New relations between gauge and gravity amplitudes in field and string theory

Stephan Stieberger, MPP München

Eurostrings March 23-27, 2015 DAMTP Cambridge

I. Amplitude relations

• relations among same amplitudes within one theory

Tree-level N-point QCD amplitude:

$$\mathfrak{A}_{N} = g_{YM}^{N-2} \sum_{\Pi \in S_{N-1}} \text{Tr}(T^{a_1} T^{a_{\Pi(2)}} \dots T^{a_{\Pi(N)}}) A_{YM}(1, \Pi(2), \dots, \Pi(N))$$

gauge theory: cyclicity, reflection, parity,

Kleiss-Kuijf (KK), Bern-Carrasco-Johansson (BCJ) relations

• relations between different amplitudes within one theory supersymmetric Ward identities in gauge and gravity theory

• relations between amplitudes from different theories relations between gauge and gravity amplitudes: (perturbative) Kawai-Lewellen-Tye (KLT) relations

KLT
$$\mathcal{M}_{FT}(1,\ldots,4) = s_{12} A_{YM}(1,2,3,4) \tilde{A}_{YM}(1,2,4,3)$$

graviton amplitude = (gauge amplitude) × (gauge amplitude)

<u>Supergravity graviton N-point tree-level amplitude:</u>

$$\mathcal{M}_{FT}(1,\dots,N) = (-1)^{N-3} \kappa^{N-2} \sum_{\sigma \in S_{N-3}} A_{YM}(1,\sigma(2,3,\dots,N-2),N-1,N)$$

$$\times \sum_{\rho \in S_{N-3}} S[\rho|\sigma] \tilde{A}_{YM}(1,\rho(2,3,\dots,N-2),N,N-1)$$

$$S = KLT kernel$$

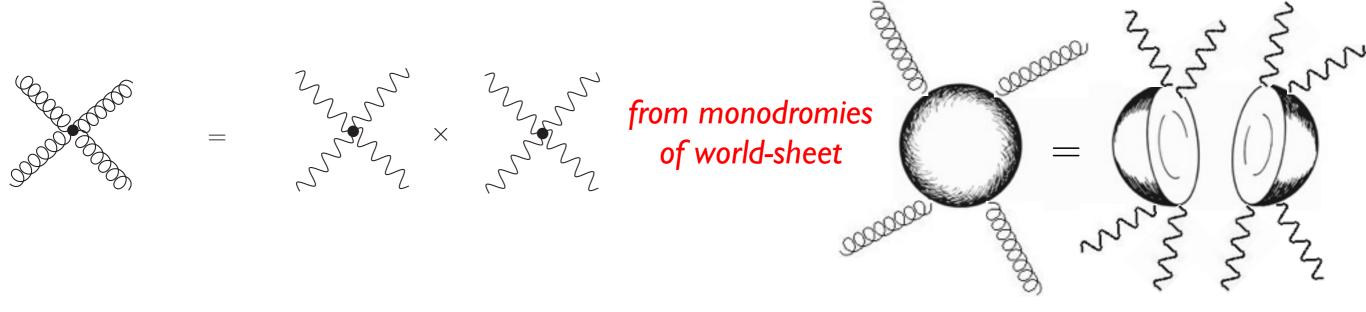
$$S[\rho|\sigma] := S[\rho(2, ..., N-2) | \sigma(2, ..., N-2)]$$

$$= \prod_{j=2}^{N-2} \left(s_{1,j_{\rho}} + \sum_{k=2}^{j-1} \theta(j_{\rho}, k_{\rho}) s_{j_{\rho}, k_{\rho}} \right)$$

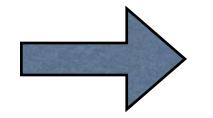
$$s_{ij} = \alpha'(k_i + k_j)^2$$

Bern, Dixon, Perelstein, Rozowsky (1998)

many relations in field-theory emerge from properties of string world-sheet: monodromy on world-sheet yield KLT, BCJ, ... relations



