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Wilsonian effective field theories

✦ The Wilsonian paradigm provides a powerful way to think about QFTs. 

✦ Typically, we tend to consider the Wilsonian effective action for vacuum (or 
near-vacuum) dynamics, and therefore focus on low energy physics in pure 
states. 

✦ Low energy dynamics in mixed states is a fascinating question for a QFT and 
shows up in a wide variety of circumstances: 

✴ non-equilibrium dynamics of QFTs. 

✴ semi-classical gravity in the presence of horizons etc. 

✦ Question: How does one upgrade the Wilsonian paradigm to deal with 
mixed states?
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Density matrices & equilibrium dynamics

✦  Equilibrium QFT is well understood in this thermofield double, or 
Schwinger-Keldysh construction  

✦ This is useful for computing real time correlation functions with microscopic 
unitarity constraints being imposed via the KMS condition (periodicity in 
Euclidean time).

Israel ’76; Maldacena ‘01

✦ The gravitational analog for equilibrium dynamics is the eternal black hole 
spacetime which constructs the Hartle-Hawking thermofield state (cf., 
ER=EPR). 

Son, Starinets ’02; Herzog, Son ’02;  
Skenderis, van Rees ’08

✦ Similarly, we understand how to compute real time correlation functions in 
equilibrium from holography.



Out of equilibrium: Here be dragons

✦ However, away from equilibrium the story becomes a lot more murky. 

✦ Integrating out degrees of freedom in the mixed state induces interactions 
between the two parts of the Schwinger-Keldysh contour — these are 
Feynman-Vernon influence functionals. 

✦ Arbitrary Feynman-Vernon functionals are problematic and need 
constraining (tension with microscopic unitarity constraints).

✦ The Hydrodynamic Path  

✦ Hydrodynamics accords a perfect opportunity to formulate a Wilsonian 
construction in background density matrices. 

✦ Goal: Construct an effective action for hydrodynamic dissipation.



The hydrodynamic effective field theory

✦ Relativistic fluid dynamics is best thought of as an effective field theory for 
quantum systems in local, but not global, thermal equilibrium. 

✦ The description in terms of fluid dynamics is valid when departures from 
equilibrium are on scales that are large compared to the characteristic 
mean free path of the underlying quantum dynamics. 

✦ Local domains of equilibrated 
fluid can be characterized by the 
local temperature/energy density 
and conserved charges. 

✦ Energy/charge flux exchanged 
across the domains: velocity field.

`mfp ⌧ L , tmfp ⌧ t



Axioms of Hydrodynamics I: Fields

✦ Hydrodynamics describes low-energy, near-equilibrium  fluctuations of an 
equilibrium Gibbsian density matrix on scales large compared to the 
characteristic mean free path.  

✦ The macroscopic description involves currents which capture energy-
momentum and charge transport                  (and entropy current      ). Tµ⌫ , Jµ

✦ The currents are functionals of the hydrodynamic fields, which are the 
intensive variables characterizing the density matrix and background 
sources.

✴  temperature and chemical potential 
and a flux vector (fluid velocity) 

✴ background metric and 
electromagnetic potential

T, µ, uµ, uµ uµ = �1

gµ⌫ , Aµ

Jµ
S



Axioms of Hydrodynamics II: Data

✴ Repackage the dynamical degrees of  freedom in a vector an scalar

✴ The currents of hydrodynamics are expressed as functionals of the 
hydrodynamical fields and the background sources.

thermal vector thermal twist

2.1 The adiabaticity equation
sec:amotive

Consider a fluid characterized by normalized velocity field u

µ (with u

µ
uµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavor gauge field Aµ which generically will be taken to be non-abelian.11 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1) eq:hydrofields

The fields {�µ
,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2) eq:Tumuinvert

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current J

µ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.17). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫

, J

µ
, J

µ
S , Gµ} . (2.3) eq:hydrocurrents

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4) eq:hfields

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

11 Generalizations to arbitrary number of flavour symmetries is straightforward.
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• currents

• fields

• constitutive 
relations

Tµ⌫ , Jµ, Jµ
S

2.1 The adiabaticity equation

Consider a fluid characterized by normalized velocity field uµ (with uµuµ = �1), temperature

T and chemical potential µ moving in a background geometry M with metric gµ⌫ and a

background flavour gauge field Aµ which generically will be taken to be non-abelian.14 We

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ uµ

T
, ⇤� ⌘ µ

T
� u�

T
A� . (2.1)

The fields {�µ,⇤�} which we refer to as the thermal vector and thermal twist, encode the

same hydrodynamic data as the fields {uµ, T, µ}. We can explicitly invert the above relations

to get

uµ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��A�
p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is captured by

the d+ 1 degrees of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical. In addition we have an entropy current Jµ
S which enforces the constraint of the

second law. It is also useful to include the free energy current Gµ, which is a particular linear

combination of the above, which we will encounter shortly, cf., (2.18). To simplify notation,

we will collect the various currents we have introduced into a single set by introducing a

collection of tensor fields CH
CH ⌘ {Tµ⌫ , Jµ, Jµ

S} , (2.3)

where instead of Jµ
S we often equivalently consider the Gibbs free energy current Gµ to be

defined in due course.

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly, for the fundamental

currents we have

Tµ⌫ = Tµ⌫ [ ] = Tµ⌫ [g↵� , A↵,�
↵,⇤�]

Jµ = Jµ [ ] = Jµ [g↵� , A↵,�
↵,⇤�]

Jµ
S = Jµ

S [ ] = Jµ
S [g↵� , A↵,�

↵,⇤�] .

(2.5)

14 Generalizations to arbitrary number of flavour symmetries is straightforward.
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Axioms of Hydrodynamics III: Dynamics

✦ The dynamical content of hydrodynamics is the statement of conservation, 
modulo work done by sources and anomalies:

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H . (2.6) eq:hydroCons

Here, Fµ⌫ and Dµ denote the field-strength and gauge-covariant derivative associated with

Aµ while {Tµ?
H , J?H} are the covariant Lorentz and flavour anomalies respectively.12 The

center-dot “·” is reserved for gauge index contraction which we will never write explicitly.

The gauge-covariant derivative acts on tensors Xµ···⌫
⇢···� in a familiar fashion, viz.,

D↵X
µ···⌫

⇢···� = r↵X
µ···⌫

⇢···� + [A↵, X
µ···⌫

⇢···�] . (2.8) eq:CovDer

These equations which we term as the hydrodynamic Ward identities, together with rµJ
µ
S � 0

capturing the essence of the second law, complete the specification of the hydrodynamic

e↵ective field theory in the current algebra language.

The task of a hydrodynamicist is to provide these constitutive relations, order by order

in gradients of the fields  , subject to symmetry and second law requirements, cf., [2] for the

classic treatment. We will refer the reader to the vast literature on hydrodynamic constitutive

relations which have been computed (in certain cases up to the second order in the gradient

expansion); see [34, 35] for a partial summary of certain results in the past few years.13

While most analyses of the second law constraints are done by classifying first on-shell

independent data, as explained in §1 it is useful to work o↵-shell. To this end we want to

extend the statement of the second law, viz.,

9 J

µ
S [ ] : rµJ

µ
S � 0 , (2.9) eq:slaw

to a more amenable one which is agnostic of dynamics. The simplest way to proceed is

to use the fact that linear combinations of the equations of motion can be added to (2.9)

without a↵ecting the inequality [30]. All we need is appropriate Lagrange multipliers to

ensure that the vectorial energy conservation and the scalar charge conservation equations

can be combined with the gradient of the entropy current. The canonical choice is simply

12 If P[F ,R] is the anomaly polynomial, then the covariant anomalies are determined using the following

equations:

J?H
?1 ⌘

@P
@F

, ⌃?⌫
H µ

?1 ⌘ 2
@P

@Rµ
⌫
, Tµ?

H ⌘

1
2
r⌫⌃

?µ⌫
H . (2.7)

Here ⌃?µ⌫
H is the torque on the system due to Lorentz anomaly. We adopt a bold-face notation for di↵erential

forms. In general our notation follows that of [13, 14, 27] where the reader will find further details on the

conventions used herein. We will be more explicit when we solve the anomalous adiabaticity equation in §12.
13 These computations are typically done by fixing a fluid frame (e.g., in the Landau frame one demands

that the non-ideal parts of Tµ⌫ and Jµ are transverse to velocity). We will a-priori make no such assumptions

though at various stages of our analysis we will present results by making certain frame choices.
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work term covariant anomalies

✦ These are effectively Ward identities for the one-point functions of the 
conserved currents in the fluctuating Gibbs density matrix. 

✦ The task of a hydrodynamicist is to specify the currents as a functional of the 
hydrodynamic fields, consistent with the dynamics, constructing a current 
algebra of sorts, but…



Axioms of Hydrodynamics IV: Constraints

✦ From a macroscopic, statistical viewpoint, one has to demand that a local 
form of the second law of thermodynamics is upheld. 

✦ This is required to be upheld on-shell, and complicates the analysis of 
hydrodynamics, for without it the current algebra can be analyzed purely in 
terms of representation theory. 

✦ Note that usually one only requires the existence of some entropy current.

✦ From a microscopic viewpoint the entropy current is rather mysterious; it is 
not associated with any underlying symmetry per se.

9 Jµ
S [ ]: 8  

on-shell

rµJ
µ
S [ ] � 0

• Opportunity: Understand a Wilsonian hydrodynamic theory consistent with 
second law.



Neutral fluids

✦ A neutral fluid is characterized by its energy-momentum stress tensor

✦ The second law forces some of the transport data to satisfy some 
inequalities, e.g., the viscosities are non-negative definite (friction)

Pµ⌫ = gµ⌫ + uµ u⌫

spatial metric shear vorticity
expansion

acceleration

rµu⌫ = �(µ⌫) + ![µ⌫] +⇥Pµ⌫ � uµ a⌫

Tµ⌫ = ✏(T )uµ u⌫ + p(T )Pµ⌫ � ⌘(T )�µ⌫ � ⇣(T )⇥Pµ⌫ + · · ·

Jµ
S = s uµ + · · ·

⌘, ⇣ � 0rµJ
µ
S = ⌘ �2 + ⇣ ⇥2 + · · ·



Wilsonian formulation of hydrodynamics

✦ A satisfactory Wilsonian framework should satisfy 3 primary criteria: 

✴ Consistency  with current algebra formulation. 

✴ Dynamics ≈ current conservation. 

✴ Rationalize the entropy current & second law.

✦ Based on what we have seen so far, we can expect: 

✴ Doubling of fields. 

✴ Constraints on Feynman-Vernon terms.

✦ We also get something new and unexpected: an emergent gauge 
symmetry!



Benchmarking hydrodynamics

✦ To set the stage for our Wilsonian framework, we need to understand 
hydrodynamic constitutive relations compatible with second law. 

✦ Ideally, this should data should be given to us off-shell, since we are aiming 
to construct effective action.

✦ STRATEGY 

✴  Take the entropy current constraint off-shell. 

✴  Classify all off-shell physical constitutive relations.  

✴  Derive the resulting constitutive relation from an effective action.



Off-shell entropy production

✦  Take the statement of the second law off-shell Lagrange multipliers

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1)

The fields {�µ
,⇤�} encodes the same hydrodynamic data as the fields {u⌫ , T, µ}. We can

explicitly invert the above relations to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is d+ 1 degrees

of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical and an entropy current J

µ
S which enforces the constraint of the second law. In

addition to these currents we can consider the free energy current Gµ which is a particular

linear combination of the above, which we will encounter shortly, cf. (2.15). To simplify nota-

tion, we will collect the various currents we have introduced into a single set by introducing

a collection of tensor fields CH (dropping the indices for brevity)

CH ⌘ {Tµ⌫
, J

µ
, J

µ
S , Gµ} . (2.3)

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H (2.6)
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can be combined with the gradient of the entropy current. The canonical choice is simply

to take the Lagrange multipliers to be the hydrodynamic fields B = {�µ
,⇤�} themselves.

One way to motivate this choice is to exploit the field redefinition freedom inherent in fluid

dynamics, to align the Lagrange multiplier fields to the velocity (rescaled by the temperature)

and chemical potential.

This then leads us to the following statement of the second law of thermodynamics:

rµJ
µ
S + �µ

⇣

r⌫T
µ⌫ � J⌫ · Fµ⌫ � Tµ?

H

⌘

+ (⇤� + ��
A�) ·

⇣

D⌫J
⌫ � J?H

⌘

= � � 0 .
(2.10) eq:AdiabaticityD

We have introduced � as the placeholder for the entropy production resulting from the

dissipative constitutive relations.

Often when confronted with solving constraints given as inequalities, it is simplest to

examine the boundary of the acceptable domain. In the present case this amounts to switch-

ing o↵ dissipation by setting � = 0. The part of the constitutive relation which does not

contribute to � will be termed adiabatic.

This canonical split allows us to motivate the adiabaticity equation. By definition it

captures the marginal situation where dissipation is turned o↵, i.e., � = 0:

rµJ
µ
S + �µ

⇣

r⌫T
µ⌫ � J⌫ · Fµ⌫ � Tµ?

H

⌘

+ (⇤� + ��
A�) ·

⇣

D⌫J
⌫ � J?H

⌘

= 0 .
(2.11) eq:Adiabaticity

The constitutive relations which satisfy the adiabaticity equation are called adiabatic consti-

tutive relations.14 Note that this relation is being imposed o↵-shell on the hydrodynamical

system of interest, a fact that will be of crucial import in our discussion. For most of this

paper we will be concerned with the adiabatic case. However, we will at some early stage of

the discussion (cf., §5) describe the dissipative part of hydrodynamics building on the results

of [14, 15] using the lessons learned from our adiabatic analysis.

