy as ‘Alice’. A general normalized
state of the form

|G⟩ =
∑

mn

gmn |m⟩A ⊗ |n⟩B , (2.14)

defines a density matrix on Bob’s side

ρnn′ =
∑

m

gmn g∗mn′ , (2.15)

so that (2.12) can be obtained as a G-expectation value of Bob-side operators B and B′.
More generally, we can consider the so-called EPR correlations between ‘Alice’ and ‘Bob’ operators

GAB(tA, tB) = ⟨A(tA)B(tB)⟩G = ⟨G|e−itAH AeitAH eitBH B e−itBH |G⟩ , (2.16)

where we adopt the common convention of inverted time flow on the Alice side. With this definition (2.16)
has similar time-dependence properties as (2.12), since we can rewrite (2.16) as

GAB(tA, tB) = ⟨G(tB) |A(tA − tB)B(0) |G(tB)⟩ , (2.17)

where

|G(t)⟩ ≡
∑

mn

gmn eitH |m⟩A ⊗ e−itH |n⟩B .

States with diagonal entanglement in the energy basis, gmn ∝ δmn, are stationary and the corresponding
EPR correlation (2.17) only depends on tA − tB . In this stationary situation we can set tA − tB = t
and denote the correlation as DAB(t). One such example is the ‘thermo-field double’ state (TFD) with
gmn = Z(β)−1/2 e−βEn/2δmn, whose ‘one-sided’ density matrix is the standard canonical ensemble ρT .
If we are interested in properties of (2.17) for generic choices of gmn we can also absorb the tB dependence
in the choice of state |G⟩ and set t = tA − tB .

EPR correlations can always be pulled back to ‘one-side’ correlations if the detailed double state is
known. This is achieved by diagonalizing the entanglement in the so-called Schmidt basis:

gmn =
∑

α

(ΩA)mα
√

ρα (ΩB)nα , (2.18)
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of (2.17) for generic choices of gmn we can also absorb the tB dependence in the choice of

state |G⟩ and set t = tA − tB.
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double state is known. This is achieved by diagonalizing the entanglement in the so-called

Schmidt basis:

gmn =
∑

α

(ΩA)mα
√
ρα (ΩB)nα , (2.18)

where the notation reflects our ability to define the ‘entanglement eigenvalues’
√
ρα as

positive definite by absorbing phases in the independent unitary matrices ΩA and ΩB.

The ρα are also the eigenvalues of the Bob-side density matrix,2 so that they satisfy
∑

α ρα = 1,

ρnn′ =
∑

α

ρα (ΩB)nα (ΩB)
∗
n′α . (2.19)

In the case of doubled EPR states, the ρα measure the degree of entanglement, ranging

from zero in the case that only one ρα is non-zero, to maximal entanglement when all of

them are equal to one another. The matrices ΩA and ΩB measure the departure from

‘diagonal’ entanglement, by which we refer to the alignment between the Schmidt basis

which diagonalizes entanglement and the energy basis which diagonalizes the Hamiltonian.

On Bob’s side, ‘alignment’ is equivalent to [ρ, H] = 0, i.e. stationarity of the Bob-side state.

We can rewrite (2.12) in the Schmidt basis as

Tr [ρB(t)B′(t′)] =
∑

αβ

ρα
(
Ω†

B B(t)ΩB

)

αβ

(
Ω†

B B′(t′)ΩB

)

βα
, (2.20)

while the EPR correlation (2.16) takes the form

⟨A(tA)B(tB)⟩G =
∑

αβ

√
ραρβ

(
Ω†

AA(tA)ΩA

)

αβ

(
Ω†

B B(tB)ΩB

)

αβ
. (2.21)

If the G-state has sufficient entanglement so that all ρα ̸= 0, knowledge of ΩA can be used

to construct a surrogate of Alice on Bob’s side which gives the same EPR correlation with

the rule

⟨A(tA)B(tB) ⟩G = Tr
[
ρB(tB)BA(tA)

]
, (2.22)

with
(
BA(tA)

)
αβ

=
√
ρα

(
Ω†

AA(tA)ΩA

)

βα

1
√
ρβ

. (2.23)

2 Notice that Bob and Alice can have different density matrices in the energy basis, but both

have the same eigenvalues.
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Representative Dynamics and 
Observables 

• Dynamics- Chaotic.

• Operators Bs- They do not commute with the 
Hamiltonian, H, moreover their eigenfunctions 
are uncorrelated with those of H. 

• U is “Pseudo Random”- Black Holeunitary matrix U which diagonalizes it,

Bmn = (U bU †)mn =
∑

α

bα Umα (Unα)
∗ ,

looks like a random unitary matrix.3 In this expression, b denotes the diagonal matrix of B

eigenvalues. From
∑

α |Uαn|2 = 1 we learn that the matrix elements of U have typical size

e−S/2. If the bα are not very special (such as O(eS) of them being equal) the off-diagonal

entries of Bmn are sums of eS terms with random phases and size e−S each, resulting in an

overall estimated size of O(e−S/2). Diagonal entries are of the form Bmm =
∑

α bα|Uαm|2

which scales like e−STrB. Hence, the diagonal elements of B within the chaotic band

are measured by the average size of B’s eigenvalues within the band. Notice that these

diagonal elements may end up being of O(1) if the bα have mostly the same sign.

The arguments above have led us to what is sometimes called the Eigenvalue Ther-

malization Hypothesis (ETH), which is an ansatz for the statistical properties of Bmn =

⟨Em|B|En⟩ as we vary the (m,n) indices over their e2S values. Namely Bmn has typical

size e−S/2 with erratic, random-walking phases, except for the diagonal terms whose size

is controlled by the detailed properties of the B eigenvalues.

