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I. Amplitude relations

*relations among same amplitudes within one theory

Tree-level N-point QCD amplitude:

Av =gy, »  Te(TUTm@  T) Ay (1,11(2),..., TI(N))
[IeSny_1

gauge theory: cyclicity, reflection, parity,

Kleiss-Kuijf (KK), Bern-Carrasco-Johansson (BCJ) relations

*relations between different amplitudes within one theory

supersymmetric VVard identities in gauge and gravity theory

*relations between amplitudes from different theories

relations between gauge and gravity amplitudes:
(perturbative) Kawai-Lewellen-Tye (KLT) relations



KLT Mpr(1,...,4)

s12 Ayar(1,2,3,4) Aypr(1,2,4,3)

graviton amplitude = (gauge amplitude) x (gauge amplitude)

Supergravity graviton N-point tree-level amplitude:

Mpp(L,... N)= (DN N2 ¥ Ayy(1,0(2,3,...,N —2),N — 1,N)

cESN_3

X Z S[IO’O-] AYM(L,O(Q,S,...,N—2),N,N—1)

S = KLT kernel S[,O|O‘] .= S[,O(Q,...,N—QHO‘(Q ...,N—Q)]
N—-2
— H (8130 + ZHJ,O? SJP )
Jj=2

sij = o (ki + kj)° Bern, Dixon, Perelstein, Rozowsky (1998)



many relations in field-theory emerge from
properties of string world-sheet:
monodromy on world-sheet yield KLT, BC|, ... relations

) from monodromies
B of world-sheet ~ §

Structure of string amplitudes has deep impact
on the form and organization of
quantum field theory amplitudes

Properties of scattering amplitudes in both gauge and gravity
theories suggest a deeper understanding from string theory



*relations among amplitudes from different string vacua

amplitudes are key players in establishing string dualities

based own: St.St., T.R. Taylor:

® Closed string amplitudes as single-valued open string amplitudes,
Nucl. Phys. B881 (2014) 269-287, [arXiv:1401.1218]

° Graviton as a Pair of Collinear Gauge Bosons,
Phys. Lett. B739 (2014) 457-461, [arXiv:1409.4771]

® Graviton Amplitudes from Collinear Limits of Gauge Amplitudes,
[arXiv:1502.00655]



II. Heterotic gauge amplitudes as
single-valued type I gauge amplitudes

Tree-level N-point type I open superstring gauge amplitude:

Ay = (gya)" 2 ) Te(Tomorene 7o) A1), ... TI(N))
[IeSN/ZnN

Tree-level N-point heterotic closed string gauge amplitude:

AT = (gya)V 2 Y Te(Tenoene) | renen ) AMET(II(L), . II(N)) + O(1/N?)
IeSN/Z N

Result: | A1) = sv (AI(H))

sv= single-valued projection



What are these amplitudes describing ?

o/ — expansion : e~ 1 Cry...om, o't Tr F2+l an =1, [#0,1

Cnl ..... Mg ::C(nla"'an?“): Z Hkl_nl 9 nlEN+,7’L7~22,

O0<ki1<...<k, (=1

E.g.: e_q)f CQ 0/2 TI(F4) Born-Infeld type couplings

sv-projection

\ 4

o — expansion : e 2% %V(ny ..., n,) o’ Tr(F*T

E.g.: e 2%H CSV(Q) o/? Tr(F*) =0 CSV(Q) =0

no tree-level TrF* term
(consistent with heterotic-type I duality)



[ A (o

complex integral on P'\{0,1,00} iterated real integral on RP"\{0, 1, 0o

1 T(s) T(w) I'(t) - (F(s) I'(1+ u))
t)

s I(—s) I(—u) I'(— T'(1+ s+ u)

S = Oz’(kl —+ k2)2
t = Oé’(k?l —+ k3)2

: _ 2
No KLT relations necessary ! u =o'k + ka)

KL :/Cd2z ‘Zle’:;gu — sin(ru) (/Ola;sl 1 —x)“_1> (/100 1 (1 —:13)“)




Complex vs. iterated integrals: 2ij = 2 — 2

N—1 )
N—2 [T [z5] %
/ H s i<j 1
J — — _
e “1,p(2) #p(2),p(3) - - - “p(N=3),p(N=2) *1,m(2) #7(2),®(3) +++ “m(N—2),N—1

CN-3 =

N—-1

N—2 [T |zij] s
1<J
— SV / H de
j=2

“1,p(2) #p(2),p(3) - -+ “p(N—=3),p(N—2)
D()

