Scattering Inequalities

Jaroslav Trnka California Institute of Technology

Princeton collaboration

Nima Arkani-Hamed Jacob Bourjaily Freddy Cachazo Andrew Hodges

1312.2007, 1410.0354, 1412.8478

Los Angeles collaboration

Zvi Bern
Enrico Herrmann
Sean Litsey
James Stankowicz

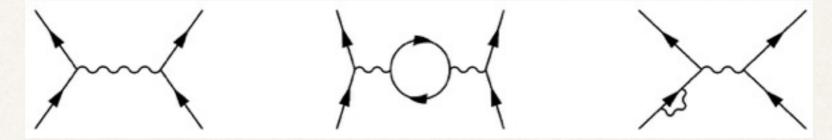
1412.8584, in progress

Scattering Amplitudes

- Basic objects in Quantum Field Theory (QFT)
- Predictions for colliders: cross-sections
- My motivation: new ideas in QFT

Perturbative QFT

Loop expansion



Integrand: rational function before integration

 $I(\ell_j, k_i, s_i)$ sum of Feynman diagrams

$$\Omega = d^4 \ell_1 \dots d^4 \ell_L \, I(\ell_j, k_i, s_i) \qquad A = \int_{\ell_j \in \mathbb{R}} \Omega$$
 Integrand form

Integrand

- Ideal object to study: finite, well-defined
- Fixed by principles of QFT
- Qualitative information about the final amplitudes
 - Collinear limits: IR divergencies
 - Poles at infinity: UV structure
 - Types of singularities: transcendental properties

Feynman diagrams

- Gauge redundancy: off-shell virtual particles
- Two principles manifest:

I) Locality: particles interact point-like

Amplitude: only poles

$$\frac{1}{P^2} o \infty$$

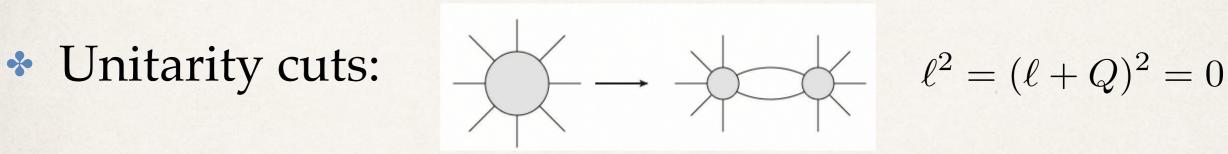
$$\frac{1}{P^2} \to \infty \qquad P = \sum_{i \in \sigma} p_i$$

II) Unitarity: sum of probabilities is 1

Amplitude: factorization

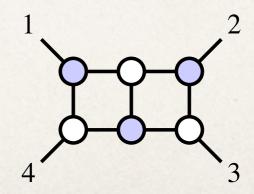
Modern methods

- Re-express the integrand in the basis of integrals
- * Fix coefficients using cuts $I = \sum_{i} c_j I_j$



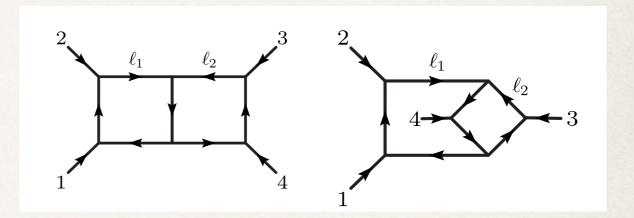
$$\ell^2 = (\ell + Q)^2 = 0$$

Maximal cuts, leading singularities:

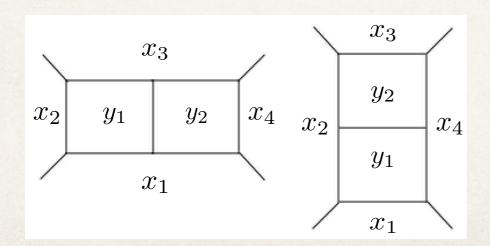


Planar limit

- The integrand defined as a sum of diagrams
 - No global loop momenta
 - Each diagram: its own labels



Planar limit: dual variables



$$k_1 = (x_1 - x_2)$$
 $k_2 = (x_2 - x_3)$ etc
 $\ell_1 = (x_3 - y_1)$ $\ell_2 = (y_2 - x_3)$

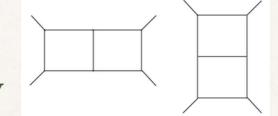
Global labels

Integrand: single function

Conditions on the amplitude

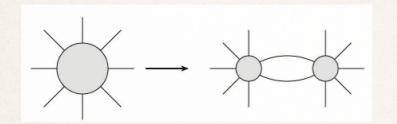
Standard methods

Planar diagrams



Locality + Planarity

Match physical cuts/singularities



Unitarity

$$\operatorname{Cut}(I) = \int_{4}^{1} \int_{3}^{2}$$

Construction not known in general

Alternative

- Same set of conditions
- Packaged in a different way

?