This rule applies only to those energy matrix elements of B connecting states within

the chaotic band. No specific statement is made regarding other off-band matrix elements

but, for the purposes of applying estimation techniques, it is useful to simplify matters

by restricting attention to smeared or regularized operators, whose energy width ΓB is

cut-off to coincide with the width of the chaotic band itself, ∆. On the other hand, the

band is considered ‘narrow’ when the density of states does not vary significantly over the

interval of width ∆. An O(1) multiplicative variation of the density of states corresponds

to an O(1) additive variation of the entropy. Using the general rule ∆S ≈ ∆E/T (E), with

T (E) = (∂S/∂E)−1 being the microcanonical temperature, we can conventionally define

an energy band as ‘narrow’ when ∆ ∼ T . Combining this condition with the rule for the

widths of the class of operators we are considering, we conclude that the chaotic form of

matrix elements should hold for operators with ΓB ∼ T , i.e. for operators smeared over

the effective thermal length of the state.

Even if an operator with ΓB ≫ T can be defined in principle, it is natural to assume

that, after a time of the order of the ‘scrambling time’, the behavior of the correlations is

3 Perhaps more properly, we would characterize U as pseudorandom, since both B and H are

fixed from the beginning.
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ETH Observable

dominated by the matrix elements with |En −Em| ∼ T . For example, a single-trace oper-

ator in AdS/CFT, acting on a large black hole state, injects a particle from the boundary

of AdS with an energy which can be much larger than T , but this state falls to the Rindler

region in a time of order β = 1/T , and even further to the stretched horizon in a time of

order β log(N2), where it is expected to scramble in a time of the same order of magnitude

(cf. [5,13]). In this paper we are primarily concerned with time scales much larger than the

typical scrambling time scales, and thus we shall perform estimates under the simplifying

assumption that operators on chaotic bands are sharply cutoff to an energy width ΓB ∼ T .

Considering a smooth spectral modulation governed by an interpolating entropy func-

tion S(E), we have the continuous generalization of ETH [12]:

Bmn = B̄(Ē)δmn + b(Ē,ω) e−S(Ē)/2 Rmn , Ē = 1
2(Em +En) , ω = Em −En . (3.1)

The function B̄(Ē), being a coarse-grained measure of the eigenvalue’s average, is smooth

in Ē. Similarly b(Ē,ω) measures the energy width in the off-diagonal directions. It has

a characteristic support in ω of order ΓB(Ē) and it is also smooth in its arguments, since

the erratic component of the matrix elements is already parametrized by Rmn, a matrix

with entries of O(1) and erratic phases as a function of (m,n) (cf. figure 2). A crucial

property of the ETH ansatz is its stability under products: if A and B satisfy ETH, then
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unitary matrix U which diagonalizes it,

Bmn = (U bU †)mn =
∑

α

bα Umα (Unα)
∗ ,

looks like a random unitary matrix.3 In this expression, b denotes the diagonal matrix of B

eigenvalues. From
∑

α |Uαn|2 = 1 we learn that the matrix elements of U have typical size

e−S/2. If the bα are not very special (such as O(eS) of them being equal) the off-diagonal

entries of Bmn are sums of eS terms with random phases and size e−S each, resulting in an

overall estimated size of O(e−S/2). Diagonal entries are of the form Bmm =
∑

α bα|Uαm|2

which scales like e−STrB. Hence, the diagonal elements of B within the chaotic band

are measured by the average size of B’s eigenvalues within the band. Notice that these

diagonal elements may end up being of O(1) if the bα have mostly the same sign.

The arguments above have led us to what is sometimes called the Eigenvalue Ther-

malization Hypothesis (ETH), which is an ansatz for the statistical properties of Bmn =

⟨Em|B|En⟩ as we vary the (m,n) indices over their e2S values. Namely Bmn has typical

size e−S/2 with erratic, random-walking phases, except for the diagonal terms whose size

is controlled by the detailed properties of the B eigenvalues.

This rule applies only to those energy matrix elements of B connecting states within

the chaotic band. No specific statement is made regarding other off-band matrix elements

but, for the purposes of applying estimation techniques, it is useful to simplify matters

by restricting attention to smeared or regularized operators, whose energy width ΓB is

cut-off to coincide with the width of the chaotic band itself, ∆. On the other hand, the

band is considered ‘narrow’ when the density of states does not vary significantly over the

interval of width ∆. An O(1) multiplicative variation of the density of states corresponds

to an O(1) additive variation of the entropy. Using the general rule ∆S ≈ ∆E/T (E), with

T (E) = (∂S/∂E)−1 being the microcanonical temperature, we can conventionally define

an energy band as ‘narrow’ when ∆ ∼ T . Combining this condition with the rule for the

widths of the class of operators we are considering, we conclude that the chaotic form of

matrix elements should hold for operators with ΓB ∼ T , i.e. for operators smeared over

the effective thermal length of the state.

Even if an operator with ΓB ≫ T can be defined in principle, it is natural to assume

that, after a time of the order of the ‘scrambling time’, the behavior of the correlations is

3 Perhaps more properly, we would characterize U as pseudorandom, since both B and H are

fixed from the beginning.
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Noise Estimates

• Bob’s Noise(one sided)

• EPR Noise(two sides)

• Several Narrow bands Noise.

• Thermal Gas Noise



Bob’s Noise
ETH, one “narrow” band with thermal width T

Constant functions in the band.