0,7 € Sn_3 D(m)={ 2z €R|0< zz2) <...<zZz(n—2) <1}

This is generalized to any closed string amplitude:
closed string amplitudes as
single-valued open string amplitudes



Multiple zeta-values in superstring theory

Disk integrals: iterated real integral on RP'\{0, 1,00}

Expand w.r.t. a'; -
_ |Zz
VCK1G / (H dzj) H ”

S@'j

2122923235254 %
1<i<j<5 122335454 +~41

:o/_2< ! + ! )—I—C(Q)(I—Sﬁ—sﬁ—sﬁ—sﬂ)—#@(&/)

512545 523545

Terasoma & Brown: the coefficients of the Taylor expansion
of the Selberg integrals w.r.t. the variables Sij
can be expressed as linear combinations of MZVs over

Crroony =C(na, o oong) = Y k™, meNt n.>2,

0<ki1<...<k, =1

Commutative graded Q - algebra: z 69 Z,, dimq(Zn) = dxy
k>0

with: dy =dy_2+dn_3, do=1,di =0, da=1,... (Zagier)




w 2 3 4 5 6 V 3 O 10 11 12
Zw | G| GG ¢ 2 G (3,5 Co (3,7 (3,3,5 (2 €3 | €146 C2 €37
(2CG |G| ¢CCG |GG |G ¢3 (7 (35 (3 ¢2Co | ¢39 (5 (35
(3¢ | CCs | & & | C11 ¢z ¢ | ¢3 o (o €2
5 (3¢ | CCs | (3¢ (3 C¢s | Cs Cr C2 (3 ¢7
(3¢ | ¢0EGEG| GG 5 (3 ¢3¢
€ ¢ G5
5 6
> 2
dy, 1 1 1 2 2 3 4 5 Vd 9 12
B.g. weight 12 (57 =17 (30 + % (5 (7 — 1e7gers &
* MZVs occur as the values at unity of MPs
T ktl

multiple polylogarithms:

[’i(ll,....a (.TEI, i

Py cox. =]

T

, Tr)

r
Hisaud | § ST
Z H Al =) C(I.l....,a,\

.’I?l |
kaz

0<k;<...<k, 1=1 ¢




Single-valued MZVs
(ov(ni,...,n.) €R
* special class of MZVs, which occurs as the values at unity of SVMPs
polylogarithms :  1n(z), Lii(2) = —In(1l — 2), Lig(2), Lia, ... o, (1,...,1,2)

SVMPs: multiple polylogarithms can be combined
with their complex conjugates
to remove monodromy at z=0,1,00
rendering the function single-valued on P*\{0,1,c},

Lo(z) = D(z) = Im{Liy(z) +1nlz| In(1 —2)} (Bloch-Wigner dilogarithm)
— (=In(jz)"* In" |z| \ Im, n even
L, (2) = Rey < Lig(z) + > with: Re,, = !
(@)= Ren) 2 g PR Gy e R = R o

0 n even (2agier)
9

En(l) = Re, {LG(l)} ~ {C n odd



* coefficients of the Deligne associator W:

€0 el ) with generators ey and eq

d d i —d L (z) =L (2) +
. €o.€1 zZ) = €o.€e1 z .
(reduced) KZ equation: 7, eo 0, of the free Lie algebra g

its unique solution can be given as generating series of multiple polylogarithms:

L, = 1
with the symbol w € {eg,e1}”™ ' 1
Leg,e, (2) = Z Lo (z) w denoting a non-commutative word Leg = s
we{eo,eq }* wiws ... in the letters w; € {eg, e} Lon — 1 In"(1 — 2)
o n!
Drinfeld associator Z: Clered™ b ered™ ™) =Coyiiim,
C(w1)¢(w2) = ((w1 Wws) and ((eg) = 0 = ((e1)
Z(eo,e1) = Lege, (1) = > C(w) w =1+ [eo,ex] + (s ( [eo, [eo, ea]] — [er, [0, ea] ) + - ..

we{ep,eq } X

F. Brown (2004) defines generating £

Deligne associator W:

W(e()v 61) ' = )_1 Z(@o, 61) — Z CSV (UJ) w

weq{eg,eq } X

W(eo,e1) =142 Cs ([eo, [eo, e1]] — [e1, [eo, 1]) + - F. Brown (2013)




There is a natural homomorphism:

F. Brown (2013): SV . Cnl,...,nr — Csv(nl, e ,nr)
CSV(Q) = 0
Csv(2n+1) = 2 (opt1
Csv(?), 5) = —10 CS C5

(v(3,5,3) =2 (353 —2C3 (35 — 10 (5 G5

o(3,3,5) =2 Goss 5 G GHNG G+ T GG G &



Result:

AP = sv (A'(ID))

unexpected relation between

open and closed string amplitudes

(beyond KLT)

new string duality
(to all orders in ¢ i.e. beyond BPS)



° By applying naively KLT relations we would
not have arrived at these relations

¢ Much deeper connection between open and closed string
amplitudes than what is implied by KLT relations

o Full o dependence of closed string amplitude is
entirely encapsulated by open string amplitude

o Any closed string amplitude can be written as
single-valued image of open string amplitude

o Various connections between different amplitudes
of different vacua can be established

New kind of duality relating amplitudes involving
# full tower of massive string excitations
(not just BPS states as in most examples of string dualities)



III. Mixed amplitudes
in field- and string theory

Mixed amplitudes involving open and closed strings:

"Doubling trick”:

e convert disk correlators to the standard H, o 2N
holomorphic ones by extending the fields to
the entire complex plane. ® 2

e integration over positions of world-sheet °
symmetric closed string states (such as J e
graviton or dilaton) can be extended from the
half-plane to the full complex plane L | J— ® g

== monodromy problem on the complex plane

N, open & N_. closed strings: 2N, + N.— point pure open string amplitude

St.St. arXiv:090/.2211



(21—
p— ;‘ JSin WZSj,N_l A(l,,Z—]_,N,Z,,l,N—l,l—l—l,,N—Q)

[=2 1= Jj=1
N—-3 N-2 7
+ oy osin|w )y osjnv1 | AL LN =LI1+1,... i, Ni+1,... N-2)
I=[ &7 i=l+1 j=Il+1
N N
(151-2 (5] -1 terms sij = sij = 2a'kik;

relations between
amplitudes involving open & closed strings and
pure open string amplitudes




Examples:

A(1,2,3;q) =sin(msay) A(1,5,2,4,3)
A(1,2,3,4;q) = sin(wsas) A(1,6,2,5,3,4) + sin(msys) A(1,2,3,5,4,6)
A(1,2,3,4,5;q) = sin(msog) A(1,7,2,6,3,4,5) + sin(wszg) A(1,2,7,3,6,4,5)
+ sin|[mw(s36 + s26)] A(1,7,2,3,6,4,5) + sin(wssg) A(1,2,3,4,6,5,7)

(in collinear limit)

take field-theory limit: yields Einstein-Yang-Mills
for any kinematical configuration

“graviton appears as a pair of collinear gauge bosons”

AEYM(1+,2+,3_;C]__) — T S24 AYM(1+75_72+74—73—)

—

with SYM amp/itude: AYI\"I(1+7 5_, 2+, 4_, 3_) =4

[12]*
[1q][¢3][13][24]

MHV case: Bern, De Freitas, Wong, arXiv:hep-th/9912033
from squares of open string amplitudes (heterotic string)




IV. Graviton amplitudes
from gauge amplitudes

express N-graviton amplitude in Einstein’s gravity
as collinear limits of
certain linear combinations of pure SYM amplitudes
in which each graviton is represented by two gauge bosons

no string theory |
but motivated from string theory

2 Z S[?Tlp] AYA*I[paN_lv1771-(2333'“3]\[_2)31310(27""N_2)’N_1’Q]

m,PESN -3
(2N-2 gluons become collinear
without producing poles)



Proof: contributions from factorization on triple pole Sfﬁq ~ (p— Q)G

p
o<l
NN
N-1 /O
1 /
(N=2),
4N
Ay pmlp,N—1,1,7(2,3,...,N=2),1,p(2,...,N=2),N—1,q] — (————) X L AP
Spq Aymlp™, =1 a—?%v]::7zKPQX
x Aymlp™, =17, —py] X Ay mlpn, pn = +1; N=1,1,7(2,3,..., N-2)] Ayarla 1, —an] = = (pq)
Y Y 2
x Ayml[lp(2,..., N=2), N=Liqn,vn = +1] x Ayn[q™, 17, —qy]

vields:
Aplki, A5 kN—1, AN—1; kN, AN = +2]

- Z Slrlpl Aymlpn, py = +1L; N=1L1,7(2,3,..., N=2)]
m,PESN -3

XAYM[lap(za - 7N_2)7N_1QQN7 UN = _|_1]




Concluding remarks

° new kind of duality working beyond
usual BPS protected operators

* graviton scattering unified into gauge amplitudes

. growing set of interconnections between
open & closed amplitudes with
gauge theory and supergravity amplitudes