Complete set known

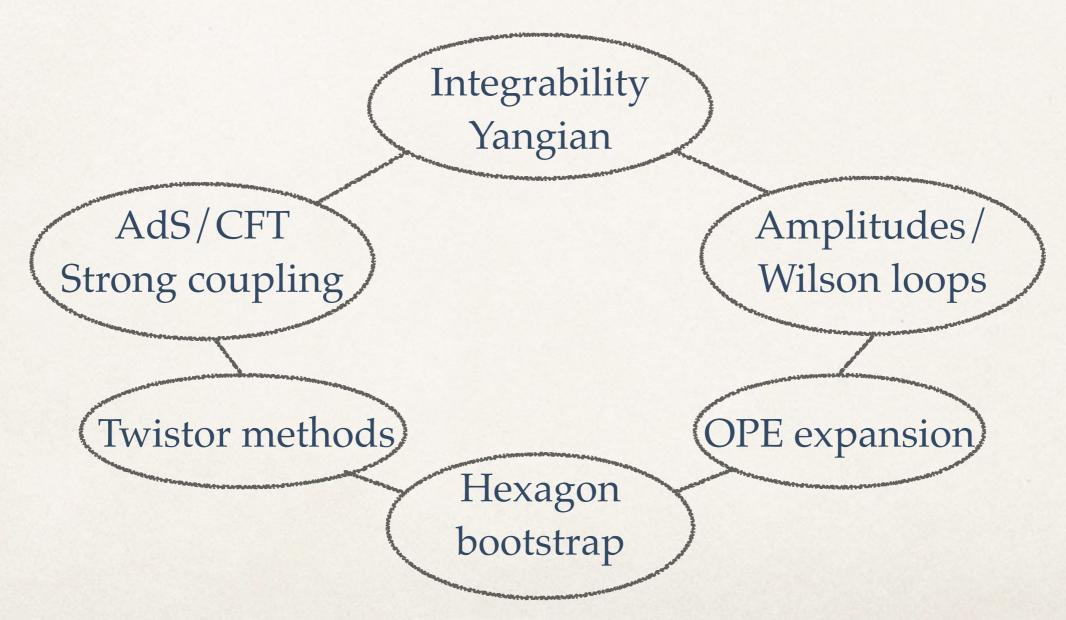
Maximally supersymmetric Yang-Mills theory in planar limit

(Brink-Scherk-Schwarz 1977)

- "Simplest Quantum Field Theory"
- Conformal + dual conformal, convergent series
- Toy model for QCD
 - Tree-level amplitudes identical
 - Loop amplitudes simpler, no confinement
- Past: new methods for amplitudes originated here

Many faces of the theory

Useful playground for many theoretical ideas



Integrand in planar N=4 SYM

* Superamplitudes $\mathcal{I}_{n,\ell}$

$$\mathcal{I}_{n,\ell} = \sum_k ilde{\eta}^{4k} I_{n,k,\ell}$$

- Dual conformal symmetry (Drummond, Henn, Korchemsky, Sokatchev 2006)
 k : number of negative gluons
 - Integral basis: no triangle subdiagrams
 no poles at infinity momentum
- Recursion relations using on-shell diagrams (Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)
 - Logarithmic singularities

$$\Omega \sim \frac{dx}{x}$$
 near $x = 0$

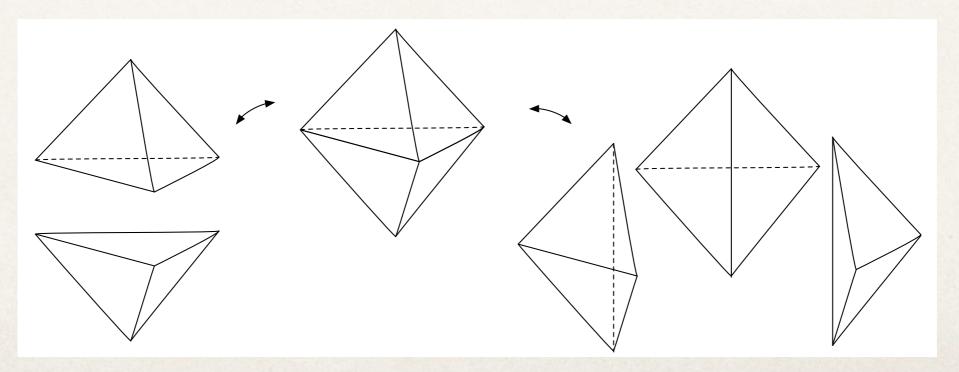
The Amplituhedron

(Arkani-Hamed, JT 2013)

Volume of polyhedron

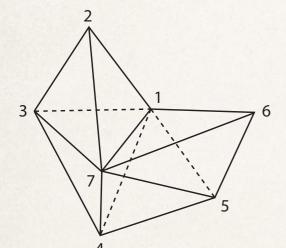
(Hodges 2009)

- * New kinematical variables momentum twistors $Z \in \mathbb{C}^3$
- * Tree-level process: $gg \rightarrow 5g$
- Comparison of two calculations of recursion relations



Evidence for a new structure

Volume of polyhedron



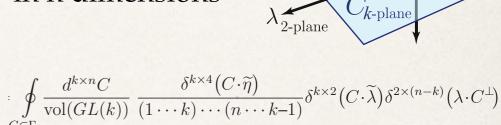
 $gg o gg \dots g$ at tree-level

$$\int_{\widetilde{P}_n} \frac{D^4 \mathcal{W}}{(\mathcal{Z}_0 \cdot \mathcal{W})^5}$$

Amplitude = volume

(Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT 2010)

Configurations of k-planes in n dimensions



 $\widetilde{\lambda}_{ ext{2-plane}}$

All-loop order information

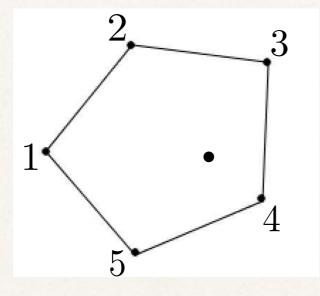
(Arkani-Hamed, Cachazo, Cheung, Kaplan 2009)