ETH*ETH=ETH

First term is “smooth” in m,n 

Second term gives the leading answers

3.1. Correlations And ETH

As argued in section 2, the discussion of the average noise amplitude focuses on time

scales in excess of the Heisenberg time tH and thus is hardly sensitive to the occurrence

of correlation peaks. However, it is important to determine the refinements of the ETH

ansatz that are implied by their presence. Any such correlation peak requires a degree

of phase correlation between the corresponding operators. A simple example is provided

by the self-correlation (2.1), where the product of matrix elements B(t)mnB(0)nm equals

|Bmn|2 at t = 0. It is the sign coherence at t = 0 what builds a peak in the correlation

function. More generally, for distinct operators B and B′, we may refine the ETH ansatz

by requiring a phase correlation (cf. [7])

(RB)mn (R
B′

)rs = (DBB′)mn δms δnr + (erratic)mnrs , (3.2)

with (DBB′)mn having ‘smooth’ phase orientation as a function of the (m,n) indices. There

is an inherent ambiguity in the splitting between ‘smooth’ and ‘erratic’ terms, as the notion

of smoothness for a discrete function only becomes well defined in the continuum limit.

We will deal with this continuum limit shortly, but for now we can say that (DBB′)mn

is ‘smooth’ when it can be approximated by an index-independent matrix over a suffi-

ciently narrow energy band. The erratic component represents the fluctuations around the

correlated term and it is of the same order of magnitude.

The phase correlations imposed by the first term in (3.2) induce an O(1) peak at t = 0

in any Bob-side correlation function with stationary density matrix:

DBB′ (t) =
∑

mn

ρm BmnB
′
nm ei(Em−En)t . (3.3)

To see this, we pick the first term in (3.2) to find the ‘smooth’ component of the correlation

as

D(s)
BB′ (t) =

∑

mn

ρm
(
b b′DBB′ e−S

)
mn

ei(Em−En)t , (3.4)

which is of O(1) at t = 0 as required, as a result of the smoothness of the (m,n) index

dependence. On time scales in excess of the Heisenberg time of the system (3.4) gives a

contribution to the fluctuation noise of DBB′(t), but we will see in the next section that

the noise is always dominated by the erratic component in (3.2). On the other hand, on

time scales much smaller than the Heisenberg time the time-dependent phases in (3.4) vary

slowly, and we can approximate the index sums by integrals to give a parametrization of

the descent from the peak at t = 0.
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Noise from the Smooth
Part.

4.1. Bob’s Noise

We begin with the general one-side correlation (2.20), written in the form

GBB′ (t) =
∑

α

ρα
(
Ω†

BB(t)B′(0)ΩB

)

αα
. (4.2)

Stationary states correspond to ΩB = 1 and arbitrary non-stationary states correspond to

generic ΩB with entries of size e−S/2. Pure states have only one non-vanishing ρα, equal

to unity, while highly mixed states have all ρα ∼ e−S .

The smooth correlation piece is obtained by selecting the first term in (3.2). It has

the form

G(s)
BB′(t) ∼ |b b′ | e−S

∑

α

ρα
∑

mn

(Ω†
B)αm ei(Em−En)t (ΩB)mα , (4.3)

where we have approximated b, b′ and D ∼ O(1) as constant matrices over the narrow

band.

At t = 0 the n-sum cancels the e−S factor and the m sum gives (Ω†
BΩB)αα = 1. Since

∑
α ρα = Tr ρ = 1, we recover the O(1) peak at t = 0, independently of the value of ΩB,

i.e. the peak exhibited by the smooth piece of single-side correlations is independent of

the stationary character or the purity of the state.

To determine the asymptotic noise level of (4.3) we look at large times. Then the

n-sum over the ergodic phase e−iEnt gives an overall factor of O(eS/2). Furthermore, the

erratic phase eiEmt destroys the coherence of the product of Ω†
B and ΩB ,

∑

m

(Ω†
B)αm eiEmt (ΩB)mα =

∑

m

eiEmt|(ΩB)mα|2 ,

which is of order e−S/2 with a random α-dependent phase for generic ΩB, and equal

to a random O(1) phase for ΩB = 1. We now collect all terms and consider the four

qualitatively different cases.

(i) For a pure stationary (diagonal) state, corresponding to a single non-vanishing ρα

and ΩB = 1 we find

|noise(s)|pure diag ∼ |b b′| e−S/2 . (4.4)

(ii) For a pure generic (non-diagonal) state, corresponding to generic ΩB we find

|noise(s)|pure non−diag ∼ |b b′| e−S . (4.5)
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(iii) For a highly mixed diagonal state, corresponding to all ρα ∼ e−S and ΩB = 1

the result is

|noise(s)|mixed diag ∼ |b b′| e−S . (4.6)

(iv) For a highly mixed non-diagonal state, corresponding to all ρα ∼ e−S and generic

ΩB , we have

|noise(s)|mixed non−diag ∼ |b b′| e−3S/2 . (4.7)

We can summarize the noise phenomenology of the smooth component by saying

that the mixed-aligned case has the same noise level as the pure-misaligned case, both

proportional to e−S . Furthermore, mixed states have lower noise by a factor of e−S/2 with

respect to the analogous pure state, and misaligned states also have a noise level down by

a factor of e−S/2 with respect to their aligned counterparts. This means that the states

with higher ‘smooth’ noise level, of order e−S/2 are the exact energy eigenstates. Those

with lower noise level, of order e−3S/2 are the highly mixed, time-dependent states.

We now turn to the estimate of the ‘erratic’ piece induced by the second term in (3.2).