It is worthwhile recording here a version of the adiabaticity equation that holds when we

consider non-anomalous fluids. Since the quantum anomaly manifests itself through the Hall

current terms Tµ?
H and J

?
H setting them to zero allows us to capture the desired equation for

non-anomalous adiabatic fluids, viz.,

rµJ
µ
S + �µ (r⌫T

µ⌫ � J⌫ · Fµ⌫) + (⇤� + ��
A�) ·D⌫J

⌫ = 0 . (2.12) eq:naadiabatic

In the initial part of our discussion we will find it convenient to work with the non-

anomalous case first, and then build up to include the presence of anomalies. There is in

fact an useful perspective that helps segregate the anomalous contribution from the rest.

Apart from anomalies appearing via the Hall currents, the adiabaticity equation is linear in

14 We provide a translation of the adiabaticity equation in terms of the consistent currents which are

sometimes more natural when working with e↵ective actions in Appendix A.
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entropy production by dissipation

✦This off-shell formalism motivates separation of transport into: 

✴  dissipative (Class D) 

✴  adiabatic

✦The Lagrange multipliers are fixed to be the hydrodynamic fields 
exploiting field redefinition freedom.



Free energy current

✦ Package the information in terms of a Gibbs free energy current, switching 
from a microcanonical to grand-canonical language:

This then implies that the fluid should satisfy the first law

�✏ = T �s+ µ · �⇢ ,

and the Gibbs-Duhem relation

✏+ p = T s+ µ · ⇢.
Thus, we recover standard constitutive relations describing thermodynamics from the formal-

ism of adiabatic hydrodynamics.

We will soon see that the family of adiabatic fluids is far richer as evidenced by our

eightfold classification illustrated in Fig. 1. We will shortly provide a short synopsis of the

di↵erent classes in §3. The reader impatient to see some more examples is invited to consult

§8 where we study neutral fluids and parity-odd charged fluids at higher orders.

2.4 The adiabatic free energy current
sec:afree

We have phrased our discussion of the adiabaticity equation in terms of the entropy current.

However, since we are describing via the hydrodynamic expansion the fluctuations in the

Gibbsian density matrix, it makes more sense to ask about the behaviour of the free energy

current itself. This involves using the standard definition of the grand canonical free energy

current. In terms of the other hydrodynamic currents introduced hitherto:

G� ⌘ �T [J�
S + �⌫T

⌫� + (⇤� + �⌫
A⌫) · J�] . (2.17) eq:GDef

Assuming we know the free energy current we can solve for the entropy current by in-

verting the above relation

J

�
S = �



�⌫T
⌫� + (⇤� + �⌫

A⌫) · J� +
G�

T

�

⌘ (J�
S )can � G�

T

. (2.18)

This expression is useful in that it segregates the various contributions to the entropy current.

The terms � [�⌫T
⌫� + (⇤� + �⌫

A⌫) · J�] are usually interpreted as the canonical part of the

entropy current (Jµ
S )can. On the other hand the vector �G�

/T is called the non-canonical

part of the entropy current. Thus, passing to grand canonical ensemble can be thought of as

focusing our attention on the part of entropy flow which is not simply related to energy and

charge flow. We can think of free energy (up to a factor of T ) as just the name given to this

part of entropy.

While in the present discussion the grand canonical free energy current appears as a

convenient book keeping device for the non-canonical part of the entropy current, it will soon

transpire when we consider hydrostatics that it has a natural interpretation in terms of a

partition function.

The notion of the free energy current is quite useful in the context of anomalous hydro-

dynamics. While the presence of a quantum anomaly does not necessarily introduce entropy
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✦ The off-shell second law statement can be phrased now as 

into the fluid,17 the charge and energy-momentum injection is inevitably accompanied by a

free energy injection. The free energy per unit time per unit volume injected by anomalies is

G?
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h
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H + (⇤� + �⌫

A⌫) · J?H
i

= �
h
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i

.

(2.19)

Using this definition, we can now write the grand canonical version of the adiabaticity equation

(2.11) as (we include � for completeness)
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(2.20) eq:AdiabaticityG

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism and flavor transformations generated by {�µ
,⇤�}:

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ ,

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ . (2.21) eq:delBdef

In this expression, we used £� to denotes the Lie derivative along the vector field �µ.

It is useful to record the expression for the Lie derivative in terms of the more familiar

hydrodynamic decomposition. A quick evaluation leads to

�

B
gµ⌫ = 2r(µ�⌫) =

2

T



�µ⌫ + Pµ⌫
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d� 1
� �

a(µ +r(µ log T
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�
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B
Aµ = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ = u
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⇣

µ
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⌘

uµ � 1

T

vµ . (2.22) eq:diffbga

We use the standard decomposition of the gradient of the velocity field into the transverse

traceless shear tensor, the antisymmetric vorticity, the vectorial acceleration and scalar ex-

pansion respectively, viz.,

rµu⌫ = �(µ⌫) + ![µ⌫] � uµ a⌫ + Pµ⌫
⇥

d� 1
, (2.23) eq:uder

and the flavour fields decompose as

vµ = E

µ � T P

µ⌫ r⌫

⇣

µ

T

⌘

, E

µ = F

µ⌫
u⌫ . (2.24) eq:cvdef

An alternate form of (2.20) can be given by introducing the fluid acceleration a↵ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] + T� .

(2.25)

17 The anomalous contribution to the entropy current can typically be chosen to vanish for flavour anomalies.

The story for Lorentz anomalies is a bit more involved and is discussed in §12.
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Using this definition, we can now write the grand canonical version of the adiabaticity equation

(2.11) as (we include � for completeness)
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u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-
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In this expression, we used £� to denotes the Lie derivative along the vector field �µ.

It is useful to record the expression for the Lie derivative in terms of the more familiar

hydrodynamic decomposition. A quick evaluation leads to
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We use the standard decomposition of the gradient of the velocity field into the transverse

traceless shear tensor, the antisymmetric vorticity, the vectorial acceleration and scalar ex-

pansion respectively, viz.,

rµu⌫ = �(µ⌫) + ![µ⌫] � uµ a⌫ + Pµ⌫
⇥

d� 1
, (2.23) eq:uder

and the flavour fields decompose as

vµ = E

µ � T P

µ⌫ r⌫

⇣

µ

T

⌘

, E

µ = F

µ⌫
u⌫ . (2.24) eq:cvdef

An alternate form of (2.20) can be given by introducing the fluid acceleration a↵ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J
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(2.25)

17 The anomalous contribution to the entropy current can typically be chosen to vanish for flavour anomalies.

The story for Lorentz anomalies is a bit more involved and is discussed in §12.
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Hydrodynamic taxonomy

✦ The off-shell formalism is quite powerful. One can classify hydrodynamic 
constitutive relations into eight distinct classes:

✴  Class D: dissipative class 

✴  Class A: anomaly induced transport

✴  Class HS: Hydrostatic scalars 

✴  Class HS: Landau-Ginzburg scalars

✴  Class HV: Hydrostatic  vectors 

✴  Class HV: Gibbsian vectors

Free energy scalars Free energy vectors

✴  Class B: Berry-like transport 

✴  Class C: conserved entropy 



Eightfold classification of hydrodynamic transport

Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].
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Class H: Hydrostatics (HS ∪ HV)

✦ Hydrodynamic transport  can be classified into two categories 

✴ Hydrostatic or thermodynamic response: fixed by equilibrium 

✴ Genuine hydrodynamic transport

✦ Hydrostatic data can be understood by time-independent configurations of 
the fluid in the presence of non-trivial (spatially varying) background 
sources. 

✦ Can equivalently be encoded in a generating function, the equilibrium 
partition function which is a functional of stationary background sources.

Banerjee et. al. ‘12

Here E

µ = F

µ⌫
u⌫ is the electric field and �

B
represents the Lie derivatives using the di↵eo-

morphism/flavor transformations generated by {�µ
,⇤�}

�

B
gµ⌫ ⌘ £�gµ⌫ = rµ�⌫ +r⌫�µ

�

B
Aµ ⌘ £�Aµ + @µ⇤� + [Aµ,⇤�] = Dµ(⇤� + �⌫

A⌫) + �⌫
F⌫µ (2.19)

In this expression, we used £� to denotes the Lie derivative along the vector field �.

An alternate form of (2.18) can be given by introducing the fluid acceleration aµ ⌘
u

µrµu
↵ eliminating the thermal gradients:

�
h

(r� + a�)G� � G?
H

i

= J

�
S (r� + a�)T + T

µ⌫(r⌫ + a⌫)uµ + J

� · [D�µ+ a�µ� E�] .

(2.20)

This form of the equation is quite useful in making comparisons with traditional hydrodynamic

analysis; typically one chooses to eliminate thermal gradients in favour of velocity derivatives.

3 Class H: Hydrostatics from Adiabaticity

We have defined adiabatic fluids to be the set of hydrodynamic currents that satisfy (2.9).

While in the previous section we have argued that this set comprises of the obvious example of

ideal fluids, we would like to ascertain (and perhaps classify) other solutions to the adiabaticity

equation. We will proceed to establish the existence of various classes of solutions to (2.9) in

the reminder of the paper. To keep the logical flow of the arguments simple we will start with

statements that hold in great generality and subsequently specialize to more special cases.

Our first case of interest is what we called Class H in §1: we specialize to time-independent

configurations in hydrodynamics (i.e., we limit ourselves to hydrostatics). In order to ascertain

non-trivial constraints on fluids from this hydrostatic restriction we need to turn on external

sources, e.g., background metric and gauge fields, which themselves are time-independent

to begin with. Therefore let us assume that there exists a Killing vector and Killing gauge

transformation collectively denoted by K ⌘ {Kµ
,⇤K} such that �

K
gµ⌫ = 0 and �

K
Aµ = 0.

We will further assume that Kµ is timelike everywhere on the manifold the fluid propagates

on.10 To wit, a stationary background source configuration is encoded as

K ⌘ {Kµ
,⇤K} , gµ⌫ K

µ
K

⌫  0 �! �

K
gµ⌫ = �

K
Aµ = 0 (3.1)

There is a natural hydrostatic configuration associated with this background given by

{�µ
,⇤�} = {Kµ

,⇤K}. This configuration is time-independent since �

K
�µ = �

K
K

µ = 0 and

�

K
⇤� = �

K
⇤K = 0. It therefore follows that for any functional Z [ ] of the fluid dynamical

variables we have

�

B
Z [g↵� , A↵,�

↵
,⇤�] = �

K
Z [g↵� , A↵,K

µ
,⇤K ] = 0 (3.2)

10 In particular, we demand by virtue of K being globally timelike on M that the background the fluid

propagates on is free of ergosurfaces. This is necessary in order for the fluid configuration to have a stationary

solution aligned with the Killing field.
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Class H: Hydrostatics

✦ The hydrostatic partition function is the integral of the (consistent) free 
energy current over the Wick rotated Euclidean manifold.

Part II

The Classification of Adiabatic

Constitutive Relations
part:adiabatic

6 Class L: Lagrangian solutions to adiabaticity equation
sec:classL

Following the analysis of §4 we have seen that the set of adiabatic fluids is much larger

than just the ideal fluid family. In principle, we could continue on from our analysis at zero

derivative level as in §2.3, and solve the adiabaticity equation at higher derivative orders,

to find new families of adiabatic constitutive relations. In practice, however, the number of

terms proliferates very fast and the analysis becomes complicated. Hence, one therefore

would like to seek more practical ways of solving adiabaticity equation or writing down

adiabatic constitutive relations. The most elegant solution would be to mimic our discussion

in hydrostatics (Class H) and construct the generating function for the adiabatic constitutive

relations, consistent with our desire of being o↵-shell and o↵-equilibrium.

In this section, we will describe a method to generate a large class of adiabatic constitutive

relations in the absence of anomalies. Though this does not give all possible solutions, at any

given derivative order, most solutions seem to fall into this class. We will call this class

of adiabatic constitutive relations as Class L (where L stands for Lagrangian-derivable) as

one can find a local Lagrangian or Landau-Ginzburg free energy functional which succinctly

encodes the constitutive relations. As presaged this will be quite close to the Euclidean

partition function in hydrostatics. In particular, observe that in Class HS , the generating

functional was given by the longitudinal part of the free energy current. That is, the natural

decomposition of any covariant free energy current,

Gµ = S�µ +Vµ
, Vµ �µ = 0 , (6.1) eq:Gdecomp

gives a natural scalar object S which in hydrostatics took the role of the partition function

scalar density PS [ K] in (4.10). If we consider the full set of scalar invariants (up to field

redefinitions), including ones that vanish in equilibrium, then we can write down an o↵-shell

Lagrangian density L ⇠ fS S which parameterizes Class L. The non-hydrostatic part of this

construction comprises of those scalars which identically vanish in equilibrium. All in all such

Lagrangian densities will completely parameterize the longitudinal part of the free energy

current in (6.1).

Let us now carry out this construction in detail. Constitutive relations in Class L are

parametrized by a Lagrangian density L [gµ⌫ , Aµ,�µ
,⇤�] which we will assume to be a local

scalar functional of its arguments, i.e., under gauge transformations and di↵eomorphisms L

– 47 –

transverse vector 
(conserved)

longitudinal vector

H = HS [HV

partition fn scalars partition fn vectors

✦ Since the free energy current is a vector field, it decomposes into

where dd�1
S� is the area form on the base space ⌃E which is defined using the choice of base

space embedding we described above (thus ⌃E = ⌃M).

One can easily check that this answer forWE is embedding independent. Setting {�µ
,⇤�} =

{Kµ
,⇤K} in (2.20) and using (4.1) we get

rµ

✓Gµ

T

◆

Hydrostatic

= 0 . (4.7)

This means that its Wick-rotated counterpart
Gµ
E
T is also divergenceless (i.e., it is conserved).

This then implies that WE is embedding independent. As advertised earlier, knowledge of

the Euclidean Gibbs current is su�cient information to recover the generating function of

current correlators.

