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Wilsonian effective field theories

+ The Wilsonian paradigm provides a powerful way to think about QFTs.

+ Typically, we tend to consider the Wilsonian effective action for vacuum (or
near-vacuum) dynamics, and therefore focus on low energy physics in pure
states.

+ Low energy dynamics in mixed states is a fascinating question for a QFT and
shows up in a wide variety of circumstances:

* non-equilibrium dynamics of QFTs.
* semi-classical gravity in the presence of horizons etc.

+ Question: How does one upgrade the Wilsonian paradigm to deal with
mixed states?



Density matrices and doubling
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Density matrices and doubling
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Density matrices & equilibrium dynamics

+ Equilibrium QFT is well understood in this thermofield double, or
Schwinger-Keldysh construction

+ This is useful for computing real time correlation functions with microscopic
unitarity constraints being imposed via the KMS condition (periodicity in
Euclidean time).

+ The gravitational analog for equilibrium dynamics is the eternal black hole

spacetime which constructs the Hartle-Hawking thermofield state (cf.,
ER=EPR).

Israel '76; Maldacena ‘01

+ Similarly, we understand how to compute real time correlation functions in

equilibrium from holography. Son, Starinets '02; Herzog, Son '02;

Skenderis, van Rees '08



Out of equilibrium: Here be dragons

+ However, away from equilibrium the story becomes a lot more murky.

+ Integrating out degrees of freedom in the mixed state induces interactions
between the two parts of the Schwinger-Keldysh contour — these are
Feynman-Vernon influence functionals.

+ Arbitrary Feynman-Vernon functionals are problematic and need
constraining (tension with microscopic unitarity constraints).

+ The Hydrodynamic Path

+ Hydrodynamics accords a perfect opportunity to formulate a Wilsonian
construction in background density matrices.

+ Goal: Construct an effective action for hydrodynamic dissipation.



The hydrodynamic effective field theory

+ Relativistic fluid dynamics is best thought of as an effective field theory for
quantum systems in local, but not global, thermal equilibrium.

+ The description in terms of fluid dynamics is valid when departures from
equilibrium are on scales that are large compared to the characteristic
mean free path of the underlying quantum dynamics.

+ Local domains of equilibrated
9 fluid can be characterized by the
V local temperature/energy density
and conserved charges.
é + Energy/charge flux exchanged

across the domains: velocity field.

gmfp << L, tmfp << t



Axioms of Hydrodynamics I: Fields

+ Hydrodynamics describes low-energy, near-equilibrium fluctuations of an
equilibrium Gibbsian density matrix on scales large compared to the
characteristic mean free path.

+ The macroscopic description involves currents which capture energy-
momentum and charge transport T", J* (and entropy current Jg ).

+ The currents are functionals of the hydrodynamic fields, which are the
intensive variables characterizing the density matrix and background
sources.

N . .
temperature and chemical potential T 1, ut, W, = —1

and a flux vector (fluid velocity)

* background metric and

. . 7A
electromagnetic potential vy Ly



Axioms of Hydrodynamics Il: Data

* Repackage the dynamical degrees of freedom in a vector an scalar

u® .
?Aa thermal twist

* The currents of hydrodynamics are expressed as functionals of the
hydrodynamical fields and the background sources.

e currents THY  JE,JE

e fields v = {g,uuaA,ua/B'uvA,@}

T'uy — T'L“/ [\Il] — T'LLV [gaﬁaAOM/BaaA,B]
JH [gaﬁaAaa/Ba7A,8]
Jg [gaﬁgAOéw@a7A,3] :

e constitutive
relations



Axioms of Hydrodynamics Ill: Dynamics

+ The dynamical content of hydrodynamics is the statement of conservation,
modulo work done by sources and anomalies:

174 14 1 14
V,TW = J, - F" + T D,J" = Jg

S

work term
+ These are effectively Ward identities tor the one-point functions of the
conserved currents in the fluctuating Gibbs density matrix.

covariant anomalies

+ The task of a hydrodynamicist is to specify the currents as a functional of the
hydrodynamic fields, consistent with the dynamics, constructing a current
algebra of sorts, but...



Axioms of Hydrodynamics |V: Constraints

+ From a macroscopic, statistical viewpoint, one has to demand that a local
form of the second law of thermodynamics is upheld.