Structure of string amplitudes has deep impact on the form and organization of quantum field theory amplitudes



Properties of scattering amplitudes in both gauge and gravity theories suggest a deeper understanding from string theory

relations among amplitudes from different string vacua

amplitudes are key players in establishing string dualities

based on:

St.St., T.R. Taylor:

- Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys. B881 (2014) 269-287, [arXiv:1401.1218]
- Graviton as a Pair of Collinear Gauge Bosons,
 Phys. Lett. B739 (2014) 457-461, [arXiv:1409.4771]
- Graviton Amplitudes from Collinear Limits of Gauge Amplitudes, [arXiv:1502.00655]

II. Heterotic gauge amplitudes as single-valued type I gauge amplitudes

Tree-level N-point type I open superstring gauge amplitude:

$$\mathfrak{A}_{N}^{\mathrm{I}} = (g_{YM}^{\mathrm{I}})^{N-2} \sum_{\Pi \in S_{N}/\mathbf{Z}_{N}} \mathrm{Tr}(T^{a_{\Pi(1)}}T^{a_{\Pi(2)}} \dots T^{a_{\Pi(N)}}) A^{\mathrm{I}}(\Pi(1), \dots, \Pi(N))$$

Tree-level N-point heterotic closed string gauge amplitude:

$$\mathfrak{A}_{N}^{\text{HET}} = (g_{YM}^{\text{HET}})^{N-2} \sum_{\Pi \in S_{N}/\mathbf{Z}_{N}} \text{Tr}(T^{a_{\Pi(1)}}T^{a_{\Pi(2)}}\dots T^{a_{\Pi(N)}}) A^{\text{HET}}(\Pi(1),\dots,\Pi(N)) + \mathcal{O}(1/N_{c}^{2})$$

$$\mathcal{A}^{\mathrm{HET}}(\Pi) = \mathrm{sv}\left(\mathcal{A}^{\mathrm{I}}(\Pi)\right)$$

sv= single-valued projection

What are these amplitudes describing?

$$\alpha' - \text{expansion}: e^{-\Phi_I} \zeta_{n_1,...,n_r} \alpha'^l \operatorname{Tr}(F^{2+l}) , \sum_{i=1}^r n_i = l, l \neq 0, 1$$

$$\zeta_{n_1,\dots,n_r} := \zeta(n_1,\dots,n_r) = \sum_{0 < k_1 < \dots < k_r} \prod_{l=1}^r k_l^{-n_l} , \quad n_l \in \mathbf{N}^+, \quad n_r \ge 2,$$

E.g.:
$$e^{-\Phi_I}$$
 ζ_2 α'^2 $\mathrm{Tr}(F^4)$

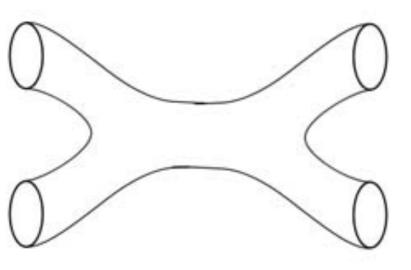
Born-Infeld type couplings

sv-projection

$$\alpha' - \text{expansion}: e^{-2\Phi_H} \zeta^{SV}(n_1, \dots, n_r) \alpha'^l \operatorname{Tr}(F^{2+l})$$

E.g.:
$$e^{-2\Phi_H} \zeta^{SV}(2) \alpha'^2 \operatorname{Tr}(F^4) = 0$$
 $\zeta^{SV}(2) = 0$

no tree-level TrF^4 term (consistent with heterotic-type I duality)



$$\int_{\mathbf{C}} d^2 z \, \frac{|z|^{2s} |1 - z|^{2u}}{z (1 - z) \, \overline{z}} = \text{sv} \left(\int_0^1 dx \, x^{s-1} \, (1 - x)^u \right)$$

complex integral on $\mathbf{P}^1 \setminus \{0,1,\infty\}$ iterated real integral on $\mathbf{RP}^1 \setminus \{0,1,\infty\}$

$$\frac{1}{s} \frac{\Gamma(s) \Gamma(u) \Gamma(t)}{\Gamma(-s) \Gamma(-u) \Gamma(-t)} = \operatorname{sv}\left(\frac{\Gamma(s) \Gamma(1+u)}{\Gamma(1+s+u)}\right)$$

$$s = \alpha'(k_1 + k_2)^2$$

$$t = \alpha'(k_1 + k_3)^2$$

tions necessary I
$$u = \alpha'(k_1 + k_4)^2$$

No KLT relations necessary!