(ii). Anomalous hydrostatic partition functions: The above argument can be ex-

tended to situations where we have quantum anomalies with some minor modifications. As

evident from (2.20), the covariant free energy current is no longer conserved in the adiabatic

limit because of the free energy injection due to anomalies. This issue can be solved however

if we choose to work with consistent free energy current instead.26

For the present discussion we simply assume that the consistent current is obtained from

the covariant one by a well-defined prescription. Once this is done, the adiabaticity equation

can be written directly in terms of the consistent currents, see (A.11) . Given the consistent

currents, using (4.1) in (A.11) we get

rµ

✓Gµ
cons

T

◆

Hydrostatic

= 0 , (4.8)

provided we choose to work in hydrostatic gauge defined via

Hydrostatic Gauge: @⌫K
µ = 0, ⇤K = 0 .

As in the preceding discussion this then su�ces to define a generating functional, since we can

consider the integral of
Gµ
cons,E

T over the base space ⌃E in analogy with (4.6). Thus modulo

a restricted gauge choice, the consistent free energy current leads to a Euclidean partition

function that is well-defined, and independent of the choice of base-space embedding, even in

the presence of anomalies.

It is convenient to perform an inverse Wick-rotation of the Euclidean partition function

WE so that we may can use the metric with Lorentzian signature. This amounts to

WHydrostatic = �
ˆ

⌃E

✓Gµ
cons

T

◆

d

d�1
Sµ

�

Hydrostatic

(4.9) eq:Whydro

As we will see shortly, this hydrostatic partition function is a very powerful way to characterize

a large subset of adiabatic constitutive relations.
26 The distinction between the covariant and the consistent currents is that the latter is naturally obtained

from a (anomalous) quantum e↵ective action by varying with respect to sources and is so named because it

satisfies the Wess-Zumino consistency conditions. We provide a quick review of the translation between the

covariant and consistent currents in Appendix A. A detailed account of the issues can also be found in [3, 10].
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Entropy constraint: Hydrostatic forbidden (HF)

✦ The scalars and vectors which do not vanish in equilibrium parameterize the 
free energy current and in turn generate the currents after varying with 
respect to the sources.

Since any variation can be mimicked by a slow time-dependence, we conclude that, in

general

�WHydrostatic =

ˆ
⌃E

✓

1

2
T

µ⌫
cons �gµ⌫ + J

µ
cons · �Aµ

◆

�↵
d

d�1
S↵

�

Hydrostatic

+

ˆ
@⌃E

(/�⇥PS)
j
d

d�2
Sj

�

Hydrostatic

(4.15) eq:WhsvarPost

where (/�⇥PS)
j is a boundary term linear in variations of fields, arising out of integration by

parts.

For the particular kind of slow time dependence under consideration, we can write

(/�⇥PS)
j = �t(/�B⇥PS)

j where /

�B⇥PS is obtained by changing all the variations �(. . .) into

Lie-derivative �

B
(. . .). A comparison of (4.15) against (4.14) then yields

(/�B⇥PS)
j =

Gj
cons

T

(4.16)

Thus, when we vary the sources in the hydrostatic partition function, we get a bulk variation

which allows us to figure out the consistent currents and a boundary variation which gives

us the information about the spatial component of free energy current. Since the temporal

component of free-energy current (i.e., free energy density) is already captured by the partition

function before variation, we can then reconstruct the entire free-energy current. By using

the free-energy current thus obtained as the non-canonical part of the entropy current, we

can finally compute the entropy current associated with the partition function.

A clear algorithmic procedure for doing this which is inspired by our Class L discussion,

can be phrased as follows (cf., also Appendix G):

1. From WHydrostatic determine G0
cons. By varying it, determine the currents {Tµ⌫

, J

µ} and

the boundary term gives Gj
cons. When covariantized, the latter is just the pre-symplectic

potential (/�⇥PS)
µ which arises as the surface term when varying the hydrostatic parti-

tion function.

2. Having obtained the hydrostatic currents, one then takes them o↵-shell by giving them

linear time dependence. To do so, one adds in non-hydrostatic terms in {Tµ⌫
, J

µ} by

unlinking B from K. E↵ectively what this amounts to is that the linear variation of the

background fields, in the direction of {�µ
,⇤�}, i.e., �B defined in (2.21) plays the role

of time derivative.

3. One similarly upgrades the boundary term from (/�⇥PS)
µ to (/�B⇥PS)

µ to obtain the

linear time dependence in the spatial component of free energy current.

4. In Class HS the non-canonical part of the entropy current is simply obtained by com-

bining the temporal and the spatial components of the free-energy current:

(Jµ
S )non�can = �µ

PS [ ]� (/�B⇥PS)
µ (4.17)
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✦ At any given derivative order however, there are fewer scalars than the 
tensor structures in the currents. 

✦ Hydrostatics implies that certain constitutive relations are forbidden.  

✦  Intuitively think of hydrostatics as time-independent configurations; turning 
on time dependence one should find no linear term, for it can produce 
entropy of either sign.

Bhattacharyya (’13, ’14)



Example: Ideal fluids

✦ For an ideal fluid, the hydrostatic partition function is generated by the 
pressure p(T,µ).

Tµ⌫ = ✏uµ u⌫ + (p� ⇣ ⇥)Pµ⌫ � ⌘ �µ⌫ , Jµ
S = s uµ

✦ Adiabaticity (or sign-definiteness of Δ) implies that all the zeroth order 
transport is determined by p(T).

Pµ⌫ = gµ⌫ + uµ u⌫ , ⇥ = r↵u
↵ , �µ⌫ = r<µu⌫>

A<↵�> =

✓
P↵µP�⌫ � 1

d� 1
P↵� gµ⌫

◆
Aµ⌫

✏+ p� T s = 0

d✏

dT
� T

ds

dT
= 0

Gibbs-Duhem relation

Clausius relation

✦ At second order: 5 constraints for the neutral fluid.



Class D: Dissipation

✦ Focus on positivity of Δ order by order in the gradient expansion. Deviations 
from equilibrium:

Bhattacharyya (‘11, ’13, ’14)

The product-composites are simple; since they are invariants built out of terms that are

already constrained, their coe�cients can be arbitrary whilst still respecting the second law

(in the gradient expansion). For example, taking the viscosities and conductivities to be

positive, we ensure �2 � 0 and thence the contribution to �3 from such product-composite

form, is simply sub-dominant and poses no obstruction to the second law. To wit,

⌘ �µ⌫ �
µ⌫ + ⇣ ⇥2 + �1⇥

3 + �2 �
↵�

����
�
↵ + �3⇥�µ⌫ �

µ⌫ � 0

=) ⌘, ⇣ � 0 , and {�1, �2, �3} unconstrained. (5.5)

The descendants are a-priori trickier to handle; at any given derivative order they give rise to

new scalar invariants which have not been encountered at lower orders. Their contribution to

� cannot be subsumed into lower order terms. One way to argue for their importance is to

note that one can find fluid configurations where the lower order gradients are locally made

to vanish, making the descendants important in some domain. Since we want the second

law to hold in all possible scenarios, one must therefore control the descendants. The rather

non-trivial fact is that these are also easy to handle beyond the leading order.

Let us understand this a bit more carefully following the impressively clear and complete

analysis of dissipative transport of [15] (see [2, 14] for earlier results). As explained there,

scalar operators contributing to � are of three types:30

• Terms that contribute to �2 at leading order which need to be controlled to ensure

� � 0. They belong to Dv and impose constraints on transport (such terms were called

�2nd�order in [15]). Note that we can write them e↵ectively in terms of (�
B
g)2 and

(�
B
A)2 for they appear only at quadratic order.

• Descendant terms at any given order which are composite scalars built from a (k� 1)st

order independent operator and a first order operator, i.e., of the form �

B
g DOk�2 where

Ok�2 could be a composite-product. Such terms were denoted as �diss�imp in [15].

• Composite-product terms which simply take the form (�
B
g)k and (�

B
A)k. Terms of this

type were called �diss�product in [15].

Given this decomposition, we have schematically

� = ↵2g (�Bg)
2 + ↵2A (�

B
A)2 +

1
X

k=3

h

kg �

B
g DOk�2 + �kg (�Bg)

k + · · ·
i

⇠ ↵2g

"

�

B
g +

1
X

k=3

kg

2↵2g
DOk�2

#2

+
1
X

k=3

�kg (�Bg)
k + · · · (5.6) eq:Dscheme

30 In [15] a fourth type was introduced called �non�diss – these will be accounted for in our adiabatic

story as they end up having net zero contribution to entropy production. Note that we will not include them

explicitly in our counting of Class C constitutive relations as these terms are exact di↵erentials and thus trivial

in cohomology.
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The product-composites are simple; since they are invariants built out of terms that are

already constrained, their coe�cients can be arbitrary whilst still respecting the second law

(in the gradient expansion). For example, taking the viscosities and conductivities to be

positive, we ensure �2 � 0 and thence the contribution to �3 from such product-composite

form, is simply sub-dominant and poses no obstruction to the second law. To wit,
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sub-dissipative

⌘ �µ⌫ + ⇣ ⇥Pµ⌫ =) � = ⌘ �µ⌫�
µ⌫ + ⇣ ⇥2 ⇠ (�Bg)

2

Set Δ =0 henceforth.

✦ Useful restatement of the argument using tensor valued differential 
operators acting on 
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Class A: Anomalies

✦ The anomalous constitutive relations are particular constitutive relations, 
which can be determined once and for all and thence we can focus on the 
anomaly-free part of adiabaticity equation (AE). Loganayagam ‘11

Jensen, Loganayagam, Yarom ‘13

✦  It should be noted that the anomalous constitutive relations are a  finite 
class, owing to the topological origins of the associated contributions. 

✦  These constitutive relations can be obtained from an effective action which 
is the integral of a particular transgression form built from the anomaly 
polynomial.

Haehl, Loganayagam, MR ’13-’15
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Class B: Berry-like transport

✦ This class of constitutive relations solves adiabaticity trivially. Non-
equilibrium, non-dissipative data!

Hall Transport in 3 dimensions Neutral fluids in arbitrary dimensions

Thus, equations (10.2) and (10.4) give a large set of adiabatic constitutive relations. The set

of constitutive relations parameterized by (2.2) is what we term to be Class B.

All the class B constitutive relations trivially satisfy hydrostatic principle because they

vanish in hydrostatic equilibrium. They thus drop out of the hydrodynamic equations in the

hydrostatic limit. These are thus examples of non-hydrostatic but non-dissipative constitutive

relations. In fact, some aspects of these as we shall see have been encountered in previous

analysis but were not identified to belong to this general class. For instance in the analysis of

[39] it was noticed that the Hall transport coe�cients are unconstrained by any form of the

second law, while [19] noticed a similar feature for a particular combination of second order

transport coe�cients for a neutral fluid. We will now show how these arise within the general

construction above.

10.1.1 Examples of Class B transport

Let us therefore consider some examples. By construction, class B constitutive relations have

at least one derivative (since �

B
gµ⌫ and �

B
Aµ is linear in the gradients of {�µ

,⇤�}. Thus,

there are no examples in zero derivative order.

Hall Transport in 3 dimensions: At one derivative order, in (3) dimensional parity

violating fluids, there is an adiabatic constitutive relation that can be obtained by setting

⌘̃

µ⌫↵� = 2 ⌘̃H u⇢ "
⇢µ↵

P

⌫� along with ⌅̃µ⌫↵ = 0 and �̃

↵� = �̃H u⇢ "
⇢↵� . We obtain then for the

currents

(Tµ⌫)B = �⌘̃H u⇢ ("⇢µ↵ �⌫
↵ + "

⇢⌫↵
�

µ
↵)

(J↵)B = �̃H · u⇢ "⇢↵�
h

E� � T D�
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T
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(J↵
S )B = �µ

T

· �̃H · u⇢ "⇢↵�
h

E� � T D�

⇣

µ

T

⌘i

(10.5)

We recognize the transport coe�cients �̃H and ⌘̃H as the Hall conductivity and Hall viscosity

respectively, from our discussion in §6.2. As mentioned earlier the fact the Hall transport

terms on-shell lead to an exactly conserved entropy current (from the adibaticity equation)

was the reason that [39] found in the current algebra approach no constraint on them from

the second law. Since the tensor structures vanish in hydrostatics, we have no information

on these terms from the equilibrium partition function either.

Berry terms in neutral fluids: Our second example for Class B constitutive relations is

perhaps in the simplest hydrodynamic system imaginable, a neutral fluid! While there is no

adiabatic transport at first order, we have seen that there are adiabatic parts to each of the

15 transport coe�cients of a neutral fluid, cf. Appendix D. Amongst these lurks a term of the

form (10.2). Since �

B
gµµ = 2r(µ�⌫) can be written using (6.11) in terms of the shear etc.,

and is clearly a first order term, we pick for the tensor ⌘̃µ⌫↵� another first order contribution.

The symmetries we require fix this tensor uniquely to be

⌘̃

µ⌫↵� = 2�� �
µ⌫

P

↵� + 2�! !

µ↵
P

⌫� (10.6)
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Using the decomposition of the gradient of �µ we can express the stress tensor in a simple

form:

(Tµ⌫)B = ���

�

⇥�
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2
P

µ⌫
�� �! (!µ↵

�

⌫
↵ + !

⌫↵
�

µ
↵) (10.7)

Let us compare this with the parametrization of the second order Landau frame stress tensor

given in (D.11). Using two simple identities

�0⇥�µ⌫ + ⇠2 Pµ⌫ �
2 =

�0 + ⇠2

2

�

⇥�µ⌫ + Pµ⌫ �
2
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+
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�
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�
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we identify the two coe�cients �� and �! as determining linear combinations of the transport

coe�cients, viz.,

�� =
⇠2 � �0

2
, �2 = 2�! (10.9)

The fact that the two tensor structures appearing in (10.7) are non-dissipative was in fact

was noticed in the analysis of [19], but again it was not appreciated then that these were part

of a larger set of adiabatic transport data in hydrodynamics.