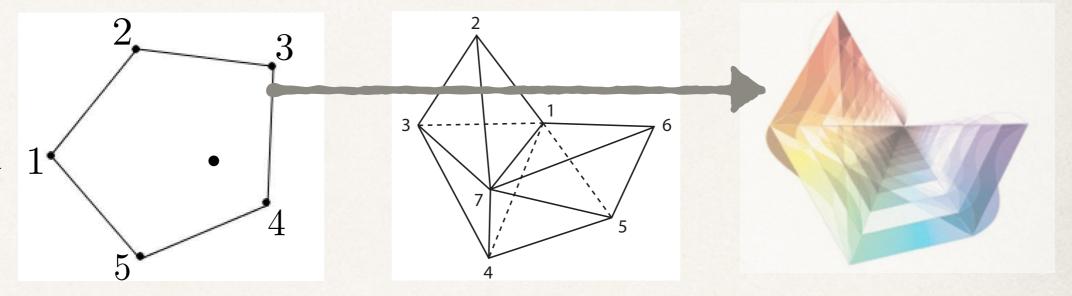
"Conjecture"

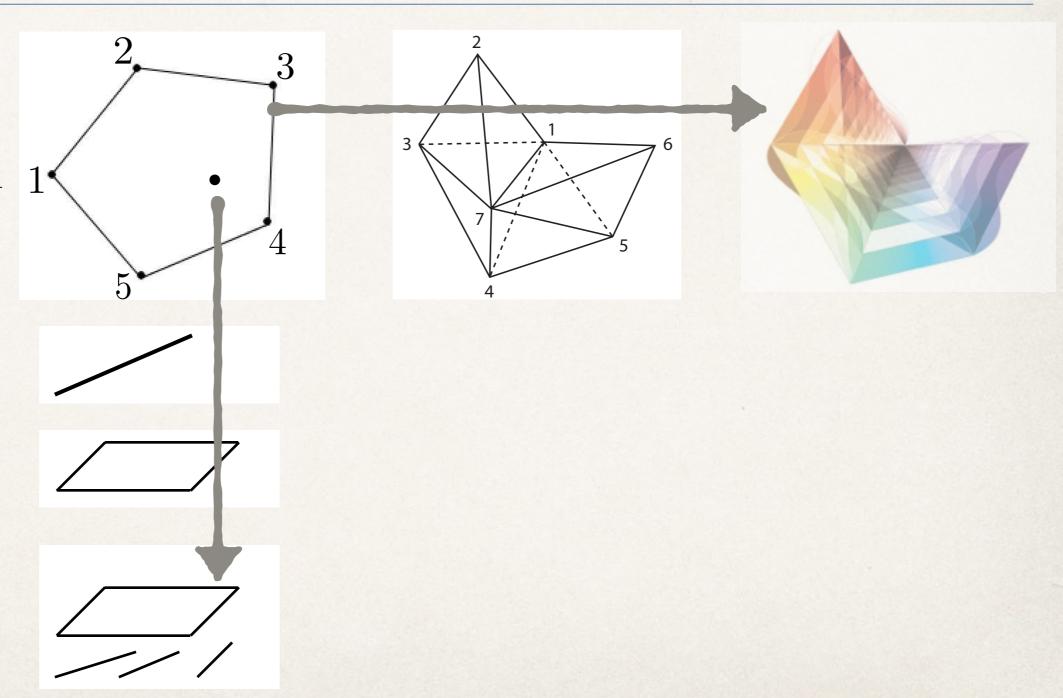
Amplitudes are volumes of some regions in some space