In this case, we have an uncorrelated choice of phases for the operators B(t) and B′(0), so

that their product B(t)B′(0) has the general ETH form (4.1) with non-vanishing diagonal

terms. The rotation of such an ETH matrix by a generic unitary ΩB gives another ETH

matrix of the same type. So we find

G(e)
BB′(t) ∼ |b b′| e−S/2

∑

α

ρα
(
Ω†

B RBB′ ΩB

)

αα
∼ |b b′| e−S/2

∑

α

ρα (RΩ†BB′Ω)αα , (4.8)

quite independently of the choice of ΩB . For a pure state the correlation is of order

|bb′|e−S/2. For a highly mixed state the final sum over the α index is proportional to

e−STrR ∼ e−S/2, which gives an overall noise level of order |b b′| e−S .

Hence, the alignment (stationarity) does not affect the erratic contribution to the

noise, which is in all cases larger or equal to the smooth component. In view of our general

remarks regarding the ambiguities in the separation of noise components, we interpret the

erratic estimate as the true noise level of the correlation function. In this case, we find the

following general rule

|noise|mixed ∼ |b b′| e−S , |noise|pure ∼ |b b′| e−S/2 . (4.9)

for the overall level of Bob’s noise. In both cases, the quasinormal relaxation time becomes

of order tnoise ∼ Γ−1 S.
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Component-Dominates.

Does NOT depend on the alignment of B!
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erratic estimate as the true noise level of the correlation function. In this case, we find the

following general rule

|noise|mixed ∼ |b b′| e−S , |noise|pure ∼ |b b′| e−S/2 . (4.9)

for the overall level of Bob’s noise. In both cases, the quasinormal relaxation time becomes

of order tnoise ∼ Γ−1 S.
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α

ρα
(
Ω†

B RBB′ ΩB
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αα
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α

ρα (RΩ†BB′Ω)αα , (4.8)
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EPR Noise 4.2. EPR Noise

The general EPR correlation takes the form

GAB(t) =
∑

αβ

√
ραρβ

(
Ω†

AA(t)ΩA

)

αβ

(
Ω†

B B(0)ΩB

)

αβ
. (4.10)

We shall focus on the highly entangled case, corresponding to all ρα ∼ e−S , since the

unentangled correlation splits into the product of two one-point functions.

We begin by estimating the smooth component. Using (2.18), (4.1) and (3.12) one

finds

G(s)
AB(t) ∼ |a b| e−S

∣∣∣∣∣
∑

n

gnn e
−iEnt

∣∣∣∣∣

2

. (4.11)

where gnn has the general form

gnn =
∑

α

(ΩB)nα
√
ρα (ΩA)nα ∼ e−S/2

∑

α

(ΩB)nα (ΩA)nα .

For a diagonal state, corresponding to ΩA = ΩB = 1, we find gnn ∼ e−S/2 and positive.

For a non-diagonal state, with generic choices of ΩA,B, the result is gnn ∼ e−S with random

phase.

With these ingredients we can analyze (4.11), whose n-sum is coherent at t = 0

provided the gnn has a coherent phase, and always incoherent at large times, as a result of

the random phases e−iEnt. This meas that the t = 0 peak is there for diagonally entangled

states, and gone for unaligned states. In this last case the value of the correlation at t = 0

is of order |a b| e−S.

The noise level at large times in the smooth component is then of order |a b| e−S for

diagonal entanglement and |a b| e−2S for non-diagonal entanglement. We see that misalign-

ing the entanglement with respect to the energy basis brings down the overall size of the

(smooth) correlation by a factor of e−S , a result emphasized in [7].

The erratic component, whereby no phase correlation is assumed between A(t) and

B(0), can be estimated as in the single-side correlations. Given the ETH form for both

A(t) and B(0), their rotations by ΩA and ΩB give new ETH operators in the Schmidt

basis, with matrix entries of size e−S/2, including diagonals. Therefore, the result does

not depend on the alignment, and we always find e−S times the trace of a generic ETH

operator, amounting to a noise level of order |ab|e−S.
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EPR Noise 

For a non diagonal state 

Value of the correlator at t=o
O(abExp(-S)) peak “NOT” as a “Geometry”

The noise is HOWEVER again

abExp(-S)

This does NOT depend on the amount of 

Entanglement.



To ensure O(1) amplitude for the 
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systems with ‘deconfining’ phase transitions such as the standard AdS/CFT models. If

pb is the thermodynamic weight of a given band, we find that the overall noise amplitude

is determined by the maximization of pb e−Sb among chaotic bands and pb/
√
Sb among

quasiparticle bands. It follows that the noise amplitude in the canonical high-temperature

regime of AdS/CFT systems is still dominated by the low-lying graviton-gas band, since

the thermodynamic suppression is still larger than the black noise level: e−|Ibh| ≫ e−Sbh .

This result agrees with the bulk instanton approximation of [1], despite the fact that this

method misses completely the noise in black hole states. We also note, in agreement with

[2], that Poincaré recurrences are controlled by pb alone, and thus cannot be correctly

characterized within the bulk instanton approximation.

We have also analyzed EPR correlations in the purified doubled system. Here we

find a noise level of order e−S for purifications with maximal entanglement, independently

of the degree of alignment of the entanglement. Hence, while any large EPR correlation

peaks are wiped out by a misalignment of the entanglement, as emphasized in [7], we find

that the asymptotic noise level is rather insensitive to the misalignment.