10.1.2 Embedding Class B in Class L?

Given a couple of examples at our disposal let us take stock of whether we can identify a

way to embed Class B into Class L. Each of our two examples has been explored in the

non-dissipative e↵ective action framework, so we can make some informed statements about

whether or not this is possible. Since the details seem to be a-priori distinct in the two cases

we will address them in turn.

Hall transport: The analysis of [21] building on earlier work of [20] and [19] argued that

there is no local e↵ective action that captures Hall viscosity. Furthermore, it was found in

that construction that the Hall conductivity was not an independent transport coe�cient,

but rather a linear combination of it and the coe�cient �̃E introduced in [39] was fixed by

the e↵ective action. More specifically, the tensor structures involved are the ones displayed

in (10.5) and a parity odd contribution to the current of the form �̃E "

µ⇢⌫
u⇢E

⌫ . We find a

very similar relation in the Class L construction outlined in §6.2.
A-priori, given that the Hall conductivity term is adiabatic, any value of its coe�cient

is acceptable. As we have discussed it is also undetermined by hydrostatic equilibrium since

it fails to survive the limit. So it is in fact somewhat curious that the Class L theory fixes

its value in terms of of a transport coe�cient which is constrained to be hydrostatic; �̃E is a

thermodynamic response parameter [21, 39].

Returning to Hall viscosity [21] showed that with local e↵ective actions there is no way to

capture such transport; and we have verified this to be case in Class L. However, more recently

[22] have argued that a suitable non-local term allows one to at least obtain non-vanishing

Hall viscosity. The construction involved...
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✦ The entropy current is canonical (given just by projections of energy-
momentum and charge currents)

complete the map above have the appropriate symmetries, then it is plausible that upon fur-

ther contraction with �

B
gµ⌫ or �

B
Aµ we ensure that the divergence of the free energy current

vanishes. Ṫhis means that we can solve the adiabaticity equation with the no free energy

current; the conserved currents themselves conspire to ensure lack of dissipation.

Inspired by the above argument, consider the following constitutive relations:52
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(9.2) eq:TJBerry

where {N µ⌫↵�
,X µ⌫↵

,S↵�} are arbitrary tensors (modulo field redefinitions). Here (↵�) in-

dicates the projection to the symmetric part whereas [↵�] indicates the projection to the

anti-symmetric part as usual.

Substituting the above constitutive relations into the adiabaticity equation in the grand

canonical ensemble, we get

1

2
(Tµ⌫)B �

B
gµ⌫ + (J↵)B · �

B
A↵

= �1

8

⇣

N (µ⌫)(↵�) �N (↵�)(µ⌫)
⌘

�

B
gµ⌫�Bg↵�

+
1

2
X (µ⌫)↵ · (�

B
gµ⌫ �

B
A↵ � �

B
A↵ �

B
gµ⌫)� �

B
A↵ · S [↵�] · �

B
A�

= 0

(9.3)

we see that we solve the adiabaticity equation (9.1) if we simply take (G�)B = 0.

In the micro-canonical ensemble, this is equivalent to taking the entropy current to have

a purely canonical contribution, viz.,

(J↵
S )B ⌘ ���(T

↵�)B �
⇣

⇤� + ��
A�

⌘

· (J↵)B

=
1

T

(

1

4

⇣

N (↵�)(µ⌫) �N (µ⌫)(↵�)
⌘

u� +
1

2
µ · X (µ⌫)↵

)

�

B
gµ⌫

� 1

T

(

X (↵�)⌫
u� � µ · S [↵⌫]

)

· �
B
A⌫

(9.4) eq:JSBerry

Thus, equations (9.2) and (9.4) give a large set of adiabatic constitutive relations. The set of

constitutive relations parameterized by (2.2) is what we term to be Class B.

Before we proceed further with our analysis, let us pause to motivate our terminology.

The tensors which multiply �

B
gµ⌫ and �

B
Aµ are antisymmetric for the most part (the only

symmetric tensor is the compensator X which mixes the two sources). Such antisymmetric

52 The conflation of the notation with the tensor structures used for describing Class D constitutive relations

in §5.3 is intentional. It will allow us later to talk about a single tensor structure whose symmetric part

contributes to Class D and antisymmetric part to Class B.
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Class C: Conserved entropy

✦  AE can be solved by considering an exactly conserved entropy current. 

✦  Currents must be cohomologically non-trivial (non-Komar terms) for them to 
be physically interesting. 

✦  Eg., Wen-Zee current in 3 spacetime dimensions (more generally Euler 
currents in odd spacetime dimensions.

✦  These currents count the degeneracy of topological states in the thermal 
density matrix and can be realized holographically (eg., Gauss-Bonnet 
contribution to black hole entropy in ABJM like theories).

to (2.11) we can simply set

(Jµ
S )C = Jµ , (Tµ⌫)C = 0 , (Jµ)C = 0 (10.1)

and achieve this desired outcome! As long as we have conserved vector fields Jµ [ ] we have

achieved a trivial adiabatic constitutive relation.

For reasons described earlier, not all conserved vector fields Jµ or equivalently the dual

current (d � 1)-form j are physically interesting. A trivial class of conserved currents can

be obtained by taking Jµ = r⌫ X[µ⌫] for some antisymmetric tensor Xµ⌫ ; in other words

the entropy current (d � 1) form is exact ?j = d(?x) =) d(? j) = 0. As in any physical

application, we are interested in cohomologically non-trivial conserved currents. These are

similar to the Komar terms encountered in Class L which are uninteresting as long as there

are no boundaries. We shall later see that in the extended Lagrangian theory these will

correspond to total derivative boundary terms. We will henceforth quotient the space of

conserved currents by such exactly conserved currents and Class C will refer to the space of

non-trivial elements of the cohomology.

Since here we have no energy-momentum or charge transport, but solely entropy flux

along the chosen vector field, one has a macroscopic manifestation of entropy without any

physical e↵ect. While one might a-priori think that even non-trivial elements of the coho-

mology, i.e., non-exact (d� 1)-current forms are uninteresting, there are certain choices of Jµ

which are worth exploring closely.

To do so, let us consider some examples, starting as usual with parity-even charged fluids.

For vectors built out of  and their gradients, it is clear that there is no conserved vector

at first order in gradients; the three parity-even vectors aµ, ⇥u

µ and vµ are generically non-

conserved. At higher orders it is possible to find conserved vectors, but most of these are

exact di↵erentials of the form r⌫ X[µ⌫]. For instance, we have five such vectors at second

order in gradients, since we have a plethora of first order antisymmetric tensors [15],

Xµ⌫ 2 {u[µ a⌫],!µ⌫
, u

[µ v⌫], u[µr⌫]
⇣

µ

T

⌘

, P

µ↵
P

⌫�
F↵�} , (10.2) eq:trivC

which give an exactly conserved entropy current at second order. These we discard for being

trivial cohomological elements.

One however has a non-trivial conserved current in odd spacetime dimensions owing to

topological considerations. The simplest example is in three dimensional parity-even neutral

fluids where, inspired by Wen-Zee shift current [37] which appears in Hall transport, we have

the following second order conserved vector:

J�
Euler

=
1

2
cEuler "

�↵�
"

µ⌫�
uµ

✓

r↵u⌫r�u� � 1

2
R⌫�↵�

◆

, (10.3) eq:wz3

where R↵��� is the Riemann tensor and cEuler is an arbitrary constant. The nomenclature is

motivated by the fact that the conserved topological charge associated with this current is

the Euler characteristic of the codimension-one spatial slice normal to u

µ [39]. It is easy to
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Class Hv: Gibbsian vectors

✦  Just as hydrostatic vectors entered into parameterization of the free energy 
current, there are non-trivial hydrodynamic vectors which lead to adiabatic 
constitutive relations. 

✦ These are parameterized by tensor valued differential operators

hydrostatic equilibrium (should they not do so, we would be able to include them in our

discussion of Class HV ).

The simplest way to motivate the construction, it is convenient to start with the non-

anomalous adiabaticity equation in the grand canonical ensemble which we derived in (2.20)

which was quoted in (9.1) in the Class B discussion of §9.
The r.h.s. of (9.1) involves at least one factor of �

B
gµ⌫ or �BAµ, which vanish in hydrostat-

ics since �
K
gµ⌫ = �

K
Aµ = 0. In other words, if we take the hydrostatic configurations o↵-shell

by unlinking B 6= K then the Gibbs free energy flux is produced at O(�
B
). The statement

of hydrostatic principle is simply at the this order we have compensating energy-momentum

and charge flow to ensure adiabaticity.

However, now consider the situation where the Gibbs free energy flux is itself quadratic in

departures from equilibrium, i.e., G� ⇠ O �

�

2
B

�

. This would be invisible from an hydrostatic

analysis. Taking divergence of such a term we should expect then that the r.h.s. of (9.1)

would have contributions at O �

�

2
B

�

(when the derivative hits the tensor structure multiplying

the �
B
terms), as well as terms which behave as �

B
Dµ�B . Since the r.h.s. itself involves one �B

insertion, it follows that the terms of interest should have the currents containing combinations

of �
B
and D�

B
terms.

This simple reasoning then leads to the following ansatz for the energy-momentum and

charge currents:

(Tµ⌫)HV
⌘ 1

2

h

D⇢C
⇢(µ⌫)(↵�)
N �

B
g↵� + 2 C

⇢(µ⌫)(↵�)
N D⇢�Bg↵�

i

+D⇢C
⇢(µ⌫)↵
X · �

B
A↵ + 2 C

⇢(µ⌫)↵
X · D⇢�BA↵

(J↵)HV
⌘ 1

2

h

D⇢C
⇢(µ⌫)↵
X �

B
gµ⌫ + 2 C

⇢(µ⌫)↵
X D⇢�Bgµ⌫

i

+D⇢C
⇢(↵�)
S · �

B
A� + 2 C

⇢(↵�)
S · D⇢�BA�

(11.2) eq:TJVec

where C⇢(µ⌫)(↵�)
N = C

⇢(↵�)(µ⌫)
N . These tensor fields are local functions of  and their gradients.

This solves adiabaticty equation with the free energy current

(N⇢)HV
⌘ �

✓G⇢

T

◆

HV

=
1

4
�

B
gµ⌫C

⇢(µ⌫)(↵�)
N �

B
g↵� + �

B
gµ⌫C

⇢(µ⌫)↵
X · �

B
A↵ + �

B
A↵ · C⇢(↵�)

S · �
B
A�

(11.3) eq:GVec

As should be clear from the construction, the tensors {CN ,CX ,CS} are a-priori completely

arbitrary with the indicated symmetry structure (modulo field redefinitions – see below).

The solution to (9.1) characterized by the constitutive relations (11.2) and the free energy

current (11.3) is the Class HV of Gibbsian vectors. The astute reader might wonder why we

choose to call this class HV as opposed to GV to indicate the Gibbsian structure employed in

the construction. Our choice will be rationalized when we argue that these non-hydrostatic

vectors can be obtained from a generalized Lagrangian density (with enhanced symmetry) in

§15.
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✦ No explicit data on such transport, but they do appear in charged fluids at 
second order in gradients.



Class L = HS ∪ HS

✦ Consider diffeomorphism and gauge invariant scalar Lagrangian densities 
which are functionals of hydrodynamic fields

will work in d spacetime dimensions and will assume that the hydrodynamic fields {uµ, T, µ}
as well as the background sources {gµ⌫ , Aµ} are slowly varying on this spacetime manifold

throughout our discussion.

While we could choose to work with the hydrodynamic fields defined above it is in fact

convenient to repackage them into an unnormalized vector field and a scalar field. By a simple

redefinition we therefore introduce a the hydrodynamic fields (denoted collectively by B)

B ⌘ {�,⇤�} , �µ ⌘ u

µ

T

, ⇤� ⌘ µ

T

� u

�

T

A� . (2.1)

The fields {�µ
,⇤�} encodes the same hydrodynamic data as the fields {u⌫ , T, µ}. We can

explicitly invert the above relations to get

u

µ =
�µ

p

�g↵��↵��
, T =

1
p

�g↵��↵��
, µ =

⇤� + ��
A�

p

�g↵��↵��
. (2.2)

Thus for the rest of the discussion, the dynamical content of hydrodynamics is d+ 1 degrees

of freedom in the vector field �µ and scalar field ⇤�.

A general hydrodynamic system as reviewed in §1 is characterized by a set of currents: we

have the energy-momentum tensor Tµ⌫ and a charge current Jµ which should be considered

dynamical and an entropy current J

µ
S which enforces the constraint of the second law. In

addition to these currents we can consider the free energy current Gµ which is a particular

linear combination of the above, which we will encounter shortly, cf. (2.15). To simplify nota-

tion, we will collect the various currents we have introduced into a single set by introducing

a collection of tensor fields CH (dropping the indices for brevity)

CH ⌘ {Tµ⌫
, J

µ
, J

µ
S , Gµ} . (2.3)

These currents should all be thought of as given by local covariant functionals of the

background and hydrodynamical fields which we also collectively denote as  

 ⌘ {gµ⌫ , Aµ,�
µ
,⇤�} . (2.4)

Then we can write for our currents CH = CH [ ] or more explicitly for the fundamental

currents we have

T

µ⌫ = T

µ⌫ [ ] = T

µ⌫ [g↵� , A↵,�
↵
,⇤�]

J

µ = J

µ [ ] = J

µ [g↵� , A↵,�
↵
,⇤�]

J

µ
S = J

µ
S [ ] = J

µ
S [g↵� , A↵,�

↵
,⇤�] .

(2.5)

These relations are termed constitutive relations.

The dynamical information of hydrodynamics comprises simply of the statement of con-

servation modulo source terms (which do work on the system) and anomalies. In general

we can write the conservation equations for a microscopic quantum theory with flavour and

Lorentz anomalies in the presence of background sources as:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +Tµ?