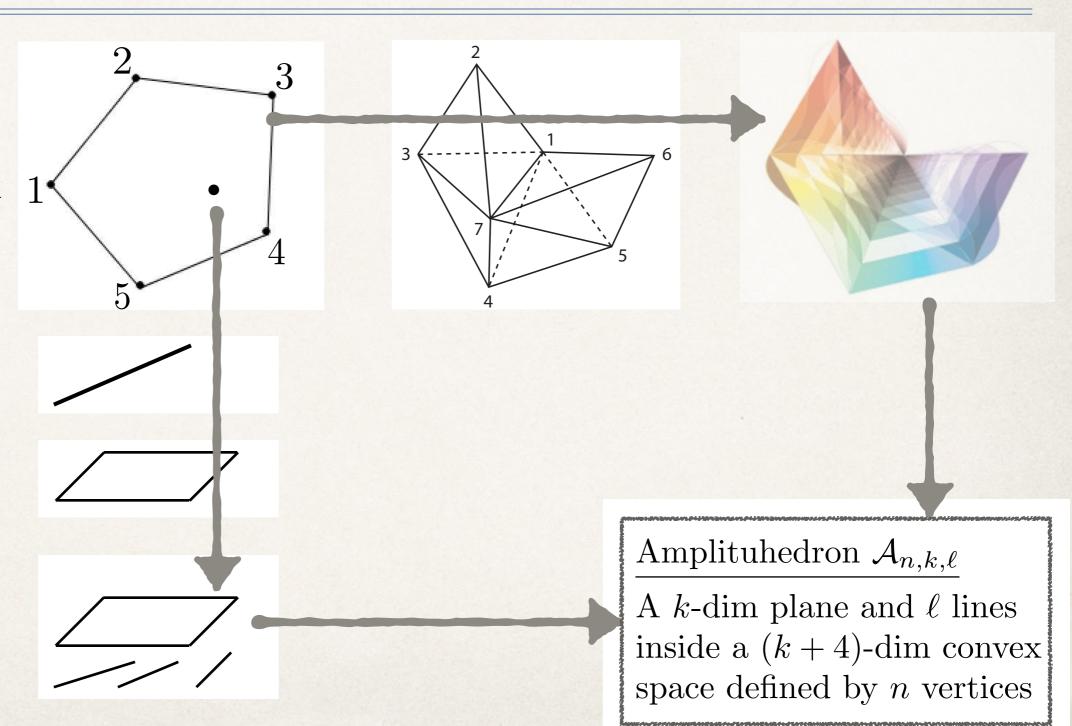
Strategy

- Simple intuitive geometric ideas: use equations
- Generalization: More complicated geometry
 - Higher dimensions
- Same equations persist









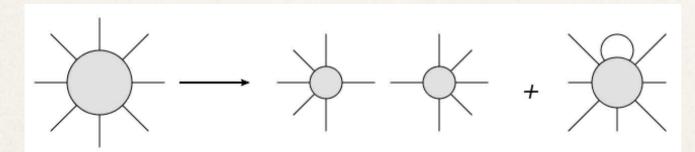
The Amplituhedron

* Volume of $A_{n,k,\ell}$:

Amplitudes in maximally supersymmetric Yang-Mills theory

 $\ell = 0$: Amplitudes of gluons in QCD

Consistency check: Locality and Unitarity



* Explicit checks against reference theoretical data

n number of particles

k helicity information

 ℓ number of loops

Volume of the space

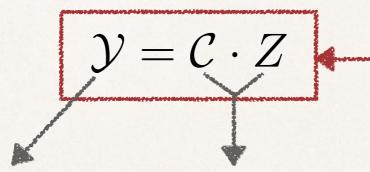
- Differential form with logarithmic singularities
- Simple examples:

$$\Omega \sim \frac{dx}{x}$$
 near $x = 0$

$$x > 0$$
: $Vol = \frac{dx}{x}$
 $y > 0, x > 0$: $Vol = \frac{dx}{x} \frac{dy}{y}$
 $y > x > 0$: $Vol = \frac{dx}{x} \frac{dy}{y - x}$

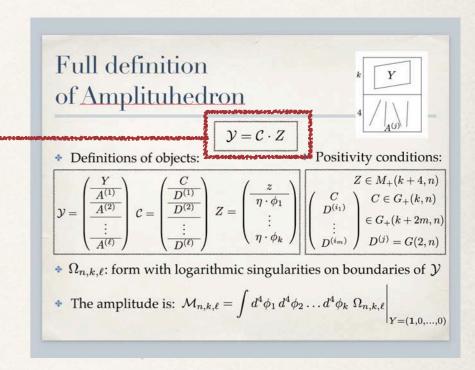
The Amplituhedron

In the definition of Amplituhedron



Amplituhedron

Positive matrices: | * * | > 0
Minors are positive | * * |



- * Positivity: crucial property of geometry
 - Locality, unitarity, even planarity derived from it
 - Hidden symmetry of this theory (Yangian) manifest

Inequalities

* Amplituhedron variables z_i

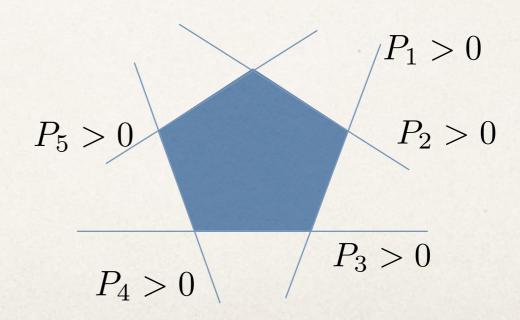
$$(p_i, \epsilon_j, \ell_k) \to (x_i, \tilde{\eta}_j, y_k) \to (Z_i, \eta_j, Z_{AB}^{(k)}) \to z_i$$

The definition of Amplituhedron: inequalities

$$P_j(z_i) \ge 0$$

Boundaries of the space

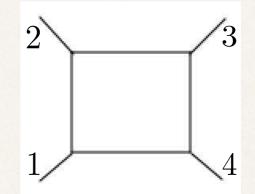
$$P_j(z_i) = 0$$



Legal and illegal boundaries

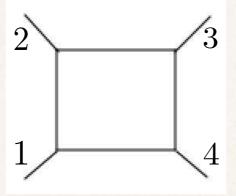
- * Singularities and cuts of the amplitude: localize z_i
- * Inequalities hold $P_j(z_i) \ge 0$ $\ell_k \in \mathbb{C} \iff z_i > 0$
 - Point inside the Amplituhedron space
 - Physical cut or singularity of the amplitude
- * One or more inequalities violated $P_j(z_i) < 0$
 - Point outside the Amplituhedron space
 - Unphysical cut or singularity of the amplitude