It is unclear if this result has a bearing on the generality of the EPR=ER conjecture

beyond aligned entangled states. A better proxy for such a diagnostic would be the spon-

taneous emergence of O(1) correlation peaks over long periods of time. For this to happen

within the ETH class of operators, there must be hidden phase correlations between the

Alice and Bob operator algebras. In the language of section 2 of this paper, a measure

of the misalignment is given by the generic character of the matrices ΩA and ΩB which

determine the Schmidt basis of Alice and Bob. An O(1) correlation peak at t = 0 requires

ETH operator constraints of the form

(
Ω†

ARAΩA

)

αβ

(
Ω†

B RB ΩB

)

γδ
∼ δαγ δβδ + (erratic)αβγδ (6.1)

on a narrow band of states. Transforming this condition back to the energy basis we find

(RA)mn (R
B)rs ∼ (ΩAΩT

B)mr (Ω
∗
AΩ†

B)ns + (erratic)mnrs , (6.2)

an expression which depends non-trivially on the matrix ΩAΩT
B and looks quite intricate.

Let us consider for simplicity the case of a microcanonical Bob-side density matrix, corre-

sponding to all ρα = e−S on a band of eS states. Then, the entanglement misalignment

is precisely measured by the combination Ω = ΩAΩT
B , and the form of (6.2) suggests a

generalization of (3.12) to

(RA)mn (R
B)rs = Ωmr Ω

∗
ns (GAB)mn + (erratic)mnrs , (6.3)
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Several Bands 
Large gap, large 

difference in entropy 

properties. In particular, the high-energy entropy scales as the central charge, of order

N2, dominated by states which are described as black holes in the bulk picture (plasma

of glue in the CFT picture.) In addition, there is a band of low-energy states looking like

graviton-gas states in the bulk (glueballs in the CFT) with entropy of O(1) in the large

N limit. The low energy band extends from the spectral mass gap up to the energies of

O(N2) where the ‘black hole’ states start to dominate the density of states.4 The natural

dynamical assumption is that of quantum chaos for the high-energy (black hole) band

and thermal gas for the low-energy (graviton) band. Interactions among gravitons are

suppressed by powers of 1/N2. Hence, at moderate values of N we may consider also a

chaotic model for an interacting graviton gas. In this case the main difference between the

high and low energy bands would be just the jump in density of states.

With the AdS/CFT application in mind, special simplifications occur when restricting

attention to regularized operators whose fixed energy width ΓB is small compared to the

overall energy range of interest. For example, we may consider a model with two bands

(high and low) with Eh − El ≫ ΓB . In this case we can approximate the Bmn matrix by

a block-diagonal form as in figure 3.

0

0

[ [e
Sh

e
Sl

Figure 3: If the relevant part of the spectrum is approximated by two narrow bands with

very different average energies, Eh ≫ El, and dimensionalities, eSh ≫ eSl , the ETH ansatz for

regularized operators can be simplified by writing a block-diagonal form as in the figure, in the

discrete uniform density representation of matrix entries. If the upper band is chaotic and the

lower band has perturbative quasiparticle-like states, a single-particle operator would have the

ETH form in the upper band and the sparse quasiparticle form in the lower band.

4 Fine details of the spectrum may include additional intermediate bands with different types

of black holes and/or Hagedorn transients.
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The Lower(est) Band 
Dominates.

As before, we regard the erratic contribution as a better indication of the true noise

level, which in any case dominates over the noise induced by the smooth component.

Hence, we find an amplitude of EPR noise given by

|noise|EPR ∼ |a b| e−S , (4.12)

independently of the character of the entanglement.

4.3. Beyond Narrow Bands

Combining a series of narrow bands we can obtain generalizations of the previous

noise estimates. For example, we can apply the smooth form of the ansatz (3.1) to the

erratic contribution to a same-side, aligned correlation:

|DBB′(t)|2 ∼
∫

dEm dEn β(Em) β(Em) e(S(Em)+S(En))ρ(Em)2 e−2S(Ē)|b(Ē,ω)|2|b′(Ē,ω)|2 .
(4.13)

Using the same approximation assumptions of section 3.1 we obtain

|DBB′ (t)|2 ∼
∫

dĒ β(Ē) |b(Ē)|2 |b′(Ē)|2 ρ(Ē)2 . (4.14)

The absence of any remaining entropy factors is the most salient feature of this formula.

Barring an explicit tuning of the bare operator amplitudes b(Ē) and b′(Ē), we see that

a canonical state with ρ(E) ∝ exp(−βE) will have noise dominated by very low energies

of order 1/β. This suggests that low energy bands have a tendency to give the largest

contribution to the noise, even if they may not dominate de thermodynamic functions.

A useful parametrization of the relative noise contribution of different chaotic bands is

obtained by modeling a spectrum by a set of narrow bands and an overall quantum state:

ρ =
∑

b

pb ρb =
∑

b

pb e
−Sb1b ,

∑

b

pb = 1 , (4.15)

i.e. we take a maximally mixed state on each band, and assign probability weights pb to

the different bands. Under the general ETH assumptions for the operators, correlation

functions split into a sum over the bands:

C(t) ≈
∑

b

pb Cb(t) , (4.16)

where

Cb(t) ∼ |noise|b fb(t) . (4.17)
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19

In this expression, fb(t) is an O(1) function taking into account the detailed oscillation

structure of the correlation, while |noise|b gives the average noise amplitude at generic

times. Using our main result |noise|b ∼ |bb′| e−Sb we find

C(t) ∼
∑

b

|bb′|b pb e−Sb fb(t) . (4.18)

This result indicates that chaotic bands with larger value of pb e−Sb will make the

dominant contribution to the average noise amplitude. An important particular case is

the canonical weighting with inverse temperature parameter β:

pb
∣∣∣
canonical

=
e−Ib(β)

Z(β)
, (4.19)

where Z(β) ≡
∑

b e
−Ib(β) and Ib(β) = βEb − Sb. In this case, the overall contribution of

each band to the noise amplitude is proportional to exp(−βEb), confirming the dominance

rule of the lowest chaotic bands.