H D⌫J
⌫ = J?H (2.6)
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Constitutive relations in Class L are parametrized by a Lagrangian density L [gµ⌫ , Aµ,�µ
,⇤�]

which we will assume to be a local scalar functional of its arguments, i.e., under gauge trans-

formations and di↵eomorphisms L transforms like a scalar field. Intuitively, L can be thought

of as some sort of a generalized pressure functional for the adiabatic fluid.14 We may write

Shydro =

ˆ
d

d
x

p�g L [ ] . (4.1)

Consider now a variation of this Lagrangian functional which, after su�cient number of

integration by parts, can be brought to the form

1p�g

�

�p�g L��rµ(/�⇥PS)
µ

=
1

2
T

µ⌫
�gµ⌫ + J

µ · �Aµ + T V� ��� + T ⇣ · (�⇤� +A� ��
�)

(4.2)

Here (/�⇥PS)
µ denotes the surface terms generated due to integration by parts and is related

to the pre-symplectic potential. The symbol /� denotes that it is linear in variations of fields.

The variation of the Lagrangian makes it easy to obtain the currents CH. For instance

we read o↵ {Tµ⌫
, J

µ} from the above variation and take J

µ
S = s u

µ with

s ⌘
✓

1p�g

�

�T

ˆ p�g L [ ]

◆

�

�

�

�

{u� , µ, g↵� , A↵}=fixed
(4.3)

Here �
�T is the variational (i.e., Euler-Lagrange) derivative. The free energy current can be

obtained using (2.15).

So far V� and ⇣ which multiply variations of the hydrodynamic fields are simply defined

by the above variational principle; they will have a role to play in the sequel. Sometimes it

is convenient to rewrite this expression in terms of {V�, ⇣}. Note that

T V� ��
� + T ⇣ · (�⇤� +A���

�) = (V� + ⇣ ·A�) �u
� + ⇣ · � (µ� u

�
A�)

� [V� �
� + ⇣ · (⇤� +A��

�)] �T

(4.4)

which in turn implies that

s = � [V� �
� + ⇣ · (⇤� +A��

�)] = � 1

T

[V�u
� + ⇣ · µ]

=) T s+ µ · ⇣ + u

�
V� = 0 .

(4.5)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {u�, T, µ} in terms of variations of {�µ
,⇤�} and vice versa. This can readily

be done by using the defining equation (2.1) and explicit expressions can be found in (C.1)

for convenience.
14We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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✦ The basic variational principle of this theory defines currents:
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✦ Entropy density is defined as in thermodynamics
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=) T s+ µ · ⇣ + u

�
V� = 0 .

(4.5)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {u�, T, µ} in terms of variations of {�µ
,⇤�} and vice versa. This can readily

be done by using the defining equation (2.1) and explicit expressions can be found in (C.1)

for convenience.
14We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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Class L adiabaticity

Now diffeomorphism and flavour gauge symmetries of the Lagrangian imply 
a set of Bianchi identities:

Since L is a scalar under the background di↵eomorphism and gauge transformation, the

integral on the l.h.s. has to vanish, �
X

´ p�g L = 0, up to boundary terms. This immediately

implies for arbitrary {⇠µ,⇤} one has the di↵eomorphism and gauge Bianchi identities:

r⌫T
µ⌫ = J⌫ · Fµ⌫ +

g

µ⌫

p�g

�

B

�p�g TV⌫

�

+ g

µ⌫
T ⇣ · �

B
A⌫

D�J
� =

1p�g

�

B

�p�g T ⇣

�

(4.10)

These are the Bianchi identities we are after and per se they hold o↵-shell. If we think of

{Tµ⌫ , Jµ, Vµ, ⇣} as functionals of  , then these identities hold identically for arbitrary choice

of the latter fields.

We can supplement (4.10) with another identity which follows from our definition of the

entropy current (4.3)

r�J
�
S = r�(T s��) =

1p�g

�

B

�p�g Ts

�

, (4.11)

which is again valid o↵-shell.

We can now easily check that (4.10) and (4.11) together imply the adiabaticity equation

(2.10) in the absence of anomalies, for

rµJ
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=
1p�g
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B

�p�g [T s+ u
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V� + µ · ⇣]�

= 0 (4.12)

where we have used the basic definitions (2.1) and the relation (4.5) derived earlier. We should

emphasize that by virtue of the Bianchi identities (4.10) holding o↵-shell we have demon-

strated that the Lagrangian system defined by L [ ] satisfies the non-anomalous adiabaticity

equation (2.10) o↵-shell. We will postpone a more detailed discussion of the anomalous situ-

ation until §8; su�ce it to say for now that there is a Lagrangian construction that gives a

particular solution to (2.9).

Sometimes it is convenient to write the combinations that occur above in a conventional

hydrodynamic expansion. Upon explicit evaluation one finds

1p�g

�

B

�p�g TV�

�

+ T ⇣ · �
B
A�

= r�(V� u
�) + V� (r� + a�)u

� + s(r� + a�)T � ⇣ · [E� �D�µ� a�µ]

(4.13)
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one ends up with the non-anomalous AE
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Since L is a scalar under the background di↵eomorphism and gauge transformation, the

integral on the l.h.s. has to vanish, �
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particular solution to (2.9).
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Constitutive relations in Class L are parametrized by a Lagrangian density L [gµ⌫ , Aµ,�µ
,⇤�]

which we will assume to be a local scalar functional of its arguments, i.e., under gauge trans-

formations and di↵eomorphisms L transforms like a scalar field. Intuitively, L can be thought

of as some sort of a generalized pressure functional for the adiabatic fluid.14 We may write

Shydro =

ˆ
d

d
x

p�g L [ ] . (4.1)

Consider now a variation of this Lagrangian functional which, after su�cient number of

integration by parts, can be brought to the form

1p�g

�

�p�g L��rµ(/�⇥PS)
µ

=
1

2
T

µ⌫
�gµ⌫ + J

µ · �Aµ + T V� ��� + T ⇣ · (�⇤� +A� ��
�)

(4.2)

Here (/�⇥PS)
µ denotes the surface terms generated due to integration by parts and is related

to the pre-symplectic potential. The symbol /� denotes that it is linear in variations of fields.

The variation of the Lagrangian makes it easy to obtain the currents CH. For instance

we read o↵ {Tµ⌫
, J

µ} from the above variation and take J

µ
S = s u

µ with

s ⌘
✓

1p�g

�

�T

ˆ p�g L [ ]

◆

�

�

�

�

{u� , µ, g↵� , A↵}=fixed
(4.3)

Here �
�T is the variational (i.e., Euler-Lagrange) derivative. The free energy current can be

obtained using (2.15).

So far V� and ⇣ which multiply variations of the hydrodynamic fields are simply defined

by the above variational principle; they will have a role to play in the sequel. Sometimes it

is convenient to rewrite this expression in terms of {V�, ⇣}. Note that

T V� ��
� + T ⇣ · (�⇤� +A���

�) = (V� + ⇣ ·A�) �u
� + ⇣ · � (µ� u

�
A�)

� [V� �
� + ⇣ · (⇤� +A��

�)] �T

(4.4)

which in turn implies that

s = � [V� �
� + ⇣ · (⇤� +A��

�)] = � 1

T

[V�u
� + ⇣ · µ]

=) T s+ µ · ⇣ + u

�
V� = 0 .

(4.5)

In the above and in what follows, we will often want to convert general variations of hydro-

dynamic fields {u�, T, µ} in terms of variations of {�µ
,⇤�} and vice versa. This can readily

be done by using the defining equation (2.1) and explicit expressions can be found in (C.1)

for convenience.
14We will later see that upon restricting to hydrostatic configurations, L reduces to the hydrostatic partition

function WHydrostatic which suggests this intuition.
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Dynamics in Class L

✦ The dynamics in Class L is supposed to reduce to the conservation of 
energy-momentum and charge currents. 

✦  Naive variation with respect to               does not respect this requirement, 
since it would lead to vanishing of the adiabatic heat/charge currents. 

✦ Constrained variational principle: vary the hydrodynamic fields along a 
family related by Lie transport.

and

1p�g

�

B

�p�g T ⇣

�

= D�(⇣ u
�) + [⇣, µ] (4.14)

In the above expressions we encounter the fluid acceleration vector a� and the rest frame

electric field E� = F��u
� introduced earlier.

4.2 Noether Current in Class L

Having seen that Lagrangian systems of hydrodynamics as formulated above satisfy adia-

baticity equation o↵-shell, we now proceed to extract some more basic lessons. Most of these

follow from the basic variational principle and are encoded in the Noether current for the

class L constitutive relations which is related to the free energy current of the system.

We proceed by first deriving the Noether theorem for our Lagrangian system. By substi-

tuting (4.10) into (4.7), we get

rµN
µ[X] =

1

2
T

µ⌫
�

X
gµ⌫ + J

µ · �
X
Aµ + T Vµ �X�

µ + T ⇣ · (�
X
⇤� +Aµ �X�

µ) (4.15)

with Nµ[X] as given in (4.8). The primary content of Noether theorem is that a current Nµ[X]

satisfying the above equation exists.

It is easy to see that every Noether current satisfying (4.15) gives a free energy current

satisfying the adiabaticity equation (2.18) with G?
H

= 0 (for non-anomalous fluids). In par-

ticular, we see that we solve (2.18) by identifying {⇠µ,⇤} = {�µ
,⇤�} (but we will still keep

{gµ⌫ , Aµ} general) and take

G� = �T N�[B] = �T

⇣

�⌫ T
�⌫ + (⇤� + ��

A�) · J� � T ��
h

�⌫
V⌫ + (⇤� + ��

A�) · ⇣
i⌘

G?
H
= 0 . (4.16)

Thus we see that the free energy current coincides (up to a factor of T ) with the Noether

current (or the non-canonical part of the entropy current) N�[B], cf. (2.15).

The corresponding entropy current is also easily constructed: we remind the reader that

the non-canonical part of the entropy current is �G�
/T = N�[B] so that the total entropy

current is given by

J

�
S = N�[B]� �� T

�� � (⇤� + ��
A�) · J�

= N�[B]� u�

T

T

�� � µ

T

· J�
(4.17)

Thus, the choice of free energy/entropy currents is in one to one correspondence with the

choice of the Noether current.

Let us now try to get an alternate expression for Nµ[X] which will be useful later on. We

have from (4.2) and (4.15) the simple identity

rµN
µ[X] =

1p�g

�

X

�p�g L��rµ(/�X⇥PS)
µ

= rµ

⇥

⇠

µL� (/�X⇥PS)
µ
⇤

(4.18)
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✦ This variation leads to equations of motion which when combined with the 
Bianchi identities leads to conservation

turn led to the adiabaticity equation. In particular, we have been treating the hydrodynamic

fields {�µ
,⇤�} as non-dynamical fields thus working o↵-shell as far as the hydrodynamic

fields are concerned. The only exception is the hydrostatic limit studied in §4.3, where we

went on-shell by simply setting {�µ
,⇤�} = {Kµ

,⇤K} and invoking the hydrostatic principle.

This is clearly unsatisfactory; the utility of a Lagrangian is that it not only allows us to

construct on o↵-shell action, but that it also comes equipped with a variational principle that

captures the on-shell dynamics by giving us the equations of motion. We will now proceed to

address this lacunae and give a variational procedure to go on-shell. Our goal is to simply to

give the hydrodynamic fields {�µ
,⇤�} appropriate dynamics which enforces the conservation

equations in (2.6) (with T

µ?
H = J

?
H = 0 in the absence of anomalies).

5.1 A constrained variational principle for hydrodynamics

Let us go back to the derivation of the Bianchi type identities in §4.1. Inspection of (4.10)

which is obeyed by all class L constitutive relations suggests that on-shell equations of hy-

drodynamics (2.6) would be satisfied (with anomaly terms set to zero) if the fields {�µ
,⇤�}

obeyed the following dynamical on-shell equations:

1p�g

�

B

�p�g T Vµ

�

+ T ⇣ · �
B
Aµ ' 0

1p�g

�

B

�p�g T ⇣

� ' 0
(5.1)

These equations have to arise for consistency of our formalism as the dynamical equations

of motion obtained by varying the fields {�µ
,⇤�}. It is clear a-priori that this is not going

to happen naturally; the basic variational equation (4.2) if interpreted naively would lead to

V� + ⇣ · A� = 0 and ⇣ = 0 (assuming T 6= 0), which is certainly not what we would like to

have. The key point we have to understand is the following: given that the dynamical degrees

of freedom comprise of a vector �µ and a scalar ⇤�, we have to decide what variations of

these fields to admit as being physical. Our argument above shows that an unconstrained

variation of these fields is inconsistent with the dynamics we seek, so the question is whether

a suitable constrained variational principle exists.

We would like to claim now that such a constrained variation of {�µ
,⇤�} exists and it

naturally leads to the correct hydrodynamic Ward identities upon using the Bianchi identities

(4.10). To see how the desired equations can be obtained from a variational principle, consider

the following: Fix the metric and gauge field and extremize
´ p�g L among a family of

B = {�µ
,⇤�} which are related to each other via Lie transport. We will denote this class of

variations by to distinguish it from the variation we have considered hitherto without the

Lie transport constraint. To wit, given an arbitrary X = {⇠µ,⇤} we define this constrained

variation as:

: �µ = �

X
�µ

, ⇤� = �

X
⇤� , gµ⌫ = Aµ = 0 . (5.2)
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the adiabaticity equation is linear in the constitutive relations and relates terms of the same

derivative order in the constitutive relations. This means that we can treat anomalous terms

in (2.9) as “inhomogeneous source terms”. These can be removed by picking a suitable partic-

ular solution of adiabaticity equation. As a result we will assume that such anomalous terms

have been appropriately dealt with and focus on the non-anomalous adiabaticity equation by

setting them to zero, i.e., work with the homogeneous equation (2.10) up until §8.