KLT:
$$\int_{\mathbf{C}} d^2z \, \frac{|z|^{2s} |1-z|^{2u}}{z (1-z) \, \overline{z}} = \sin(\pi u) \, \left(\int_0^1 x^{s-1} \, (1-x)^{u-1} \right) \, \left(\int_1^\infty x^{t-1} \, (1-x)^u \right)$$

$$\int_{\mathbf{C}^{N-3}} \left(\prod_{j=2}^{N-2} d^2 z_j \right) \frac{\prod_{i < j}^{N-1} |z_{ij}|^{\alpha' s_{ij}}}{z_{1,\rho(2)} z_{\rho(2),\rho(3)} \cdots z_{\rho(N-3),\rho(N-2)}} \frac{1}{\overline{z}_{1,\pi(2)} \overline{z}_{\pi(2),\pi(3)} \cdots \overline{z}_{\pi(N-2),N-1}}$$

$$= \text{sv} \int_{D(\pi)} \left(\prod_{j=2}^{N-2} dz_j \right) \frac{\prod_{i < j}^{N-1} |z_{ij}|^{\alpha' s_{ij}}}{z_{1,\rho(2)} z_{\rho(2),\rho(3)} \cdots z_{\rho(N-3),\rho(N-2)}}$$

$$\rho, \pi \in S_{N-3}$$

$$D(\pi) = \{ z_j \in \mathbf{R} \mid 0 < z_{\pi(2)} < \dots < z_{\pi(N-2)} < 1 \}$$

This is generalized to any closed string amplitude: closed string amplitudes as single-valued open string amplitudes

Multiple zeta-values in superstring theory

Disk integrals: **iterated real integral** on $\mathbf{RP}^1 \setminus \{0, 1, \infty\}$

Expand w.r.t. α' :

$$V_{\text{CKG}}^{-1} \int_{z_{i} < z_{i+1}} \left(\prod_{j=1}^{5} dz_{j} \right) \prod_{1 \le i < j \le 5} \frac{|z_{ij}|^{s_{ij}}}{z_{12} z_{23} z_{35} z_{54} z_{41}}$$

$$= {\alpha'}^{-2} \left(\frac{1}{s_{12}s_{45}} + \frac{1}{s_{23}s_{45}} \right) + \zeta(2) \left(1 - \frac{s_{34}}{s_{12}} - \frac{s_{12}}{s_{45}} - \frac{s_{23}}{s_{45}} - \frac{s_{51}}{s_{23}} \right) + \mathcal{O}(\alpha')$$

Terasoma & Brown: the coefficients of the Taylor expansion of the Selberg integrals w.r.t. the variables s_{ij} can be expressed as linear combinations of MZVs over ${\bf Q}$

$$\zeta_{n_1,\dots,n_r} := \zeta(n_1,\dots,n_r) = \sum_{0 < k_1 < \dots < k_r} \prod_{l=1}^r k_l^{-n_l} , \quad n_l \in \mathbb{N}^+, \quad n_r \ge 2,$$

Commutative graded Q - algebra:

$$\mathcal{Z} = \bigoplus_{k \ge 0} \mathcal{Z}_k \ , \quad \dim_{\mathbf{Q}}(\mathcal{Z}_N) = d_N$$

with:
$$d_N = d_{N-2} + d_{N-3}$$
, $d_0 = 1$, $d_1 = 0$, $d_2 = 1$,... (Zagier)