- Jg[\If]: V W, shell Vﬂjg[qf] >0

+ This is required to be upheld on-shell, and complicates the analysis of
hydrodynamics, for without it the current algebra can be analyzed purely in
terms of representation theory.

+ Note that usually one only requires the existence of some entropy current.

+ From a microscopic viewpoint the entropy current is rather mysterious; it is
not associated with any underlying symmetry per se.

o Opportunity: Understand a Wilsonian hydrodynamic theory consistent with
second law.



Neutral fluids

+ A neutral fluid is characterized by its energy-momentum stress tensor

T = e(T)ut u” 4+ p(T) P* —n(T) " — ((T)O P* + - -

PHY = gt + ut u” Vo, =0 + W) +O Py — uylay
spatial metric shear vorticity acceleration
expansion

+ The second law forces some of the transport data to satisfy some
inequalities, e.g., the viscosities are non-negative definite (friction)

Jg:Suu+...

VuJb =no® +(O0%+--. n,( >0



Wilsonian formulation of hydrodynamics

+ A satistactory Wilsonian framework should satisty 3 primary criteria:
* Consistency with current algebra formulation.
* Dynamics = current conservation.

* Rationalize the entropy current & second law.

+ Based on what we have seen so far, we can expect:
* Doubling of fields.

* Constraints on Feynman-Vernon terms.

+ We also get something new and unexpected: an emergent gauge
symmetry!



BSenchmarking hydrodynamics

+ To set the stage for our Wilsonian framework, we need to understand
hydrodynamic constitutive relations compatible with second law.

+ Ideally, this should data should be given to us off-shell, since we are aiming
to construct effective action.

+ STRATEGY
* Take the entropy current constraint off-shell. *
* Classify all off-shell physical constitutive relations. *

* Derive the resulting constitutive relation from an effective action. *



Off-shell entropy production

+ Take the statement of the second law off-shell Lagrange multipliers

Vid§ + By (VT — J, - P — Tl "

’BMET’ A
—J_

entropy production by dissipation

Aq

pooou’
BP=T T

+(Ag + B Ay - (D,,JV ~ J};,) —A>0

+The Lagrange multipliers are fixed to be the hydrodynamic fields
exploiting field redefinition freedom.

+ This off-shell formalism motivates separation of transport into:
* dissipative (Class D)

* adiabatic



Free energy current

+ Package the information in terms of a Gibbs free energy current, switching
from a microcanonical to grand-canonical language:

g =~ | BT+ (hg+ B7A) - 07+
G
— (JS)CCL??, T )

+ The off-shell second law statement can be phrased now as

G°\ G»| 1
Vo (T)_T

= ST, g + T - 8, A+ A

—

O G = £89uw = VuBy + VuBy,
05 Ap = LAy + 0ulg + [Ay, Ag]



Hydrodynamic taxonomy

+ The off-shell formalism is quite powerful. One can classify hydrodynamic
constitutive relations into eight distinct classes:

* Class D: dissipative class * Class B: Berry-like transport

* Class A: anomaly induced transport ~ * Class C: conserved entropy

gt=6p+*, TV"B,=0
|ongitudina|v\ec:fr//}1 L transverse vector

(conserved)
Free energy scalars Free energy vectors
* Class Hs: Hydrostatic scalars * Class Hy: Hydrostatic vectors

¥ Class Hs: Landau-Ginzburg scalars ¥ Class Hy: Gibbsian vectors



—ightfold classification of hydrodynamic transport
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Class H: Hydrostatics (Hs u Hv)

+ Hydrodynamic transport can be classified into two categories
* Hydrostatic or thermodynamic response: fixed by equilibrium
* Genuine hydrodynamic transport
+ Hydrostatic data can be understood by time-independent configurations of

the fluid in the presence of non-trivial (spatially varying) background
sources.

+ Can equivalently be encoded in a generating function, the equilibrium
partition function which is a functional of stationary background sources.

K={K" Ak}, guK'K’'"<0 — 0,90 =0,A4,=0

Banerjee et. al. ‘12 Jensen et. al. ‘12



Class H: Hydrostatics

+ The hydrostatic partition function is the integral of the (consistent) free
energy current over the Wick rotated Euclidean manifold.

gébons — . .
/ ( - ) d* 1Su] spatial integral!
2E Hydrostatic

WHydrostatic —

+ Since the free energy current is a vector field, it decomposes into

g“:,@“—l—“, %Mﬂ,u:(y

longitudina leCtO" 1 ’ transverse vector

(conserved)

partition fn scalars partition fn vectors



Entropy constraint: Hydrostatic forbidden (Hr)

+ The scalars and vectors which do not vanish in equilibrium parameterize the
free energy current and in turn generate the currents after varying with
respect to the sources.