2.2 Physical interpretation of adiabatic fluids

Let us physically understand the nature of the fluid systems that satisfy (2.9). The adjec-

tive ‘adiabatic’ refers to the following fact: say we restrict ourselves to fluid configurations

{�↵
,⇤�} which satisfy the hydrodynamic equations of motion (2.6) which we re-characterize

for the present discussion as

r⌫T
µ⌫ ' J⌫ · Fµ⌫ +Tµ?

H

D⌫J
⌫ ' J?H

(2.11)

with the symbol ' refers to the fact that these equations hold only in this restricted class (i.e.,

on-shell). We can then assign a conserved entropy current to this restricted class of fluid con-

figurations, i.e., rµJ
µ
S ' 0. Thus, the constitutive relations which solve adiabaticity equation

describe entropy-conserving (i.e., adiabatic) transport once hydrodynamic equations are im-

posed. In this sense the adiabatic fluids are on-shell equivalent to the class of non-dissipative

fluids as defined in [19]. One way to interpret the adiabaticity equation is that we have taken

entropy conservation o↵-shell using the hydrodynamic fields as Lagrange multipliers to supply

suitable combination of equations of motion along the lines espoused in [26].

However, the adiabaticity equation is actually a stronger assertion than just entropy

conservation. Say, instead of taking hydrodynamics on-shell via (2.11), we impose

r⌫T
µ⌫ ' J⌫ · Fµ⌫ +Tµ?

H + f

µ
ext

D⌫J
⌫ ' J?H +Qext

(2.12)

where f

µ
ext is the force per unit volume due to an external system and Qext is the charge

injected per unit time per unit volume by the external system. Let assume that this injection

of energy-momentum and charge happens adiabatically and the entropy injected into the

fluid is r.JS ' Sext. The adiabaticity equation is the statement that all these cannot be

together true for arbitrary {fµ
ext, Qext, Sext}. In fact this transfer can be adiabatic if and

only if TSext + u⌫f
⌫
ext + µ · Qext ' 0, i.e., if and only external system satisfies adiabaticity

equation. Thus, any two systems which satisfy adiabaticity equation can be combined to a

bigger system which satisfies adiabaticity equation.

Thus the adiabaticity hypothesis brings in a sense of linearity into hydrodynamics, much

like the superposition principle of quantum mechanics. This allows us to focus the discussion

on isolated systems, with the potential downside that we do not have access to the dissipative

part of hydrodynamics.
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The main motivation for considering adiabatic hydrodynamics is the observation that

non-dissipative parts of many actual hydrodynamic theories coincide with what one finds in

adiabatic hydrodynamics. Not all solutions of adiabaticity equation are physically admissible,

e.g., one might want to impose additional constraints (like Euclidean consistency) and identify

on-shell equivalent or fluid frame-equivalent expressions to eliminate unphysical solutions.

Thus, we generally expect the solutions of adiabaticity equation to furnish a super-set of

physically admissible non-dissipative constitutive relations up to field redefinitions. It is an

open problem in adiabatic hydrodynamics to give a general proof of this super-set property,

but it does seem to hold in various known examples. We will take this as a su�cient motivation

to study adiabatic hydrodynamics.

2.3 Ideal fluids are adiabatic

Having presented the basic equation of interest, we now turn to asking how one might char-

acterize the solutions to the adiabaticity equation. After all we are interested in using these

as the first step in understanding more realistic fluid systems (including dissipation). To this

end we need to show that we have a non-empty solution set to (2.9).

It is now natural to study the non-anomalous adiabatic constitutive relations order by

order in derivative expansion. Let us illustrate how this works in zeroth order in derivative

expansion. The most general constitutive relation with zero derivatives of the hydrodynamic

data is

J

µ
S = s u

µ
, T

µ⌫ = ✏u

µ
u

⌫ + pP

µ⌫
, J

µ = ⇢u

µ
.

(2.13)

where the entropy density s, energy density ✏, pressure p and charge density ⇢ are scalar

functions of T and µ. The tensor Pµ⌫ = gµ⌫+uµ u⌫ is the projector transverse to the velocity.

We have reverted to {uµ, T, µ} so as to write the constitutive relations in their familiar form.

The adiabaticity condition (2.10) can then be written quite simply as

(T u

↵
D↵s+ µ · u↵D↵⇢� u

↵
D↵✏) + (T s+ µ · ⇢� ✏� p)⇥ = 0 (2.14)

where ⇥ ⌘ rµu
µ is the fluid expansion. If we insist that this hold for an arbitrary fluid

configuration, then the combination in each of the parentheses should individually vanish.

This then implies that the fluid should satisfy the first law

�✏ = T �s+ µ · �⇢
and the Gibbs-Duhem relation

✏+ p = T s+ µ · ⇢.
Thus, we recover standard constitutive relations describing thermodynamics from the formal-

ism of adiabatic hydrodynamics.

We will soon see that the family of adiabatic fluids is far richer as evidenced by our classi-

fication described in §1. We will introduce the various classes in due course, and concentrate

for the present on structural aspects of the construction. The reader impatient to see some

more examples is invited to consult §6.
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turn led to the adiabaticity equation. In particular, we have been treating the hydrodynamic

fields {�µ
,⇤�} as non-dynamical fields thus working o↵-shell as far as the hydrodynamic

fields are concerned. The only exception is the hydrostatic limit studied in §4.3, where we

went on-shell by simply setting {�µ
,⇤�} = {Kµ

,⇤K} and invoking the hydrostatic principle.

This is clearly unsatisfactory; the utility of a Lagrangian is that it not only allows us to

construct on o↵-shell action, but that it also comes equipped with a variational principle that

captures the on-shell dynamics by giving us the equations of motion. We will now proceed to

address this lacunae and give a variational procedure to go on-shell. Our goal is to simply to

give the hydrodynamic fields {�µ
,⇤�} appropriate dynamics which enforces the conservation

equations in (2.6) (with T

µ?
H = J

?
H = 0 in the absence of anomalies).

5.1 A constrained variational principle for hydrodynamics

Let us go back to the derivation of the Bianchi type identities in §4.1. Inspection of (4.10)

which is obeyed by all class L constitutive relations suggests that on-shell equations of hy-

drodynamics (2.6) would be satisfied (with anomaly terms set to zero) if the fields {�µ
,⇤�}

obeyed the following dynamical on-shell equations:

1p�g

�

B

�p�g T Vµ

�

+ T ⇣ · �
B
Aµ ' 0

1p�g

�

B

�p�g T ⇣

� ' 0
(5.1)

These equations have to arise for consistency of our formalism as the dynamical equations

of motion obtained by varying the fields {�µ
,⇤�}. It is clear a-priori that this is not going

to happen naturally; the basic variational equation (4.2) if interpreted naively would lead to

V� + ⇣ · A� = 0 and ⇣ = 0 (assuming T 6= 0), which is certainly not what we would like to

have. The key point we have to understand is the following: given that the dynamical degrees

of freedom comprise of a vector �µ and a scalar ⇤�, we have to decide what variations of

these fields to admit as being physical. Our argument above shows that an unconstrained

variation of these fields is inconsistent with the dynamics we seek, so the question is whether

a suitable constrained variational principle exists.

We would like to claim now that such a constrained variation of {�µ
,⇤�} exists and it

naturally leads to the correct hydrodynamic Ward identities upon using the Bianchi identities

(4.10). To see how the desired equations can be obtained from a variational principle, consider

the following: Fix the metric and gauge field and extremize
´ p�g L among a family of

B = {�µ
,⇤�} which are related to each other via Lie transport. We will denote this class of

variations by to distinguish it from the variation we have considered hitherto without the

Lie transport constraint. To wit, given an arbitrary X = {⇠µ,⇤} we define this constrained

variation as:

: �µ = �

X
�µ

, ⇤� = �

X
⇤� , gµ⌫ = Aµ = 0 . (5.2)
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Reference fields for Class L

The constrained variational principle can be alternately phrased as fixing a 
reference configuration and varying along the pull-back maps by diffeos and 
gauge transformations.

M

{gµ⌫ , Aµ}{ ab, a}
{', c}

⌘ { a
,⇤ } B ⌘ {�µ

,⇤�}

Figure 1. Illustration of the way various objects are defined. The fields on the physical spacetime
manifold M are related to those on the reference manifold by a pull-back using the dynamical fields
{', c}.

Let us begin by systematically first establishing a reference configuration. It is convenient

to imagine that these reference configurations live on some another spacetime which is

gauge equivalent and di↵eomorphic to the original spacetime. We will use lowercase Latin

alphabets to denote the spacetime indices on to distinguish it from lowercase Greek indices

used for the original spacetime M.

Let ⌘ { a
,⇤ } be the reference hydrodynamic fields living on . The actual {�µ

,⇤�}
are obtained by introducing a di↵eomorphism field '

a(x) and a gauge transformation field

c(x) from physical spacetime M to and then using them to pull-back { a
,⇤ }. In order

to do this, let us introduce the matrices @µ'
a ⌘ @'a

@xµ and its inverse e

µ
a ⌘ @xµ

@'a that can be

used to pull-back tensor indices. For definiteness, let us think of these matrices as functions

of x, viz., living on the actual spacetime M. They satisfy

e

µ
a @⌫'

a = �

µ
⌫ , e

µ
a @µ'

b = �

a
b . (5.5)

With this definition the pull-back of the reference configuration is given by

�µ = e

µ
a(x)

a['(x)]

⇤� = c(x) ⇤ ['(x)] c�1(x) + ��(x) @�c(x) c
�1(x)

(5.6)

Note that ⇤� transforms with the correct inhomogeneous piece so that ⇤� + A� �� trans-

forms covariantly. More precisely, consider a flavor transformation A� 7! g

�1
A� g + g

�1
@�g

and (⇤� +A� ��) 7! g

�1 (⇤� +A���) g. It follows from the above expressions that this

corresponds to a left transformation of c given by c 7! g

�1
c with ⇤ kept fixed.

The decomposition given in (5.6) means that changing {'a
, c} takes {�µ

,⇤�} along a

Lie orbit whereas changing the functional form of { a
,⇤ } takes {�µ

,⇤�} from one Lie orbit

to another Lie orbit. So, in order to get the hydrodynamic equations, we should extremize´ p�g L [ ] with respect to variations of the {'a
, c} fields keeping the functional form of

{ a
,⇤ } fixed. See Fig. 1 for an illustration of the situation.
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{', c}.
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M

x

µ

{gµ⌫ , Aµ}

B ⌘ {�µ
,⇤�}

{'a
, c}

a = '

a(x)

{gab, a}

⌘ {�a
,⇤�}

Fig. 3: Illustration of the connection between the physical and reference fields for Class L adiabatic fluids.
The fields on the physical spacetime manifold M are related to those on the reference manifold

by a pull-back using the dynamical fields {'a
, c}. The constrained variation on M which gives

the correct equations of motion corresponds to varying {'a
, c} while holding {�a

,⇤�} fixed. fig:ManifoldSketch

space of constrained variations to derive dynamics. It is somewhat more satisfactory to shift

to a description where these constraints are automatically implemented by an action, rather

than being imposed by hand.

To do this, we need to decompose the variations of {�µ
,⇤�} into those allowed by the

constraint, and those in the orthogonal space of variations (which are forbidden by the con-

straint). The former lie in the Lie orbit of an admissible configuration. We can exploit this

characterization in decomposing the degrees of freedom into the truly dynamical ones and

the ones held rigid under the variation. To ascertain the physical space of variations, we pick

a reference configuration {�µ
,⇤�} in each Lie orbit and then express the actual {�µ

,⇤�} by

Lie dragging this reference configuration by a gauge transformation and di↵eomorphism. We

thus seek to decompose the hydrodynamic fields into

(i). A heavy component which is the reference configuration that one does not vary when

extremizing (denoted by the blackboard bold font characters).

(ii). A light component which is given by the Lie drag modes that one varies when extrem-

izing.

We begin by systematically first establishing a reference configuration. It is convenient

to imagine that these reference configurations live on some other spacetime which is gauge

equivalent and di↵eomorphic to the original spacetime. We will use the lowercase Latin

alphabet to denote the spacetime indices on to distinguish them from lowercase Greek

indices used for the original spacetime M.

Let x

µ be coordinates on M and a be coordinates on . ⌘ {�a
,⇤�} be the refer-

ence hydrodynamic fields living on . The actual {�µ
,⇤�} are obtained by introducing a

di↵eomorphism field '

a(x) and a gauge transformation field c(x) from physical spacetime M

– 56 –



Eightfold effective action?

✦ We have distilled the essence of the second law and have our benchmarks.  

✦ Prognosis for an effective action respecting this classification scheme? 

✦ With a single set of hydrodynamic dof we do rather poorly (2/8).

✴  Class C: conserved entropy ? 

✴Class D: dissipative class ???

✴  Class A: anomalous transport   ⍻ 

✴  Class B: Berry-like transport    ⍻

✴  Class HS: Hydrostatic scalars ✔️ 

✴  Class HS: Landau-Ginzburg scalars ✔️

✴  Class HV: Hydrostatic  vectors ? 

✴  Class HV: Gibbsian vectors ?

B: Nicolis, Son ’11;  Haehl, MR ’13; Geracie, Son ‘14 

A: Dubovsky, Nicolis, Hui ’12;  Haehl, Loganayagam, MR ’13



Symmetry from the eightfold way

✦ The eightfold classification includes constitutive relations which do not 
admit a simple Lagrangian description (6/8 classes).  

✦ However, there exists a framework which has an enhanced symmetry and 
captures all of the adiabatic transport in a single Lagrangian density. (for the 
7 classes).

• the background sources

• the fluid fields

• partners for the sources

• KMS gauge field

We have in addition an associated holonomy field ⇤(T)

� and a U(1)T chemical potential ⇤(T)

� +

�µA(T)
µ.

The di↵eomorphism and flavor transformations on the fields in an obvious manner. On

the contrary U(1)T acts nonlinearly and mixes with flavor and di↵eomorphism transforma-

tions:

• On all fields, U(1)T acts as a longitudinal di↵eomorphism and flavor gauge transforma-

tion along {�µ
,⇤�}.