$oxed{w}$	2	3	4	5	6	7	8	9	10	11		12	
\mathcal{Z}_w	ζ_2	ζ3	ζ_2^2							ζ3,3,5			ζ2 ζ3,7
				ζ2 ζ3	ζ_2^3	ζ2 ζ5	ζ_3 ζ_5	ζ_3^3	ζ3 ζ7	$\zeta_{3,5}$ ζ_3	ζ_2 ζ_9	ζ3,9	ζ_2^2 $\zeta_{3,5}$
						$\zeta_2^2 \zeta_3$	$\zeta_2 \zeta_3^2$	ζ_2 ζ_7	ζ_5^2	ζ11	ζ_2^2 ζ_7	ζ3 ζ9	ζ_2 ζ_5^2
							ζ_2^4	$\zeta_2^2 \zeta_5$	ζ2 ζ3,5		ζ_2^3 ζ_5	ζ5 ζ7	ζ_2 ζ_3 ζ_7
								$\zeta_2^3 \zeta_3$	ζ2 ζ3 ζ5	ζ_2^4 ζ_3		ζ_3^4	ζ_2^2 ζ_3 ζ_5
									$\zeta_2^2 \zeta_3^2$			$\zeta_2^3 \zeta_3^2$	
									ζ_2^5			ζ_2^6	
d_w	1	1	1	2	2	3	4	5	7	9		12	

E.g. weight 12:
$$\zeta_{5,7} = \frac{14}{9} \zeta_{3,9} + \frac{28}{3} \zeta_5 \zeta_7 - \frac{776224}{1576575} \zeta_2^6$$

• MZVs occur as the values at unity of MPs

multiple polylogarithms:

$$\mathcal{L}i_{a_1,\dots,a_r}(x_1,\dots,x_r) = \sum_{0 < k_1 < \dots < k_r} \prod_{l=1}^r \frac{x_l^{k_l}}{k_l^{a_l}}$$

$$\mathcal{L}i_{a_1,\dots,a_r}(1,\dots,1) = \sum_{0 < k_1 < \dots < k_r} \prod_{l=1}^{r} k_l^{-a_l} = \zeta_{a_1,\dots,a_r}$$

Single-valued MZVs

$$\zeta_{\rm sv}(n_1,\ldots,n_r)\in\mathbf{R}$$

special class of MZVs, which occurs as the values at unity of SVMPs

$$polylogarithms: ln(z), Li_1(z) = -ln(1-z), Li_a(z), Li_{a_1,...,a_r}(1,...,1,z)$$

SVMPs: multiple polylogarithms can be combined with their complex conjugates to remove monodromy at $z=0,1,\infty$ rendering the function single-valued on $\mathbf{P^1}\backslash\{0,1,\infty\}$.

$$\mathcal{L}_2(z) = D(z) = Im \left\{ Li_2(z) + \ln|z| \ln(1-z) \right\}$$
 (Bloch-Wigner dilogarithm)

$$\mathcal{L}_{n}(z) = Re_{n} \left\{ \sum_{k=1}^{n} \frac{(-\ln(|z|)^{n-k})}{(n-k)!} Li_{k}(z) + \frac{\ln^{n}|z|}{(2n)!} \right\} \text{ with: } Re_{n} = \begin{cases} Im, & n \text{ even} \\ Re, & n \text{ odd} \end{cases}$$

(Zagier)

$$\mathcal{L}_n(1) = Re_n \{Li_n(1)\} = \begin{cases} 0, & n \text{ even} \\ \zeta_n, & n \text{ odd} \end{cases}$$

coefficients of the Deligne associator W:

$$\frac{d}{dz} L_{e_0,e_1}(z) = L_{e_0,e_1}(z) \left(\frac{e_0}{z} + \frac{e_1}{1-z} \right)$$

with generators e_0 and e_1 of the free Lie algebra g

its unique solution can be given as generating series of multiple polylogarithms:

$$L_{e_0,e_1}(z) = \sum_{w \in \{e_0,e_1\}^{\times}} L_w(z) \ w$$

with the symbol $w \in \{e_0, e_1\}^{\times}$ denoting a non-commutative word $w_1w_2\dots$ in the letters $w_i \in \{e_0, e_1\}$

$$L_1 = 1,$$
 $L_{e_0^n} = \frac{1}{n!} \ln^n z,$
 $L_{e_1^n} = \frac{1}{n!} \ln^n (1-z)$