4.4. Thermal Gas Noise

It is interesting to see what levels of noise we can expect when the ETH chaotic

assumption does not hold. An idealized example of this kind is a free thermal gas, which

makes a natural appearance as a model of the graviton-gas phases in AdS/CFT examples.

For a thermal gas of free particles in a d-dimensional box of size L, we consider a one-

particle operator

B1 =
1

L
d−1
2

∑

s

(
bs as + b∗s a

†
s

)
, (4.20)

with thermal self-correlation

⟨B1(t)B1(0)⟩gas =
1

Ld−1

∑

s

[
(1 + f(ωs))|bs|2 e−iωst + f(ωs)|bs|2 eiωst

]
+ interactions

(4.21)

The sum runs over single-particle levels with energy ωs and thermal occupation probability

f(ωs) = (eβωs −1)−1 (we consider here a bosonic operator for simplicity). The coefficients

bs are proportional to the amplitude for the injection or removal of one particle. A cutoff

ΓB in the energies of such particles is equivalent to a smearing of the operator over length

scales of order 1/ΓB. In keeping with the conventions for chaotic operators, we can choose

a cut-off ΓB ∼ T so that B1 injects or removes one particle at the typical single-particle

energy of the thermal gas.
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The Lowest Energy Band Dominates

* For bands which are all quasi integrable, the 
noise is

determined by the thermodynamical dominant.
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Thermal Gas Noise-
Large

The peak scales as 

There are about (Lω)d massless particle levels up to energy ω on a d-dimensional

box of size L. A nontrivial noise regime arises if these single-particle frequencies are

rationally incommensurate among themselves. This can be achieved by slightly breaking

the symmetries of the box, or by the interaction corrections. One can then estimate

|⟨B1(t)B1(0)⟩gas|2 ∼ 1

L2d−2

∑

ωs<T

(
1 + 2f(ωs) + 2f(ωs)

2
)
|bs|4 ∼ L2−2d (LT )d−2 , (4.22)

where we have assumed massless quasiparticles so that |bs|2 ∼ 1/ωsL. The peak at t = 0

scales instead as ⟨B2
1⟩ ∼ L1−d(LT )d−1, so that the normalized noise amplitude scales as

|noise|
|peak| ∼

1

(LT )d/2
∼ 1

√
Sgas

, (4.23)

where Sgas ∼ (LT )d is the thermal entropy of the quasiparticle gas.

These results suggest that reducing the amount of chaos in the dynamics, in the sense

of departing from the maximal randomness of the ETH ansatz, has the consequence of

bringing up the noise amplitude.

5. Listening To The Noise Of AdS

The estimates presented in the previous section only depend on quite general features

of the system at hand. The general rule is that the larger the randomness in the state or the

operators, the smaller the amplitude of the noise. This suggests the possibility of interesting

fine structure in the noise, revealing particular spectral patterns in the underlying system,

such as the occurrence of energy bands with vastly different density of states.

This is the case for a strongly-coupled CFT satisfying the basic conditions to have a

smooth gravity dual description in AdS. A very schematic characterization of such systems

has a dense high energy band with energy Eh and entropy Sh both scaling with the central

charge N2 ≫ 1, and a low energy band with characteristic energies El ∼ N0 ≪ Eh and

correspondingly smaller entropies Sl ∼ N0 ≪ Sh. With the AdS/CFT case in mind, we

can refer to the low-energy band as the graviton gas and the high-energy band as the large

black hole band. In many concrete AdS/CFT constructions such as the original SYM

model, new intermediate bands appear with parametric separation controlled by powers

of the ’t Hooft coupling λ.

More precisely, for the SU(N) SYM theory at large N and large ’t Hooft coupling

satisfying N ≫ λ ≫ 1, the bulk model is AdS5×S5 with curvature radii R, string coupling
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• Geometry reproduces 
correctly the average property. 

• Geometry reproduced a VERY 
SMALL non perturbative result.

• Geometry does not reproduce 
even finer details of the non 
perturbative behaviour of the 
time dependent correlations.



This will have 
consequences in AdS 

CFT
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Several Bands 
Large gap, large 

difference in entropy 

properties. In particular, the high-energy entropy scales as the central charge, of order

N2, dominated by states which are described as black holes in the bulk picture (plasma

of glue in the CFT picture.) In addition, there is a band of low-energy states looking like

graviton-gas states in the bulk (glueballs in the CFT) with entropy of O(1) in the large

N limit. The low energy band extends from the spectral mass gap up to the energies of

O(N2) where the ‘black hole’ states start to dominate the density of states.4 The natural

dynamical assumption is that of quantum chaos for the high-energy (black hole) band

and thermal gas for the low-energy (graviton) band. Interactions among gravitons are

suppressed by powers of 1/N2. Hence, at moderate values of N we may consider also a

chaotic model for an interacting graviton gas. In this case the main difference between the

high and low energy bands would be just the jump in density of states.

With the AdS/CFT application in mind, special simplifications occur when restricting

attention to regularized operators whose fixed energy width ΓB is small compared to the

overall energy range of interest. For example, we may consider a model with two bands

(high and low) with Eh − El ≫ ΓB . In this case we can approximate the Bmn matrix by

a block-diagonal form as in figure 3.