• In addition, on {g̃µ⌫ , Ãµ}, there is a further shift by {�
B
gµ⌫ , �BAµ}.

• The field A(T)
µ transforms as a connection for U(1)T and ⇤(T)

� acts like a gauge transfor-

mation parameter, viz., ⇤(T)

� + ��A(T)
� is invariant.

It is worth noting that from a Schwinger-Keldysh point of view, these transformation rules

are not the most natural ones. It would have been more natural to retain the abelian part

of the non-diagonal di↵eomorphism and flavour gauge symmetries along B. We anticipate

that the di↵erence is due to the fact that the natural basis of sources chosen here is not the

canonical Schwinger-Keldysh choice. In fact it seems plausible to conjecture that

g

R
µ⌫ = gµ⌫ ,

A

R
µ = Aµ

g

L
µ⌫ = gµ⌫ � g̃µ⌫ � �µ A

(T)
⌫ � �⌫ A

(T)
µ ,

A

L
µ = Aµ � Ãµ � (⇤� + �↵

A↵) A
(T)

µ

(15.1) eq:skLTdef

as the appropriate identifications for the right (R) and left (L) sources respectively. We will

however not flesh this out in great detail, since it (a) appears much cleaner in the formalism

we introduce to write down U(1)T invariant Lagrangians and (b) the connections with the

Schwinger-Keldysh construction are being deferred to a separate publication [31] anyway. For

the present the reader may therefore take our prescription merely as a technical tool to proof

the completeness of our eightfold classification without worrying about the profound physical

consequences.

15.2 The fields and their transformation properties
sec:fieldsLT

Let us start by writing down the extended set of fields and transformation properties based

on the above discussion. We have the following fields which form the building blocks for the

master Lagrangian:

1. the sources {gµ⌫ , Aµ},

2. the fluid fields {�µ
,⇤�},

3. partners for the sources {g̃µ⌫ , Ãµ} which are a symmetric tensor and a vector trans-

forming in the adjoint representation of the flavour symmetry,
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4. an additional U(1)T gauge field A(T)
µ and its holonomy field ⇤(T)

� .

When necessary we will collectively refer to these fields as  T. The symmetries that any

e↵ective Lagrangian needs to preserve are diagonal di↵eomorphisms/flavor gauge transfor-

mations (acting equally on sources and their partners) and in addition the abelian U(1)T
thermal shift symmetry (which we claim enforces consistency of Feynman-Vernon terms).

Let us now record the transformation rules for the fields  T. We denote the trans-

formation parameters of di↵eomorphism, flavor, and U(1)T transformations by {⇠,⇤,⇤(T)}
respectively. In terms of these independent parameters, U(1)T has a twisted action on the

various fields. This is because fields transform non-linearly under it and part of the U(1)T
transformation involves di↵eomorphisms and flavour gauge transformations. We will deal

with the non-trivial mixing between di↵eomorphism and flavor transformations on the one

hand and U(1)T on the other hand using the following trick: instead of using the origi-

nal transformation parameters, we will move to a new basis of transformation parameters

{⇠̄µ, ⇤̄, ⇤̄(T)} which generate combinations of the original transformations which do not mix

with each other. The original transformation parameters are related to these via

⇠

µ ⌘ ⇠̄

µ � (⇤̄(T) + ⇠̄

� A(T)
�)�

µ
, ⇠̄

µ ⌘ ⇠

µ + (⇤(T) + ⇠

� A(T)
�)�

µ
, (15.2a)

⇤ ⌘ ⇤̄� (⇤̄(T) + ⇠̄

� A(T)
�)⇤� , ⇤̄ ⌘ ⇤+ (⇤(T) + ⇠

� A(T)
�)⇤� , (15.2b)

⇤(T) ⌘ ⇤̄(T) + (⇤̄(T) + ⇠̄

� A(T)
�)�

⌫ A(T)
⌫ , ⇤̄(T) ⌘ ⇤(T) � (⇤(T) + ⇠

� A(T)
�)�

⌫ A(T)
⌫ . (15.2c)

We have given the translation between the two sets of gauge transformation parameters

{⇠µ,⇤,⇤(T)} and {⇠̄µ, ⇤̄, ⇤̄(T)} in both forward and reverse directions to facilitate translation

between them in the future. A useful relation in converting between these parameters is

⇤(T) + ⇠

� A(T)
� = ⇤̄(T) + ⇠̄

� A(T)
� .

The transformation rules: Armed with this we are now in a position to write down the

explicit transformations of various fields which takes a simple form in terms of the untwisted

transformation parameters {⇠̄µ, ⇤̄, ⇤̄(T)}:77

�

X
gµ⌫ ⌘ £⇠̄gµ⌫ = Dµ⇠̄⌫ +D⌫ ⇠̄µ ,

�

X
Aµ ⌘ £⇠̄Aµ + [Aµ, ⇤̄] + @µ⇤̄ = Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ ⇠̄

⌫
F⌫µ ,

�

X
�µ ⌘ £⇠̄�

µ = ⇠̄

⌫
D⌫�

µ � �⌫
D⌫ ⇠̄

µ
,

�

X
⇤� +A⌫ �X�

⌫ ⌘ ⇠̄

µ
�

B
Aµ � �µ

Dµ

�

⇤̄+ ⇠̄

⌫
A⌫

�

+ [⇤� + ��
A�, ⇤̄+ ⇠̄

⌫
A⌫ ] .

(15.3) eq:TactgA

In terms of the original transformation parameters {⇠µ,⇤,⇤(T)}, these transformations

would mix di↵eomorphism and flavor transformations with U(1)T. The advantage gained

from working with {⇠̄, ⇤̄, ⇤̄(T)} is an untwisting of U(1)T such that {gµ⌫ , Aµ,�µ
,⇤�} are blind

77 We denote the derivative operator which covariantly transforms under di↵eomorphisms, flavour gauge,

and U(1)T transformations by Dµ in what follows. It is defined by appropriately extending (2.8) to incorporate

U(1)T transformations as well.
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Schwinger-Keldysh like

U(1)T invariant ensures 
adiabaticity



The Eightfold Lagrangian

✦ The adiabatic constitutive relations can be derived in one swoop from a 
Lagrangian density that is invariant under diffeomorphisms, flavour gauge 
transformations and the KMS U(1)T symmetry.

The rest of the argument can be made as mathematically precise as desired.

Fortunately, we are with some assumptions able to complete the analysis and argue that

even Class HV terms are under control, by constructing an e↵ective action for the entire

adiabatic constitutive relations.

thm:classLT Theorem 2. The eightfold classes of adiabatic hydrodynamic transport can be obtained from

a scalar Lagrangian density LT

h

�µ
,⇤�, gµ⌫ , Aµ, g̃µ⌫ , Ãµ,A(T)

µ

i

:

LT =
1

2
T

µ⌫
g̃µ⌫ + J

µ · Ãµ + (J�
S + �⌫T

⌫� + (⇤� + �⌫
A⌫) · J�)A(T)

� (14.10)

As indicated the Lagrangian density depends not only on the hydrodynamic fields and the

background sources, but also the ‘Schwinger-Keldysh’ partners of the sources {g̃µ⌫ , Ãµ} and a

new KMS-flavour gauge field A(T)
µ. This Lagrangian is invariant under di↵eomorphisms and

gauge transformations73 and under U(1)T which acts only on the sources as a thermal di↵eo-

morphism or gauge transformation along B. The U(1)T gauge invariance implies a Bianchi

identity, which is nothing but the adiabaticity equation (2.11). Furthermore, a constrained

variational principle for the fields {�µ
,⇤�} ensures that the dynamics of the theory is simply

given by conservation.

Given the Lagrangian LT we are essentially done, since all we need to do is to show that

by picking appropriate scalar densities in the extended space of fields gives rise to a solution

in one of the aforementioned eight classes. This is relatively straightforward as we shall see

in the next section. What is less apparent at first sight is the rationale for the existence of

the extended set of degrees of freedom and the extra U(1)T symmetry. The reader might

take these as part of our construction for the present, though we believe that the Class LT

story we are about to present hints at some fundamental truisms that ought to be valid in

non-equilibrium dynamics of QFTs. references?

Before presenting the detailed construction of LT in §15, we now illustrate our eightfold

classification for various fluid systems.

14.2 Example: Charged parity even fluids
sec:counting

To exemplify our general story we turn to an example that has been discussed in some detail

in [15], viz., a charged parity-even fluid. Neutral fluids are clearly a subset obtained by

setting the chemical potential and charge density to zero. We will describe first outline the

classification in general and then indicate how to special to Weyl invariant case (which has

the advantage of being able to be tested holographically).

We begin by counting the total number of transport coe�cients: there is one frame

invariant scalar (for definiteness, let us take it to be in P

µ⌫ part of the energy momentum

tensor), one frame invariant transverse vector (for definiteness, let us take it to be in the

73 Anomalies if present are dealt with using the inflow mechanism [54]. LT then includes a topological theory

in d+ 1 dimensions coupled to the physical d-dimensional QFT (at the boundary/edge).
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✦ The U(1)T symmetry ensures that the influence functionals which are allowed 
in the Schwinger-Keldysh construction respect the second law. 

✦ A complete map between the Schwinger-Keldysh construction and the 
picture involving the partner sources and KMS photon is being developed, 
but there is a rather suggestive heuristic….



Wherefrom KMS gauge field?

✦ The non-canonical part of the entropy current is a Noether current.

✦ We claim that this is in fact the Noether current of an Abelian gauge field, 
whose conservation equation is indeed the Adiabaticity equation! 

✦ Empirically, we have determined the U(1)T  transformations of various fields 
and sources and shown that the diffeomorphism + flavour + U(1)T algebra 
closes.

Iyer, Wald ‘94�G�

T
= �� L�

Thus, the choice of free energy/entropy currents is in one to one correspondence with the

choice of the Noether current, consistent with our identification in (6.6).

Let us now try to get an alternate expression for Nµ[X] which will be useful later on. We

have from (6.3) and (6.17) the simple identity

rµN
µ[X] =

1p�g
�
X

�p�g L��rµ(/�X⇥PS)
µ

= rµ

⇥

⇠µL� (/�X⇥PS)
µ
⇤

,

(6.20)

where we have assumed that L transforms as a scalar. This shows that the vector ⇠µL �
(/�X⇥PS)

µ (which is often called the canonical Noether current) has the same divergence as

Nµ[X]. Assuming there are no cohomological obstructions, we can then write

Nµ[X] = ⇠µL� (/�X⇥PS)
µ +r⌫Kµ⌫ [X] , (6.21)

where Kµ⌫ [X] = �K⌫µ[X] is called the Komar charge of the system. We will call this decom-

position of Nµ[X] as Komar decomposition. This gives an alternate expression for free energy

current as

G� = �T N�[B] = �T

✓

��L� (/�B⇥PS)
� +r⌫K�⌫ [B]

◆

, (6.22)

and

Jµ
S = s uµ

= ��⌫T
µ⌫ � (⇤� + ��A�) · Jµ +Nµ[B]

= ��⌫ T
µ⌫ � (⇤� + ��A�) · Jµ + �µL� (/�B⇥PS)

µ +r⌫Kµ⌫ [B] .

(6.23)

Note that the pre-symplectic potential (/�⇥PS)
µ appears in these expressions only through

(/�B⇥PS)
µ. Since �

B
�µ = 0 and �

B
⇤� = 0, this means to get the free energy current or

the entropy current, we need not actually get the contributions to (/�B⇥PS)
µ from varying

{�µ,⇤�}. The contribution to the pre-symplectic potential can be obtained by just varying

{gµ⌫ , Aµ} and then see what we obtain when we integrate by parts.

6.3 Hydrostatic partition function for Class L

Our discussion of the Class L solutions to the adiabaticity equation has so far been uncon-

strained, in that we have only assumed that the currents can be derived from a Lagrangian

L [ ]. We now relate this story to the analysis of §4 where we also derived the currents from

a generating function. In order to ascertain the connection we now specialize to hydrostatics.

Since we have an explicit expression for the free energy current in Class L, we can invoke the

arguments that led to (4.6) to come up with a hydrostatic partition function for theories in

Class L.

We will now argue that Class L provides an o↵-shell generalization for hydrostatics. Note

however, that Class L can at best incorporate Class HS as we are required to write the integral

of a spacetime scalar density for the e↵ective action Shydro.
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✦ Claim: Gauging and Higgsing KMS gauge symmetry with the partner 
sources treated as Goldstone modes should allow incorporation of 
dissipation. Stay tuned…



Haehl, Loganayagam, MR  (wip)

A gravitational heuristic for KMS gauge invariance

background 
sources

partners for 
the sources

KMS photon

Schwinger-Keldysh like construction, with KMS photon ensuring consistency 
with second law (macroscopic manifestation of KMS conditions).



Classification of Weyl invariant fluids

✦ Weyl invariant neutral (and to some extent charged) fluids have been well 
studied from both  

✴  kinetic theory  (weak coupling) 

✴ holography via fluid/gravity (strong coupling)

✦ Given the data at hand we can ask whether this class of hydrodynamic 
systems is cognizant of the adiabatic eightfold way. 

✦ The answer turns out to be in the affirmative indicating that these systems 
are aware of the classification scheme we propose.

York, Moore ‘08

Baier et. al.;  Bhattacharyya et. al., ‘07



Classification of Weyl invariant fluids

Haack, Yarom ‘08

adiabaticity equation (2.12) in Class L for non-anomalous fluids has Jµ
S = s u

µ one may in fact

view the result as naturally being cast in the entropy frame (see also [22, 24]). To compare

the results with the Landau frame presentation, we first switch o↵ the first order terms (since

they carry no physical information). We then project the stress tensor computed by the vari-

ational principle onto the frame invariant tensor and scalar parts. This is a relatively trivial

exercise and one can then read o↵ the coe�cients of the independent tensors used in (F.12).