Drinfeld associator Z:

$$\zeta(e_1 e_0^{n_1 - 1} \dots e_1 e_0^{n_r - 1}) = \zeta_{n_1, \dots, n_r}$$

$$\zeta(w_1)\zeta(w_2) = \zeta(w_1 \coprod w_2) \text{ and } \zeta(e_0) = 0 = \zeta(e_1)$$

$$Z(e_0, e_1) := L_{e_0, e_1}(1) = \sum_{w \in \{e_0, e_1\}^{\times}} \zeta(w) \ w = 1 + \zeta_2 \ [e_0, e_1] + \zeta_3 \ (\ [e_0, [e_0, e_1]] - [e_1, [e_0, e_1]]) + \dots$$

F. Brown (2004) defines generating series of SVMPs:

$$\mathcal{L}_{e_0,e_1}(z) = L_{-e_0,-e_1'}(\overline{z})^{-1} L_{e_0,e_1}(z)$$

 $\mathcal{L}_{e_0,e_1}(z) = L_{-e_0,-e_1'}(\overline{z})^{-1} \ L_{e_0,e_1}(z) \qquad \begin{array}{c} e_1' \ \text{determined recursively by fixed-point equation:} \\ Z(-e_0,-e_1') \ e_1' \ Z(-e_0,-e_1')^{-1} = Z(e_0,e_1) \ e_1 \ Z(e_0,e_1)^{-1} \end{array}$

Deligne associator W:

$$W(e_0, e_1) := \mathcal{L}(1) = Z(-e_0, -e'_1)^{-1} \ Z(e_0, e_1) = \sum_{w \in \{e_0, e_1\}^{\times}} \zeta_{sv}(w) \ w$$

$$W(e_0,e_1) = 1 + 2 \ \zeta_3 \ ([e_0,[e_0,e_1]] - [e_1,[e_0,e_1]) + \dots \qquad \text{F. Brown (2013)}$$

There is a natural homomorphism:

F. Brown (2013): Sv:
$$\zeta_{n_1,\ldots,n_r} \longrightarrow \zeta_{\mathrm{SV}}(n_1,\ldots,n_r)$$

$$\zeta_{\rm sv}(2) = 0$$

$$\zeta_{\rm sv}(2n+1) = 2 \zeta_{2n+1}$$

$$\zeta_{\rm sv}(3,5) = -10 \zeta_3 \zeta_5$$

$$\zeta_{\text{sv}}(3,5,3) = 2 \zeta_{3,5,3} - 2 \zeta_3 \zeta_{3,5} - 10 \zeta_3^2 \zeta_5$$

$$\zeta_{\text{sv}}(3,3,5) = 2 \zeta_{3,3,5} - 5 \zeta_3^2 \zeta_5 + 90 \zeta_2 \zeta_9 + \frac{12}{5} \zeta_2^2 \zeta_7 - \frac{8}{7} \zeta_2^3 \zeta_5^2$$

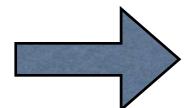
Result:

$$\mathcal{A}^{\mathrm{HET}}(\Pi) = \mathrm{sv}\left(\mathcal{A}^{\mathrm{I}}(\Pi)\right)$$

unexpected relation between

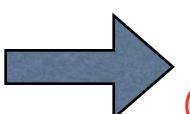
open and closed string amplitudes

(beyond KLT)



new string duality (to all orders in α' i.e. beyond BPS)

- By applying **naively KLT** relations we would **not** have arrived at **these relations**
- Much deeper connection between open and closed string amplitudes than what is implied by KLT relations
- Full α' dependence of closed string amplitude is entirely encapsulated by open string amplitude
- Any closed string amplitude can be written as single-valued image of open string amplitude
- Various connections between different amplitudes of different vacua can be established