1
5WHydrostatic — [/ (_ Tc/f)’;zs 59;“/ + Jéfms : 5A,UJ> /Badd_lsa ]
YE

2 Hydrostatic

+ At any given derivative order however, there are fewer scalars than the
tensor structures in the currents.

+ Hydrostatics implies that certain constitutive relations are forbidden.

+ Intuitively think of hydrostatics as time-independent configurations; turning
on time dependence one should find no linear term, for it can produce

entropy of either sign.
Bhattacharyya ('13, '14)



—xample: |deal fluids

+ For an ideal fluid, the hydrostatic partition function is generated by the
pressure p(T,u).

T =euru” + (p—(O) P —not”, Jg = sut

+ Adiabaticity (or sign-definiteness of A) implies that all the zeroth order
transport is determined by p(T).

€E+p— 1T's=0
de ds
i T = 0 Clausius relation

+ At second order: 5 constraints for the neutral fluid.

v 174 v (@
PHY = g +ul u”, © =V, ,u", Oy = Ve Uy>

1 1%
Acaps = (PWPBV — 7 P,s gW> A

d —



Class D: Dissipation

+ Focus on positivity of A order by order in the gradient expansion. Deviations
from equilibrium: 0,9 4,A

e viscous dissipative terms 70"’ + (O P" —= A =no,,0" +(0° ~ (dpg)°’

« descendant operators 5,9 DO_s
p sub-dissipative

« product composites (6,9)F  (0,A)F

+ Sub-dissipative terms can be subsumed under viscous dissipative terms.

+ Theorem: Entropy constraints operate only at leading order in the gradient
expansion! Bhattacharyya (11, '13, ’14)

+ Useful restatement of the argument using tensor valued difterential

operators actingon 9,9 §,A
Set A =0 henceforth.



Class A: Anomalies

1
—5 T”V5BgMV — JH . 5314#
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Adiabaticity Equation

+ The anomalous constitutive relations are particular constitutive relations,
which can be determined once and for all and thence we can focus on the
anomaly-free part of adiabaticity equation (AE). L oganayagam ‘11

Jensen, Loganayagam, Yarom ‘13

+ |t should be noted that the anomalous constitutive relations are a finite
class, owing to the topological origins of the associated contributions.

+ These constitutive relations can be obtained from an effective action which
is the integral of a particular transgression form built from the anomaly

polynomial.
Haehl, Loganayagam, MR '13-'15



Class B: Berry-like transport

+ This class of constitutive relations solves adiabaticity trivially. Non-
equilibrium, non-dissipative data!
1
(TH)g = -3 (N‘(W)(aﬁ) _ N‘(aﬁ)(uﬂ)) 0y 9ap + () 05 A

1
(JY)B = —iX(“”)O‘%gW — §losl. 0y AR

+ The entropy current is canonical (given just by projections of energy-
momentum and charge currents)

Hall Transport in 3 dimensions Neutral fluids in arbitrary dimensions

(T"") B
(JY)B

~ o U ro
—Tly Up (M 0 + 7% 0g)

0 - up ™ | Eg — T Dy (%)}

(TH)Yp = — Ao (@ o — o2 P’“/) — Ao (W2 + w"%ath)



Class C: Conserved entropy

+ AE can be solved by considering an exactly conserved entropy current.

(Jg)e=J,  (T")c=0, (J)c=0

+ Currents must be cohomologically non-trivial (non-Komar terms) for them to
be physically interesting.

+ Eg., Wen-Zee current in 3 spacetime dimensions (more generally Euler
currents in odd spacetime dimensions.

1
§R1/}\a/3>

1

Jguler — §CEuler 80_0{5 8/“/)\ 'U,’u (VQU/VV6U)\ o

+ These currents count the degeneracy of topological states in the thermal
density matrix and can be realized holographically (eg., Gauss-Bonnet
contribution to black hole entropy in ABJM like theories).



Class Hv: Gibbsian vectors

+ Just as hydrostatic vectors entered into parameterization of the free energy
current, there are non-trivial hydrodynamic vectors which lead to adiabatic
constitutive relations.