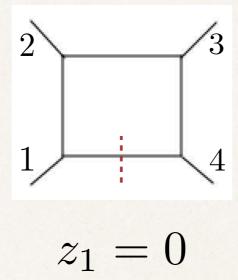
Consider 4pt one-loop amplitude

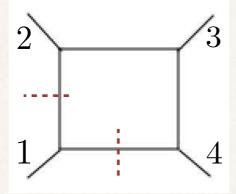


- * Inequalities: $z_1, z_2, z_3, z_4 \ge 0$
- * Boundaries of the space: $z_1, z_2, z_3, z_4 = (0, \infty)$
- Differential form

$$\Omega = \frac{dz_1}{z_1} \frac{dz_2}{z_2} \frac{dz_3}{z_3} \frac{dz_4}{z_4}$$

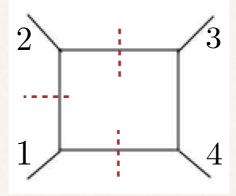






$$z_1 = 0$$

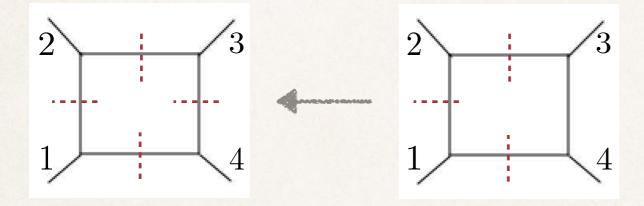
$$z_2 = 0$$



$$z_1 = 0$$

$$z_2 = 0$$

$$z_3 = 0$$



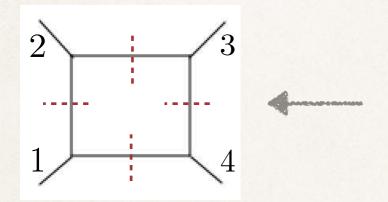
$$z_4 = 0$$

$$z_1 = 0$$

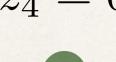
$$z_2 = 0$$

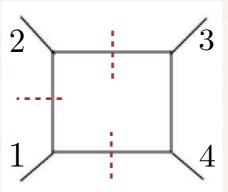
$$z_3 = 0$$

Cuts of the amplitude



$$z_4 = 0$$

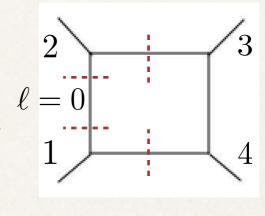




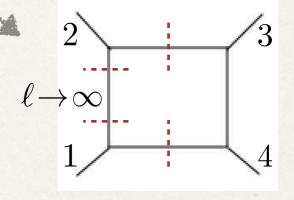
$$z_1 = 0$$

$$z_2 = 0$$

$$z_3 = 0$$



$$z_4 = \infty$$

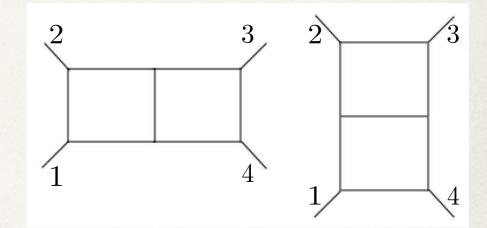


$$z_4 \in \mathbb{C}$$

"no-triangle"

Example 2: Two-loop amplitude

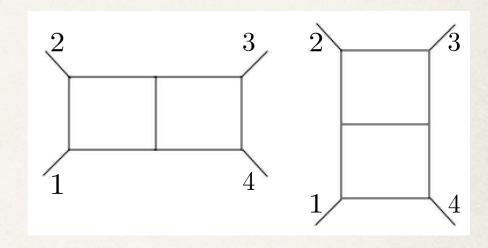
- Consider 4pt two-loop amplitude
- * Inequalities: $z_1, z_2, z_3, z_4 \ge 0$ $z_5, z_6, z_7, z_8 \ge 0$



$$(z_1 - z_5)(z_6 - z_2) + (z_3 - z_7)(z_8 - z_4) \ge 0$$

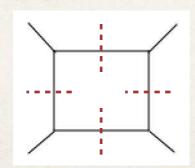
Example 2: Two-loop amplitude

- Consider 4pt two-loop amplitude
- * Inequalities: $z_1, z_2, z_3, z_4 \ge 0$ $z_5, z_6, z_7, z_8 \ge 0$



$$(z_1 - z_5)(z_6 - z_2) + (z_3 - z_7)(z_8 - z_4) \ge 0$$

Check: one-loop cut



$$z_1 = 0$$

$$z_2 = 0$$

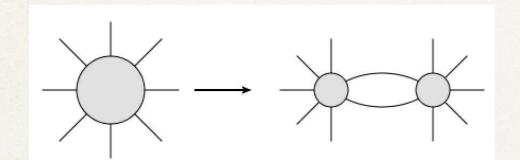
$$z_3 = 0$$

$$z_4 = 0$$

$$-z_5 z_6 - z_7 z_8 \ge 0$$

Example 3: Unitarity cut

Standard formulation



$$\operatorname{Cut} M_{n,\ell} = \sum_{\ell_1 + \ell_2 = \ell - 1} M_{n_1,\ell_1} M_{n_2,\ell_2}$$

Set of inequalities split into two sets

$$P_{j}(z_{i}) \geq 0$$
 $z_{1} = z_{2} = 0$ $P_{j}^{(1)}(z_{i}) \geq 0$ $i = 3, ..., k$ $P_{j}^{(2)}(z_{i}) \geq 0$ $i = k+1, ..., m$ $i = 1, ..., m$

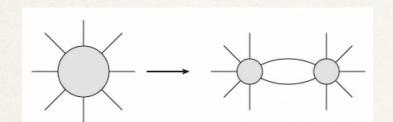
where k is a free parameter

Physics vs geometry

Standard methods

Planar diagrams

Match physical cuts/singularities



Unitarity

$$\operatorname{Cut}(I) = \int_{4}^{1} \int_{3}^{2} \int_$$

Construction not known in general

Amplituhedron

Inequalities

$$P_j(z_i) \ge 0$$

Logarithmic form

$$\Omega \sim \frac{dx}{x}$$

Complete set known

Matching zeroes

(Arkani-Hamed, Hodges, JT 2014)