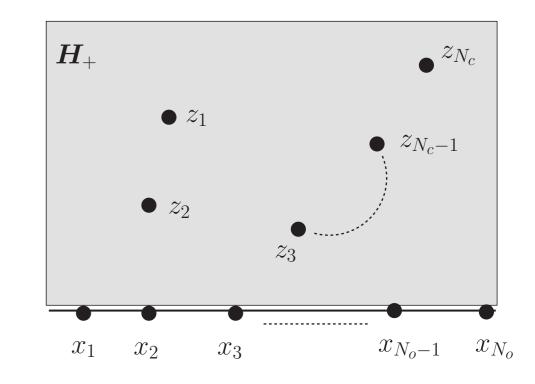
New kind of *duality* relating amplitudes involving full tower of massive string excitations (not just BPS states as in most examples of string dualities)

III. Mixed amplitudes in field- and string theory

Mixed amplitudes involving open and closed strings:

"Doubling trick":

- convert disk correlators to the standard holomorphic ones by extending the fields to the entire complex plane.
- integration over positions of world-sheet symmetric closed string states (such as graviton or dilaton) can be extended from the half-plane to the full complex plane



monodromy problem on the complex plane

 N_o open & N_c closed strings: $2N_o + N_c -$ point **pure** open string amplitude

St.St. arXiv:0907.2211

$$N_c = 1$$

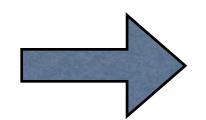
$$A(1,2, \ldots, N-2;q)$$

$$= \sum_{l=2}^{\lceil \frac{N}{2} \rceil - 1} \sum_{i=2}^{l} \sin \left(\pi \sum_{j=i}^{l} s_{j,N-1} \right) A(1,\ldots,i-1,N,i,\ldots,l,N-1,l+1,\ldots,N-2)$$

$$+ \sum_{l=\lceil \frac{N}{2} \rceil}^{N-3} \sum_{i=l+1}^{N-2} \sin \left(\pi \sum_{j=l+1}^{i} s_{j,N-1} \right) A(1,\ldots,l,N-1,l+1,\ldots,i,N,i+1,\ldots,N-2)$$

$$(\lceil \frac{N}{2} \rceil - 2) \ (\lfloor \frac{N}{2} \rfloor - 1)$$
 terms

$$s_{i,j} \equiv s_{ij} = 2\alpha' k_i k_j$$



relations between amplitudes involving open & closed strings and pure open string amplitudes

Examples:

$$A(1,2,3;q) = \sin(\pi s_{24}) \ A(1,5,2,4,3) ,$$

$$A(1,2,3,4;q) = \sin(\pi s_{25}) \ A(1,6,2,5,3,4) + \sin(\pi s_{45}) \ A(1,2,3,5,4,6) ,$$

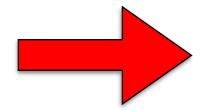
$$A(1,2,3,4,5;q) = \sin(\pi s_{26}) \ A(1,7,2,6,3,4,5) + \sin(\pi s_{36}) \ A(1,2,7,3,6,4,5) + \sin(\pi s_{56}) \ A(1,2,3,4,6,5,7)$$

(in collinear limit)

take field-theory limit:

yields **Einstein-Yang-Mills** for any kinematical configuration

"graviton appears as a pair of collinear gauge bosons"



$$A_{EYM}(1^+, 2^+, 3^-; q^{--}) = \pi \ s_{24} \ A_{YM}(1^+, 5^-, 2^+, 4^-, 3^-)$$

with SYM amplitude:

$$A_{YM}(1^+, 5^-, 2^+, 4^-, 3^-) = 4 \frac{[12]^4}{[1q][q3][13][2q]^2}$$

MHV case: Bern, De Freitas, Wong, arXiv:hep-th/9912033 from squares of open string amplitudes (heterotic string)