+ These are parameterized by tensor valued differential operators

(T")g = : [ D, Qtp(w/)(aﬁ) 5, Gors Q:P(MV)(QB) D3, ga 5}

+ D, Qtp(‘“’)“ 0, A+ 2 Qtp(“”)o‘- D6, Aa
Q 1 v v
(J )HV — 2 [D Q:P(M ) 5391“/ _|_2 Q:P(M ) D 5BgMV]

+ D, 5, Ag+2 €2 . D5, Ag

+ No explicit data on such transport, but they do appear in charged fluids at
second order in gradients.



Class L = Hs u Hs

+ Consider diffeomorphism and gauge invariant scalar Lagrangian densities
which are functionals of hydrodynamic fields ¥ = {gu, 4., 8", Ag}

Shydro — /ddaj —9g L [\Il]

+ The basic variational principle of this theory defines currents:

1
\/—_—95 (\/ -9 £) - Vﬂ(ﬁ@PS)“
1
= 5 T" b + " - 64, + T V5 687 + T ¢+ (3Mg + Ay 57)

+ Entropy density is defined as in thermodynamics

o= (5 ar [voew)

J g = sut
{’LLU,'LI,, ga,@aAOé}:ﬁxed



Class L adiabaticity

Now diffeomorphism and flavour gauge symmetries of the Lagrangian imply
a set of Bianchi identities:

v v g/“/ / v
1
Dy J° = —=—65, (V=g T¢
s, (T

| — -

Together with the identity and an off-shell Euler relation

VJJE:VU(TsﬁU):\/%ég (V=g Ts) Ts+pu-C+u’V, =0

| ——— S

S

one ends up with the non-anomalous AE

V. Jh + B (VT — J, - F*) + (Ag + B*Ay) - D, J” = ()



Dynamics in Class L

+ The dynamics in Class L is supposed to reduce to the conservation of
energy-momentum and charge currents.

+ Naive variation with respect to {8#, Az} does not respect this requirement,
since it would lead to vanishing of the adiabatic heat/charge currents.

+ Constrained variational principle: vary the hydrodynamic fields along a
family related by Lie transport.

5: ©8"=6,8", OSAg=06,Ag,  Bgu =04,=0

S ——

+ This variation leads to equations of motion which when combined with the
Bianchi identities leads to conservation

1 o
=0 (V=9 TVy)+T¢-6,A,~0 + Bianchi : Vv, TH

1 1%
ﬁag (V=9 T¢) =0 D,J

| — S

PEE Y
oS O




Reference fields for Class L

{gab7 ACL}

B = {Ba, AB}

M

The constrained variational principle can be alternately phrased as fixing a
reference configuration and varying along the pull-back maps by diffeos and
gauge transformations.

I@H
Ap

(z) B*|p(z)]
c(z) Agle()] ¢ H(a) + B7(z) pe(x) ¢ (2)

|
o
S &

el 0,0 = ot | et 00" = 6



Cightfold effective action”

+ We have distilled the essence of the second law and have our benchmarks.
+ Prognosis for an effective action respecting this classification scheme?

+ With a single set of hydrodynamic dof we do rather poorly (2/8).

* Class Hs: Hydrostatic scalars v/ * Class A: anomalous transport v

* Class Hs: Landau-Ginzburg scalars ¥ % Class B: Berry-like transport v

* Class C: conserved entropy ? * Class Hy: Hydrostatic vectors ?

* Class D: dissipative class 7?7 * Class Hy: Gibbsian vectors ?

A: Dubovsky, Nicolis, Hui ’12; Haehl, Loganayagam, MR 13

B: Nicolis, Son '11; Haehl, MR ’'13; Geracie, Son ‘14



Symmetry from the eightfold way

+ The eightfold classification includes constitutive relations which do not
admit a simple Lagrangian description (6/8 classes).

+ However, there exists a framework which has an enhanced symmetry and
captures all of the adiabatic transport in a single Lagrangian density. (for the

/ classes).

. the background sources {90, Aut

o« the fluid fields {8, Ag}

o partners for the sources (G, Ay} Schwinger-Keldysh like
« KMS gauge field ATy U(1)r invariant ensures

adiabaticity



The Eightfold Lagrangian

+ The adiabatic constitutive relations can be derived in one swoop from a
Lagrangian density that is invariant under diffeomorphisms, flavour gauge
transformations and the KMS U(1)r symmetry.