- * Inequalities $P_j(z_i) \geq 0 \rightarrow \text{Unique form } \Omega$
- Smaller set of information fixes the form

$$\Omega = \frac{N(z_i)}{D(z_i)}$$
 up to an overall constant
Fixed by zeroes $N(z_i) = 0$

Physical poles

- Points outside the Amplituhedron
- Points inside with multiple poles
- Checked explicitly for several examples

Summary of the planar part

- * Amplituhedron $P_j(z_i) \ge 0$
 - Points on boundaries physical poles
 - Points outside unphysical poles

Homogeneous problem

* Differential form Ω

Standard:

- Physical, logarithmic poles $\sim \frac{dx}{x}$
- No poles outside Amplituhedron
- Residues on the inside: reduced inequalities

Conjecture:

Yes

Yes

Redundant

Generalizations

- Next step:
 - Stay planar, go beyond $\mathcal{N}=4$ SYM
 - Go to non-planar $\mathcal{N} = 4$ SYM

Generalizations

- Next step:
 - Stay planar, go beyond $\mathcal{N}=4$ SYM
 - Go to non-planar N=4 SYM

In this talk

Non-planar amplitudes

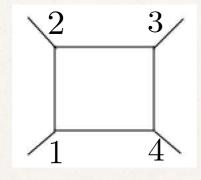
(Arkani-Hamed, Bourjaily, Cachazo, JT 2014)

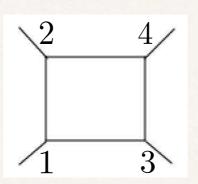
(Bern, Herrmann, Litsey, Stankowicz, JT 2014 + in progress)

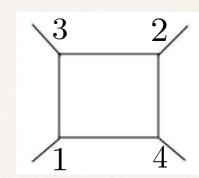
No global variables

Absence of global variables

What is ℓ ?







- We can not guess/test inequalities immediately
- * Check implications for the amplitude form Ω

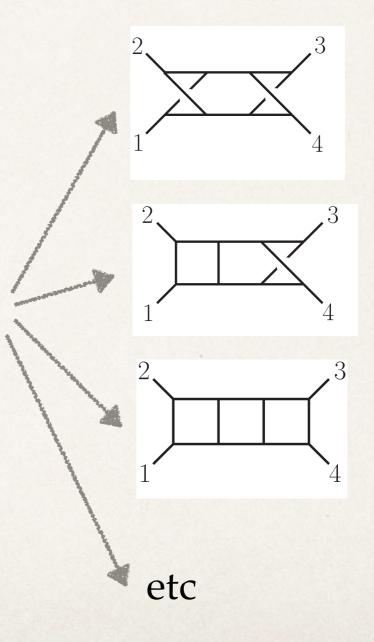
Non-planar form

- * Use of standard momenta k_i, ℓ_k
- No single form, sum of diagrams

$$\Omega = \sum_{\sigma,j} C_j \cdot \Omega_j(k_i, \ell_k)$$

 C_j color factor

Each has its own variables



Constraints

Inspired by the planar sector we conjecture:

- Logarithmic singularities $\Omega \sim$ No poles at $\ell \to \infty$
- Stronger condition: each diagram individually

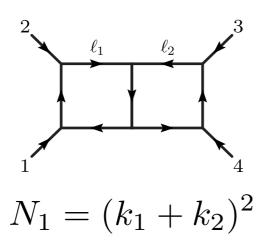
$$I_{j}(k_{i},\ell_{k}) = \frac{N_{j}(k_{i},\ell_{k})}{P_{1}^{2}P_{2}^{2}\dots P_{m}^{2}}$$

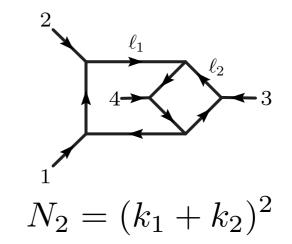
Find the basis and expand the amplitude

Expansion of the 4pt two-loop amplitude

(Bern, Rozowsky, Yan 1997)

Two basis integrals





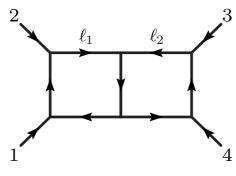
Double Poles

Poles at infinity

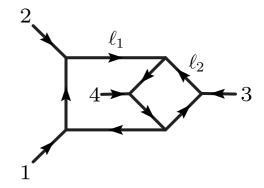
Expansion of the 4pt two-loop amplitude

(Bern, Rozowsky, Yan 1997)