IV. Graviton amplitudes from gauge amplitudes

express N-graviton amplitude in **Einstein's gravity**as collinear limits of
certain linear combinations of **pure SYM amplitudes**in which each graviton is represented by two gauge bosons

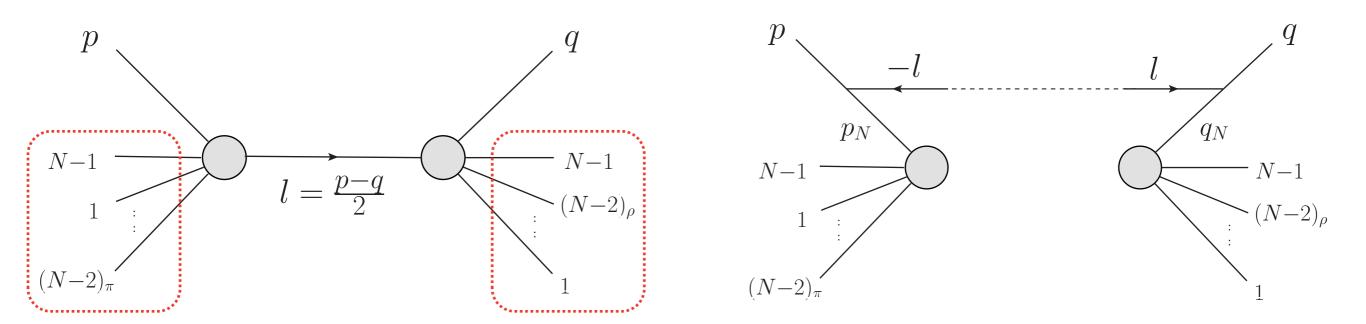
no string theory! but motivated from string theory

$$A_E[k_1, \lambda_1; \dots; k_{N-1}, \lambda_{N-1}; k_N = p + q, \lambda_N = +2] = \lim_{[pq] \to 0} \left(\frac{1}{2x}\right)^4 \frac{[pq]}{\langle pq \rangle} s_{pq}^2$$

$$\times \sum_{\pi,\rho \in S_{N-3}} S[\pi|\rho] A_{YM}[p,N-1,1,\pi(2,3,\ldots,N-2),1,\rho(2,\ldots,N-2),N-1,q]$$

(2N-2 gluons become collinear without producing poles)

<u>Proof:</u> contributions from factorization on **triple** pole $s_{pq}^3 \sim (p-q)^6$



$$A_{YM}[p,N-1,1,\pi(2,3,\ldots,N-2),1,\rho(2,\ldots,N-2),N-1,q] \rightarrow \left(\frac{4}{s_{pq}}\right)^{3} \times \\ \times A_{YM}[p^{+},-l^{-},-p_{N}^{-}] \times A_{YM}[p_{N},\mu_{N}=+1;N-1,1,\pi(2,3,\ldots,N-2)] \\ \times A_{YM}[1,\rho(2,\ldots,N-2),N-1;q_{N},\nu_{N}=+1] \times A_{YM}[q^{-},l^{+},-q_{N}^{-}]$$

$$A_{YM}[q^{-},l^{+},-q_{N}^{-}] = \frac{x^{3}}{2} \langle pq \rangle,$$

yields:

$$A_{E}[k_{1}, \lambda_{1}; \dots; k_{N-1}, \lambda_{N-1}; k_{N}, \lambda_{N} = +2]$$

$$= \sum_{\pi, \rho \in S_{N-3}} S[\pi|\rho] A_{YM}[p_{N}, \mu_{N} = +1; N-1, 1, \pi(2, 3, \dots, N-2)]$$

$$\times A_{YM}[1, \rho(2, \dots, N-2), N-1; q_{N}, \nu_{N} = +1]$$

Concluding remarks

- new kind of duality working beyond usual BPS protected operators
- graviton scattering <u>unified</u> into gauge amplitudes
- growing set of <u>interconnections</u> between open & closed amplitudes with gauge theory and supergravity amplitudes