0

0

[ [e
Sh

e
Sl

Figure 3: If the relevant part of the spectrum is approximated by two narrow bands with

very different average energies, Eh ≫ El, and dimensionalities, eSh ≫ eSl , the ETH ansatz for

regularized operators can be simplified by writing a block-diagonal form as in the figure, in the

discrete uniform density representation of matrix entries. If the upper band is chaotic and the

lower band has perturbative quasiparticle-like states, a single-particle operator would have the

ETH form in the upper band and the sparse quasiparticle form in the lower band.

4 Fine details of the spectrum may include additional intermediate bands with different types

of black holes and/or Hagedorn transients.
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The Lowest Energy Band Dominates 
This is NOT an accident

In this expression, fb(t) is an O(1) function taking into account the detailed oscillation

structure of the correlation, while |noise|b gives the average noise amplitude at generic

times. Using our main result |noise|b ∼ |bb′| e−Sb we find

C(t) ∼
∑

b

|bb′|b pb e−Sb fb(t) . (4.18)

This result indicates that chaotic bands with larger value of pb e−Sb will make the

dominant contribution to the average noise amplitude. An important particular case is

the canonical weighting with inverse temperature parameter β:

pb
∣∣∣
canonical

=
e−Ib(β)

Z(β)
, (4.19)

where Z(β) ≡
∑

b e
−Ib(β) and Ib(β) = βEb − Sb. In this case, the overall contribution of

each band to the noise amplitude is proportional to exp(−βEb), confirming the dominance

rule of the lowest chaotic bands.

4.4. Thermal Gas Noise

It is interesting to see what levels of noise we can expect when the ETH chaotic

assumption does not hold. An idealized example of this kind is a free thermal gas, which

makes a natural appearance as a model of the graviton-gas phases in AdS/CFT examples.

For a thermal gas of free particles in a d-dimensional box of size L, we consider a one-

particle operator

B1 =
1

L
d−1
2

∑

s

(
bs as + b∗s a

†
s

)
, (4.20)

with thermal self-correlation

⟨B1(t)B1(0)⟩gas =
1

Ld−1

∑

s

[
(1 + f(ωs))|bs|2 e−iωst + f(ωs)|bs|2 eiωst

]
+ interactions

(4.21)

The sum runs over single-particle levels with energy ωs and thermal occupation probability

f(ωs) = (eβωs −1)−1 (we consider here a bosonic operator for simplicity). The coefficients

bs are proportional to the amplitude for the injection or removal of one particle. A cutoff

ΓB in the energies of such particles is equivalent to a smearing of the operator over length

scales of order 1/ΓB. In keeping with the conventions for chaotic operators, we can choose

a cut-off ΓB ∼ T so that B1 injects or removes one particle at the typical single-particle

energy of the thermal gas.
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assumption does not hold. An idealized example of this kind is a free thermal gas, which

makes a natural appearance as a model of the graviton-gas phases in AdS/CFT examples.

For a thermal gas of free particles in a d-dimensional box of size L, we consider a one-

particle operator

B1 =
1

L
d−1
2

∑

s

(
bs as + b∗s a

†
s

)
, (4.20)

with thermal self-correlation

⟨B1(t)B1(0)⟩gas =
1

Ld−1

∑

s

[
(1 + f(ωs))|bs|2 e−iωst + f(ωs)|bs|2 eiωst

]
+ interactions

(4.21)

The sum runs over single-particle levels with energy ωs and thermal occupation probability

f(ωs) = (eβωs −1)−1 (we consider here a bosonic operator for simplicity). The coefficients

bs are proportional to the amplitude for the injection or removal of one particle. A cutoff

ΓB in the energies of such particles is equivalent to a smearing of the operator over length

scales of order 1/ΓB. In keeping with the conventions for chaotic operators, we can choose

a cut-off ΓB ∼ T so that B1 injects or removes one particle at the typical single-particle

energy of the thermal gas.
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ETH For BHs and Strings.

For the Gas:

gs ∼ λ/N , string length ℓs ∼ R/λ1/4 and ten-dimensional Planck length ℓp ∼ R/N1/4.

The graviton-gas band extends above the gap 1/R up to string-scale energy densities, or

EHag ∼ λ5/2/R. The Hagedorn band extends from Es up to the energy of a small ten-

dimensional Schwarzschild black hole with stringy size, Esh ∼ λ−7/4N2/R. Finally, when

the Schwarzschild black holes reach the size R, their energy is of order Ebh ∼ N2/R and

morph into the band of large AdS5 black holes.

The two black hole bands at the top of the spectrum are natural examples of chaotic

dynamics, whereas the graviton-gas band at the bottom is the prime example of approx-

imately free particle dynamics. The Hagedorn band is an interesting marginal case. For-

mally, we have a free string gas at N = ∞, but the single-string density of states is almost

the same as the multi-string density of states (cf. for example [17]). This essential de-

generacy suggests that a large mixing of multi-string states may be possible even for tiny

values of the string coupling. From this point of view, it seems reasonable to class the

Hagedorn band as a chaotic one. The elucidation of this question is an interesting open

problem.

We make the standard dynamical assumptions regarding the operators. Namely, on

chaotic bands we assume an ETH form with a width controlled by the microcanonical

temperature. In the large N limit relevant for the AdS/CFT correspondence, this width

scales as O(N0). Since the low and high energy bands are separated by typical energy

differences of O(N2), there should be no significant mixing between the high and low

energy bands within the ETH width. On free quasiparticle bands we assume the operators

to be well approximated by one-particle operators. In the AdS/CFT context, this means

we consider ‘single-trace’ operators whose multi-point functions factorize in the large N

limit into products of two-point functions. For the particular case of a gauge theory these

operators have the form

B ∼ 1

N
Tr F n (5.1)

with n ≪ N , and similar finite-degree polynomials in all the adjoint fundamental fields.