Two basis integrals



$$N_1 = (k_1 + k_2)^2$$



$$N_2 = (k_1 + k_2)^2$$

Double Poles

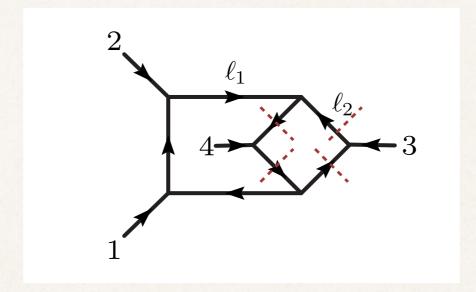
NO

YES

Poles at infinity

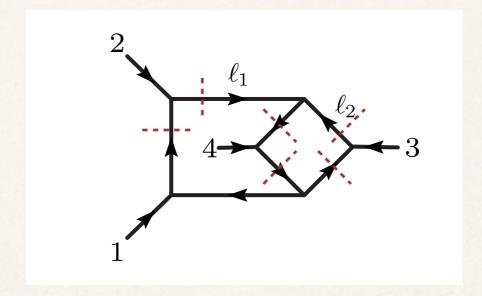
NO

YES



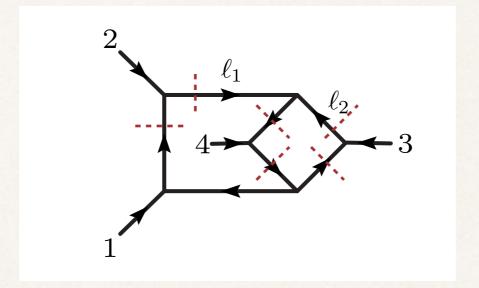
$$dI = \frac{d^4\ell_1 d^4\ell_2 (p_1 + p_2)^2}{\ell_1^2 (\ell_1 - k_2)^2 (\ell_1 - k_1 - k_2)^2 \ell_2^2 (\ell_2 - k_3)^2 (\ell_1 + \ell_2)^2 (\ell_1 + \ell_2 + k_4)^2}$$

Perform cuts $\ell_2^2 = (\ell_2 - k_3)^2 = (\ell_1 + \ell_2)^2 = (\ell_1 + \ell_2 + k_4)^2 = 0$ Localize ℓ_2 completely



$$\operatorname{Cut}_{1} dI = \frac{d^{4}\ell_{1}}{\ell_{1}^{2}(\ell_{1} - k_{2})^{2}(\ell_{1} - k_{1} - k_{2})^{2}[(\ell_{1} + k_{3})^{2}(\ell_{1} + k_{4})^{2} - \ell_{1}^{2}(\ell_{1} + k_{3} + k_{4})^{2}]}$$

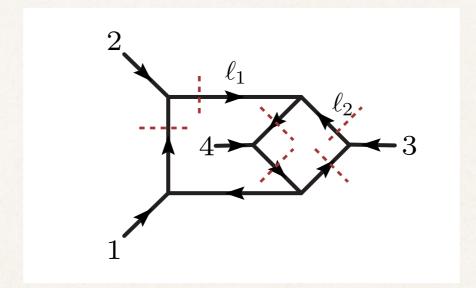
Localize $\ell_1 = \alpha k_2$ by cutting $\ell_1^2 = (\ell_1 - k_2)^2 = 0$ and the Jacobian



$$\operatorname{Cut}_{1,2} dI = \frac{d\alpha}{(\alpha+1)\alpha^2 tu}$$

Double pole for $\alpha = 0$

- There is also pole at infinity
- We want to find a numerator which cancels all that



$$\operatorname{Cut}_{1,2} dI = \frac{d\alpha}{(\alpha+1)\alpha^2 tu}$$

Double pole for $\alpha = 0$

New numerator

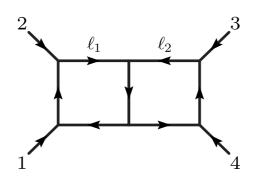
$$N = (\ell_1 + k_3)^2 + (\ell_1 + k_4)^2$$

Cancels double pole $N o \alpha s$

New expansion of the 4pt two-loop amplitude

(Arkani-Hamed, Bourjaily, Cachazo, JT, 2014)