The projectors in question are given explicitly in (8.14). Carrying out the aforementioned

computation we find the following set of transport coe�cients for a Weyl invariant neutral

fluid [42]45

⌘ = ⇣ = 0 ,

⌧ = � (2 (d� 2) kR + 2 k�) T
d�2

,

 = �2 (d� 2) kR T

d�2
,

�1 = �2 (d� 2) kR T

d�2
,

�2 = 4 k�T
d�2

,

�3 = �2 ((d� 2) kR � 2 k!)T
d�2

.

(8.23) eq:weyltcfs

The scaling with temperature can of course be determined on dimensional grounds. Equiva-

lently, the Weyl covariant stress tensor in Class L is forced to take the form

T

µ⌫
(2),W = ⌧

�

u

↵DW
↵ �

µ⌫ � 2�<µ↵
!

⌫>
↵

�

+ �3 !
<µ↵

!

⌫>
↵

+ 

⇣

C

µ↵⌫�
u↵ u� + �

<µ↵
�

⌫>
↵ + 2�<µ↵

!

⌫>
↵

⌘ (8.24) eq:TWeylNeutral2ClassL

which is written in the basis of (8.22) and can be derived from a second-derivative Lagrangian

density

LW
2 =

1

4



� 2

(d� 2)
(WR) + 2 (� ⌧)�2 + (�3 � )!2

�

. (8.25) eq:weyl2lambda

What is interesting about the result (8.23) is the following: given that there are a-priori three

parameters allowed in our Lagrangian {k�, k!, kR} after exploiting field redefinition freedom,

we expect two relations between the five transport coe�cients. These can be ascertained by

inspection of (8.24) to be the simple linear relations:

�1 =  , �2 = 2 (� ⌧) . (8.26) eq:weylrelns

These relations are actually quite fascinating; we have an infinite class of hydrodynamic con-

stitutive relations for which they hold thanks to the holographic fluid/gravity correspondence,

cf., [34].

45 The first derivation of the transport coe�cients explicitly was in d = 4 by [? ].

– 72 –

4

III. THE ROUTE TO DISSIPATION

Having classified solutions to the adiabaticity equation
let us now turn to the characterization of hydrodynamic
transport including dissipative terms (Class D). We will
do so by first systematically eliminating all of the adia-
batic transport by the following algorithm:

1. Enumerate the total number of transport coe�-
cients, Totk@ , at the k

th order in the derivative ex-
pansion. This can be done by either working in a
preferred fluid frame, or more generally by classify-
ing frame-invariant scalar, vector and tensor data.

2. Find the particular solution to the anomaly induced
transport (if any); this fixes all terms in Class A.

3. Restrict to hydrostatic equilibrium. The (inde-
pendent) non-vanishing scalar fields and transverse
conserved vectors determine HS and HV respec-
tively (after factoring out terms which are related
up to total derivatives), which parameterize the
(Euclidean) partition function [9, 10].

4. Classify the number of tensor structures entering
constitutive relations that survive the hydrostatic
limit. Since they are to be determined from HS and
HV respectively, we should have a number of hy-
drostatic relations HF . In general the hydrostatic
constrained transport coe�cients are given as lin-
ear di↵erential combinations of unconstrained ones.

5. Determine the Class L scalars that vanish in hy-
drostatic equilibrium HS from the list of frame in-
variant scalars after throwing out terms in HS (and
those related by total derivatives).

6. Find all solutions to Class B and HV terms at the
desired order in the gradient expansion by clas-
sifying potential tensor structures {N ,X ,S} and
{CN ,CX ,CS} respectively. We have now solved for
the adiabatic part of hydrodynamics.

7. The remainder of transport is dissipative and con-
tributes to � 6= 0. Class D is subdivided into
two classes: terms constrained by the second law
lie in Class Dv, while those in Class Ds contribute
sub-dominantly to entropy production and are ar-
bitrary. The goal at this stage is to isolate the Dv

terms; fortunately they only show up only at the
leading order in the gradient expansion (k = 1);
for k � 1 all dissipative terms are in Class Ds (cf.,
[3, 4]).

8. Finally, Class Ds can be written in terms of dissi-
pative tensor structures using the same formalism
employed for Class B, except now we pick a di↵er-
ent symmetry structure to ensure � 6= 0.

Steps 1-6 can be implemented straightforwardly in the
U(1)T invariant LT , but we will exemplify this algorithm
by a more pedestrian approach below.

In Table I we provide a classification of transport coef-
ficients for few hydrodynamic systems up to second order
in gradient expansion.

Fluid Type Tot HS HS HF HV A B HV D
Neutral 1@ 2 0 0 0 0 0 0 0 2
Neutral 2@ 15 3 2 5 0 0 2 0 3

Weyl neutral 2@ 5 2 1 0 0 0 1 0 1
Charged 1@ 3 0 0 0 0 0 0 0 3
Charged 2@ 51 7 5 17 0 0 11 2 9

TABLE I. Transport taxonomy for some simple (parity-even)
fluid systems. The fluid type refers to whether we describe
pure energy-momentum transport (neutral) or transport with
a single global symmetry (charged). We have indicated the
derivative order at which we are working by k@.

IV. AN EXAMPLE: WEYL INVARIANT
NEUTRAL FLUID

To illustrate our construction consider a (parity-even)
Weyl invariant neutral fluid which has been studied ex-
tensively in the holographic context [14–16]. Weyl invari-
ance implies that the stress tensor must be traceless and
built out of Weyl covariant tensors. Our classification
suggests the following constitutive relation written in a
basis adapted to the eightfold way:5

T

µ⌫ = p (d uµ
u

⌫ + g

µ⌫)� ⌘ �

µ⌫

+ (�1 � )�<µ↵
�

⌫>
↵ + (�2 + 2 ⌧ � 2) �<µ↵

!

⌫>
↵

+ ⌧

�
u

↵DW
↵ �

µ⌫
� 2�<µ↵

!

⌫>
↵

�
+ �3 !

<µ↵
!

⌫>
↵

+ 

�
C

µ↵⌫�
u↵ u� + �

<µ↵
�

⌫>
↵ + 2�<µ↵

!

⌫>
↵

�
. (8)

To obtain this note that for a neutral fluid there are no
anomalies so A = 0. At first order there is only a Class
D term ⌘ �µ⌫ which contributes to � = ⌘ �

2, leading
to ⌘ � 0 (shear viscosity is non-negative). At second
order we have two hydrostatic scalars !µ⌫ !

⌫µ and W
R;

hence HS = 2 corresponding to �3 and  terms. As
�µ⌫ vanishes in hydrostatics only two tensors survive the
limit; thus there are no constraints, HF = 0. There are
no transverse vectors and so HV = HV = 0. Surprisingly
(�2 + 2 ⌧ � 2) �

<µ↵
!

⌫>
↵ is a Class B term – it can be

obtained from N

[(µ⌫)|(↵�)]
⇠ (�2 + 2 ⌧ � 2) (!µ↵

P

⌫� +
perms.). There is one non-hydrostatic scalar �

2 which
is in HS corresponding to ⌧ term above. This leaves
us with one Class D term which can be inferred to be
(�1�)�<µ↵

�

⌫>
↵ . Its contribution to entropy production

is rµJ
µ
S ⇠ (�1�)�↵⌫�

⌫�
�

↵
� . This being sub-dominant

5 The fluid tensors are defined via the decomposition rµ u⌫ =
�(µ⌫) +![µ⌫] +

1
d�1 ⇥ (gµ⌫ +uµ u⌫)� a⌫ uµ and <> denotes the

symmetric, transverse (to uµ) traceless projection. The Weyl co-
variant derivative [17] (and associated curvatures) preserve ho-
mogeneity under conformal rescaling.

✦ The stress tensor for a conformal holographic fluid can be expressed in the 
eightfold basis as:

HS

D

B

HS

✦ While the shear viscosity takes on the universal value, the second order 
transport satisfies two interesting relations



Holographic fluids

✦ Minimum dissipation conjecture: Holographic fluids not only attain the 
minimum allowed value of shear viscosity, but also ensure that the entropy 
production in any fluid flow is minimized. 

This would correspond to the finite coupling corrections to the strong coupling limit of the

holographic plasma. So far it has been checked that (14.33) holds perturbatively in Gauss-

Bonnet theories to leading order in the higher-derivative coupling [70], though not to next

to leading order [71, 72]. Curiously enough, higher derivative corrections that arise in string

theory (from Type IIB flux compactification on S5) uphold this relation to one additional

order [72] (to O(��3/2) in the strong coupling perturbation expansion for the N = 4 SYM

plasma). However, the original relations as stated in (8.26) are satisfied only to leading order

in the higher derivative correction to gravity. From the adiabatic fluid perspective, (8.26) is

a bit more fundamental since � �1 provides a measure for entropy production.

Viewing these relations as fixing a Class D and Class B term respectively is itself an

interesting statement, independent of the precise values. While any physical fluid would of

course have specific values of transport coe�cients, one generically expects that the second

order Weyl transport is a point in the five-dimensional space of parameters. Having extra

constraints fixing two parameters in terms of the others is an interesting statement which

deserves to be understood better. Moreover, the value chosen for �1 is such that no entropy

is produced. This is rather remarkable hinting that holographic fluids are even more perfect

than hitherto believed to be.

Finally, for completeness let us record the values of {k�, k!, kR} that are suggested by

holography. Translating the results of [65] we have89

kR = � ce↵
d� 2

✓

4⇡

d

◆d�2

,
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d� 2

2
kR ,

k� =
ce↵
2 d
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d
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✓

2

d
� 1

◆

,

(14.34)

where Harmonic(x) = �e +
�0(x)
�(x) is the Harmonic number function (�e is Euler’s constant).

Thus, the fluid-gravity result for second order neutral fluid transport can be determined

explicitly from a Lagrangian density

LW = ce↵

✓

4⇡T

d

◆d

� ce↵

✓

4⇡T

d

◆d�2  WR

(d� 2)
+
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2
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1

d
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2

d
� 1

◆

�2

�

(14.35)

where we have included also the zero derivative pressure term.

It is really amazing that the simple e↵ective action (14.35) captures all the non-trivial

results about the thermodynamics of a strongly coupled plasma along with the non-linear part

of transport. Only the value of the first order Class D term, shear viscosity, is undetermined

and indeed modulo this contribution (which is of course important), holographic plasmas

are e↵ectively adiabatic. Coupled with the low value of shear viscosity [87], it follows that

89 We use ce↵ to denote the e↵ective central charge of the field theory; ce↵ = `AdS
16⇡GN

. For N = 4 SYM in

d = 4 with gauge group SU(N) this is 1
8⇡2 N2.
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✦ Adiabatic Transport coefficients for holographic fluids up to second order in 
the gradient expansion can be derived from a simple effective action:

✦ This formula is derived empirically; it would be great to give a first principles 
derivation from gravitational dynamics.



Status Quo

✓ Classification of hydrodynamic transport. 

✓  Effective action reproducing this classification scheme. 

✴  7 of 8 classes work. 

✓ Correct dynamics: constrained variational principle 

➡  Relation to Schwinger-Keldysh? 

➡  Connections to horizon dynamics?

✦ Hints that we are on the right track provided by existing analyses of 
hydrodynamic transport in holography and kinetic theory.



Summary

✦ There is a complete classification of hydrodynamic transport, at all orders in 
the gradient expansion. 

✦ The key concept that facilitates this analysis is adiabaticity equation, which 
permits an off-shell analysis of the second law constraint. 

✦  Various physical fluid systems that have been independently analyzed are 
cognizant of the adiabatic eightfold classification. 

✦ The classification scheme not simply useful for structure purposes, but more 
pragmatically should  allow simplifications of various computations. 

✦  We see hints of an new symmetry principle that suggests a deep structure 
of non-equilibrium QFTs.



Open Questions

✦ Understand the microscopic origins of KMS flavour invariance. 

✦ Determine the constraints on influence functionals in non-equilibrium 
dynamics arising from this underlying symmetry (expect  it to be Higgsed in 
the non-equilibrium phase).  

✦ Relation to fluctuation-dissipation relations? 

✦  Derive the holographic fluid Lagrangian from the dynamics of gravity in 
asymptotically AdS spacetimes.

More Qs: Section 19 of 1502.00636



Thank you!
Fig. 1: The eightfold way of hydrodynamic transport. fig:eightfold

ground sources, {ḡµ⌫ , Āµ}, which morally speaking appear to be a proxy for the the Schwinger-

Keldysh partners of the basic sources. Furthermore, this doubling of sources comes with an

interesting new gauge symmetry – U(1)T KMS-flavor invariance, with an associated gauge

field A(T)
µ!

In the thermofield construction one has sources for the left (L) and right (R) degrees of

freedom; these are specific linear combinations of the sources {gµ⌫ , Aµ} and {ḡµ⌫ , Āµ}. The

necessity to double of the degrees of freedom, whilst curious for adiabatic transport, has al-

ready been encountered previously in attempts to construct e↵ective actions for anomalous

hydrodynamic transport, which forms a special case, in [27]. What is really intriguing is the

gauge field A(T)
µ and its associated gauge invariance U(1)T, which along with the di↵eomor-

phism and gauge invariance forms the symmetries of the e↵ective action.9 The latter act

canonically on the fields above, but the U(1)T gauge symmetry acts non-trivially. All fields

carry U(1)T charges, with the gauge transformation acting as a di↵eomorphism or flavour

gauge transformation in the direction of �µ
,⇤�. In addition, ḡµ⌫ and Ā further undergo

transformations depending on the physical fields {�µ
,⇤�, gµ⌫ , Aµ}. The Bianchi identity

9 A clue to the existence of such a structure is provided by the analysis of hydrostatic partition functions

satisfying the Euclidean consistency condition in the presence of gravitational anomalies [14].
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