The normalization of (5.1) is such that one-point functions are of O(N0).

The assumptions regarding matrix elements can be justified from the bulk picture on

physical grounds. An operator of type (5.1) injects a bulk particle (say a graviton) from

the boundary of AdS. In the low energy band dominated by quasi-free thermal gravitons,

this operator has the form (4.20), up to 1/N2 corrections. In the high-energy band, the

graviton is injected into a preexisting black hole state. Under time evolution, this state

represents a graviton falling to the stretched horizon in a time of order T (E)−1 log N2,
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For T small relative to 
the critical T
S and I are O(1) in 

the overall amplitude of the noise. Splitting (5.3) into chaotic and gas terms we can write

C(t) ≈
∑

ch

pch e
−Sch |b|2ch f(t)ch +

∑

gas

pgas (Sgas)
−1/2 |b|2gas f(t)gas . (5.4)

Assuming that all |b|b are of the same order, the rule of band dominance depends on

maximizing pch e−Sch for chaotic bands and pgas/
√
Sgas for thermal gas bands.

In carrying out comparisons with Euclidean saddle point methods, we are chiefly

interested in the canonical ensemble, corresponding to the choice of band weights:

pb
∣∣∣
canonical

= |b|2 e−Ib(β)

Z(β)
, (5.5)

with Ib(β) = βEb−Sb and Z(β) =
∑

b e
−Ib(β). Then, as explained in the previous section,

the contribution of chaotic bands to the noise is dominated by the lowest one, with a noise of

size Z(β)−1 e−βEch . On the other hand, integrable bands such as a graviton gas contribute

to the noise according to the thermodynamic hierarchy. Since the rule for noise dominance

is the maximization of pgas/
√
Sgas in this case, a canonical probability proportional to

pgas ∼ exp(−Igas) always dominates the maximization rule for large systems. The reason is

extensivity of the thermal gas phases, since an exponential of the volume always dominates

over a power of the volume.

Finally, the competition between the dominant chaotic band and the dominant gas

band is won by the thermal gas band. Here we must compare pche−Sch with pgas/
√
Sgas.

Taking the ratio for the pb values of a canonical ensemble

pch e−Sch

(pgas/
√
Sgas)

= e−β(Ech−Egas) e−Sgas
√

Sgas ≪ 1 , (5.6)

where the last inequality follows from Ech ≫ Egas. We see that black hole bands never

dominate the noise in the canonical ensemble, no matter what the temperature might be.

The noise amplitude is

|noise|canonical ∼ |b|2 e−|∆I|

√
Sgas

, (5.7)

where ∆I is the difference between the free energies of the dominating gas band and

whatever band dominates the whole thermodynamics of the system.

For the basic AdS/CFT model we have a Hawking–Page phase transition at T = Tc ∼
1/R. For T < Tc we have ∆I ∼ 0 and the noise amplitude is of O(1) in the large N limit.

Indeed, not even the suppression by 1/
√
Sgas kicks in significantly, since the Hawking-Page

24



For T>>T critical

temperature is right at the scale of the gap, Tc ∼ 1/R, and Sgas ∼ O(1) just below the

critical temperature. 5

In the high temperature regime T ≫ Tc the thermodynamics is dominated by large

AdS black holes, but the noise has amplitude (5.7) with |∆I| ∼ N2(RT )3 and Sgas ∼
(RT )9. The contribution of each chaotic band at T ≫ Tc is an additive correction to

(5.7) with overall amplitude e−βEch/Z(β). Hence, it is largest for the Hagedorn band (if

regarded as chaotic) and smallest for the large black hole band. In view of (4.14), the noise

contribution of each chaotic band is dominated by its bottom energy scale. For the basic

AdS/CFT model we then find

|noise| T≫Tc ∼ |b|2 eIbh
[

1

(RT )9/2
+O

(
e−cHag λ5/2

)
+O

(
e−csh N2/λ7/4

)
+O

(
e−cbh N2

)]
,

where Ibh ∼ −N2(RT )3 and the positive O(1) constants cb make reference to the corre-

sponding chaotic bands. We see that the dominant noise is given by the 1/
√
Sgas term,

albeit suppressed by the inverse of the canonical partition function. Large AdS black holes

dominate this partition function for T ≫ Tc, despite the fact that they make the smaller

contribution to the average noise amplitude (cf. figure 4).

e
−|∆I|

e
−Sbh

tH ∼ β e
Sbh

Figure 4: Detail of the quantum noise above the Hawking–Page transition, on time scales of

the order of the Heisenberg time of the black hole band tH ∼ βeSbh . The longer wavelength

modulation of small amplitude corresponds to the black hole states. The main contribution to the

noise amplitude oscillates with the faster quasi-period of the graviton gas and dominates despite

the thermodynamic suppression since e−|Ibh| ≫ e−Sbh .

5 Genuine gas phases can be engineered in confining models, where we can parametrically

separate the scale of the critical temperature Tc from the volume-induced scale 1/L. In this way

we can have a large gas entropy Sgas ∼ (LT )d−1 for 1 ≪ TL < TcL.
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The  Average Noise is determined by the 
lowest band , the fast O(1) variations are 

determined by it as well.  But the hight and the 
long time variations are determined by  the 
thermodynamical dominant configuration. 
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Slogans:

1. Diversity Counts.

2. Geometry can capture non perturbative average 
observables. 

3. Geometry may well miss some parts.

4. For ETH the lowest energy band dominates the value

of the average noise. Not the thermodynamical leading one.