Two basis integrals



$$N_1 = (k_1 + k_2)^2$$



$$N_2 = (\ell_1 + k_3)^2 + (\ell_1 + k_4)^2$$

Double Poles

NO

NO

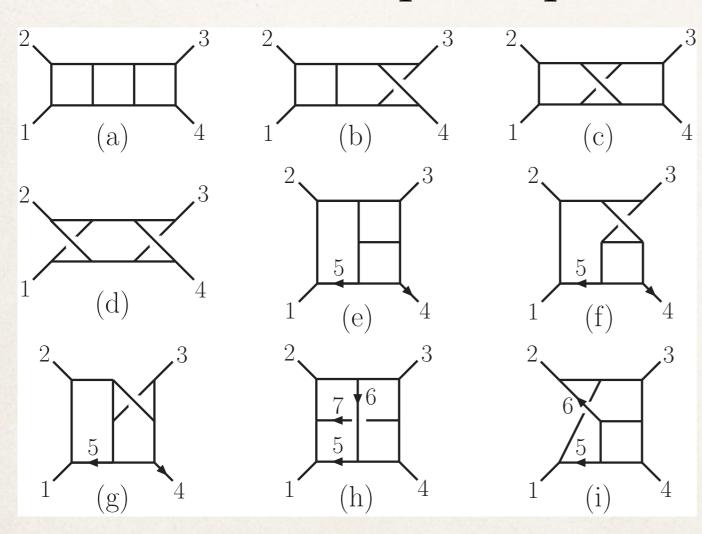
Poles at infinity

NO

NO

Expand amplitude in the basis: YES

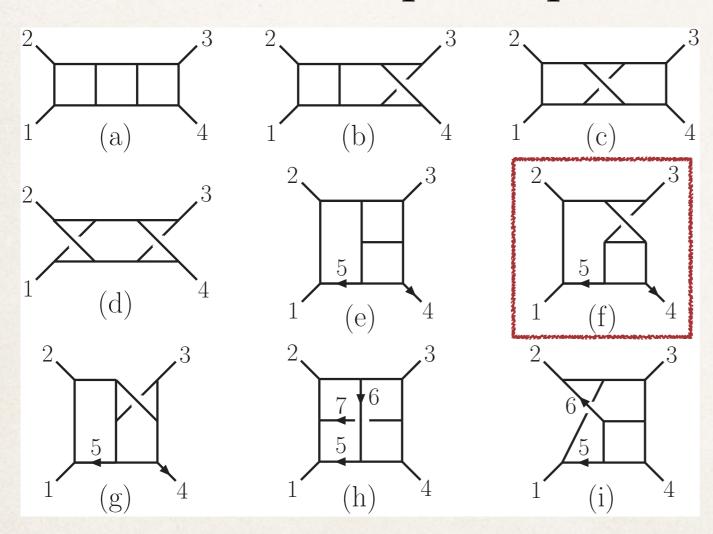
Basis for three-loop four point amplitude



(Bern, Carrasco, Dixon, Johansson, Kosower 2007)

	<u>Double</u>	Pole at
Numerator	pole	infinity
Original	YES	YES
BCJ	YES	YES

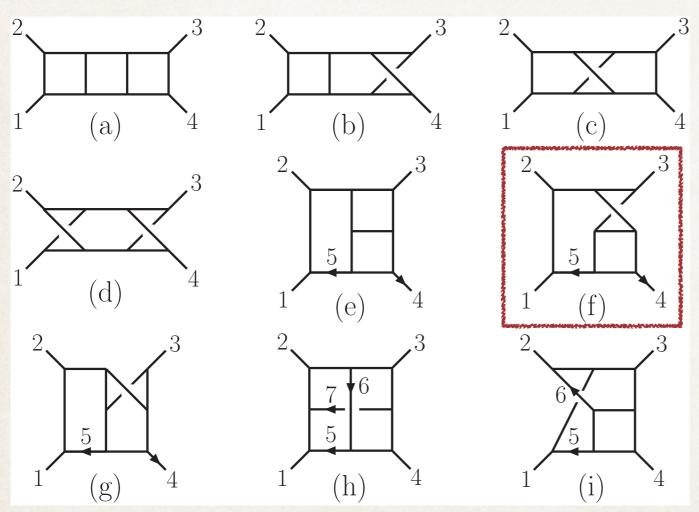
Basis for three-loop four point amplitude



Old numerator

$$N = (\ell_5 + k_4)^2 (k_1 + k_2)^2$$

Basis for three-loop four point amplitude



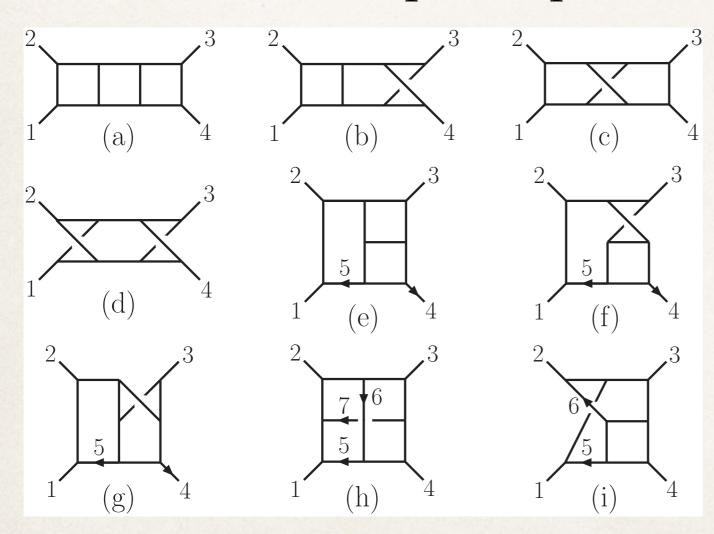
Old numerator

$$N = (\ell_5 + k_4)^2 (k_1 + k_2)^2$$

New numerator

$$N = (\ell_5 + k_4)^2 [(\ell_5 + k_3)^2 + (\ell_5 + k_4)^2]$$

Basis for three-loop four point amplitude



Double	Pole at	Numerator	pole	infinity
Original	YES	YES		
BCJ	YES	YES		
New	NO	NO		

Fixing coefficients

Standard approach:

Non-zero RHS

$$Cut(I) = \dots$$

- Unitarity cut
- Maximal cut
- Leading singularity

Proposal:

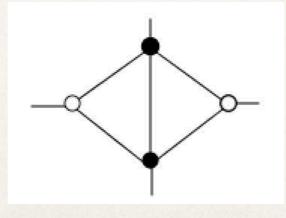
Illegal cuts Cut(I) = 0 fix uniquely result! (up to an overall constant)

Explicit check

Two-loop amplitude

$$M_2 = \sum_{\sigma} a_1 + a_2 + a_3$$

Illegal 5-cut



$$k = 1$$

Fixes relative coefficient

$$a_1 = a_2$$

Non-planar summary

- Absence of global variables: no inequalities yet
- Test of implications:
 - Logarithmic form
 - No poles at infinity
 - Diagrams + Zeroes fix the answer

Homogeneous conditions

Outlook

Final conjecture:

- Logarithmic singularities
- Fixed by zeroes

Amplitudes in $\mathcal{N}=4$ SYM are fixed by homogeneous conditions

- Future directions:
 - Search for global variables
 - Inequalities and geometric interpretation
 - Exploring $\mathcal{N}=8$ SUGRA and $\mathcal{N}<4$ SYM

Thank you for your attention