1 ~
[’I‘ — 5 T g,ul/ + JH A,u + (Jg + /BI/TVJ + (A,B -+ /61/141/) ) JJ) A(T)O'

+ The U(1)r symmetry ensures that the influence functionals which are allowed
in the Schwinger-Keldysh construction respect the second law.

+ A complete map between the Schwinger-Keldysh construction and the
picture involving the partner sources and KMS photon is being developed,
but there is a rather suggestive heuristic....



Wherefrom KMS gauge field”

+ The non-canonical part of the entropy current is a Noether current.

G° - - lyer, Wald ‘94
T =87 L (826, o e

+ We claim that this is in fact the Noether current of an Abelian gauge field,
whose conservation equation is indeed the Adiabaticity equation!

+ Empirically, we have determined the U(1)r transformations of various fields
and sources and shown that the diffeomorphism + flavour + U(1)7 algebra
closes.

+ Claim: Gauging and Higgsing KMS gauge symmetry with the partner
sources treated as Goldstone modes should allow incorporation of
dissipation. Stay tuned...



A gravitational heuristic for KMS gauge invariance

partners for background

the sources - sources

KMS photon

Schwinger-Keldysh like construction, with KMS photon ensuring consistency
with second law (macroscopic manifestation of KMS conditions).

Haehl, Loganayagam, MR (wip)



Classification of Weyl invariant fluids

+ Weyl invariant neutral (and to some extent charged) fluids have been well
studied from both

* kinetic theory (weak coupling) York, Moore ‘08
* holography via fluid/gravity (strong coupling)

Baier et. al.; Bhattacharyya et. al., ‘07

+ Given the data at hand we can ask whether this class of hydrodynamic
systems is cognizant of the adiabatic eightfold way.

+ The answer turns out to be in the affirmative indicating that these systems
are aware of the classification scheme we propose.



Classification of Weyl invariant fluids

+ The stress tensor for a conformal holographic fluid can be expressed in the
eightfold basis as:

a7 o) )

L ( <po 1/>)_|_()\2 ) 2/{) <,uozwau>)
7‘( O‘ZDWUW 20<“O‘wa”> —I—ngw wayi

Vo (™ oty T o0 T 2070, =

+ While the shear viscosity takes on the universal value, the second order

transport satisfies two interesting relations
Haack, Yarom ‘08

)\1:%}, )\2:2(143—7')



Holographic fluids

+ Adiabatic Transport coefficients for holographic fluids up to second order in
the gradient expansion can be derived from a simple effective action:

ArT\“ AT\ 2] W 1 1 2
LY = cor <7T7> — Coff (%) [(d _RQ) + 5 w? + ¥ Harmonic (a — 1) 02]

+ This formula is derived empirically; it would be great to give a first principles
derivation from gravitational dynamics.

+ Minimum dissipation conjecture: Holographic fluids not only attain the

minimum allowed value of shear viscosity, but also ensure that the entropy
production in any fluid flow is minimized.



Status Quo

v/ Classification of hydrodynamic transport.

v/ Effective action reproducing this classification scheme.
* 7 of 8 classes work.

v/ Correct dynamics: constrained variational principle

= Relation to Schwinger-Keldysh?

= Connections to horizon dynamics?

+ Hints that we are on the right track provided by existing analyses of
hydrodynamic transport in holography and kinetic theory.



Summary

+ There is a complete classification of hydrodynamic transport, at all orders in
the gradient expansion.

+ The key concept that facilitates this analysis is adiabaticity equation, which
permits an off-shell analysis of the second law constraint.

+ Various physical fluid systems that have been independently analyzed are
cognizant of the adiabatic eightfold classification.

+ The classitfication scheme not simply useful for structure purposes, but more
pragmatically should allow simplifications of various computations.

+ We see hints of an new symmetry principle that suggests a deep structure
of non-equilibrium QFTs.



Open Questions

+ Understand the microscopic origins of KMS flavour invariance.

+ Determine the constraints on influence functionals in non-equilibrium
dynamics arising from this underlying symmetry (expect it to be Higgsed in
the non-equilibrium phase).

+ Relation to fluctuation-dissipation relations?

+ Derive the holographic fluid Lagrangian from the dynamics of gravity in
asymptotically AdS spacetimes.

More Qs: Section 19 of 1502.00636
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