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Scattering Amplitudes

✤ Basic objects in Quantum Field Theory (QFT)

✤ Predictions for colliders: cross-sections

✤ My motivation: new ideas in QFT
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Perturbative QFT

✤ Loop expansion

✤ Integrand: rational function before integration

sum of Feynman diagrams

⌦ = d4`1 . . . d
4`L I(`j , ki, si)

I(`j , ki, si)

A =

Z

`j2R
⌦

Integrand form
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Integrand

✤ Ideal object to study: finite, well-defined

✤ Fixed by principles of QFT

✤ Qualitative information about the final amplitudes
Collinear limits: IR divergencies
Poles at infinity: UV structure
Types of singularities: transcendental properties
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Feynman diagrams

✤ Gauge redundancy: off-shell virtual particles

✤ Two principles manifest:

    I) Locality: particles interact point-like       

   II) Unitarity: sum of probabilities is 1

Amplitude:
only poles

Amplitude:
factorization

P =
X

i2�

pi
1

P 2
! 1
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Modern methods

✤ Re-express the integrand in the basis of integrals

✤ Fix coefficients using cuts

✤ Unitarity cuts:

✤ Maximal cuts, leading singularities:

I =
X

j

cj Ij

`2 = (`+Q)2 = 0
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Planar limit

✤ The integrand defined as a sum of diagrams

✤ Planar limit: dual variables

No global loop momenta
Each diagram: its own labels
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While the bubble integration measure is not logarithmic,
it is known (see e.g. [8]) that the box can be written in
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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where � is a permutation of the external legs and
�
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for � = {1, 2, 3, 4}; and the coe�cients C
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{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
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)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
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properly normalized, we can introduce an ephemeral
extra propagator by multiplying the integrand by
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x2

x3
x3

x4
x4

y1

y1

y2
y2

k1 = (x1 � x2) k2 = (x2 � x3)

`1 = (x3 � y1) `2 = (y2 � x3)
etc

Global labels
Integrand: single function
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Conditions on the amplitude

Standard methods Alternative
Planar diagrams

Match physical cuts/singularities

Construction not known in general Complete set known

?
Locality + Planarity

Unitarity

Same set of conditions
Packaged in a different way

Cut(I) =
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Maximally supersymmetric  
Yang-Mills theory in planar limit
✤ “Simplest Quantum Field Theory”

✤ Conformal + dual conformal, convergent series

✤ Toy model for QCD

✤ Past: new methods for amplitudes originated here

Tree-level amplitudes identical

Loop amplitudes simpler, no confinement

(Brink-Scherk-Schwarz 1977)
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Many faces of the theory

✤ Useful playground for many theoretical ideas

Integrability
Yangian

AdS/CFT
Strong coupling

Amplitudes/
Wilson loops

Twistor methods
Hexagon 
bootstrap

OPE expansion
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Integrand in planar N=4 SYM

✤ Superamplitudes 

✤ Dual conformal symmetry

✤ Recursion relations using on-shell diagrams

Integral basis: no triangle subdiagrams
    = no poles at infinity momentum

Logarithmic singularities

⌦ ⇠ dx

x

near x = 0

number of negative gluonsk :

10/39

In,` In,` =
X

k

⌘̃4kIn,k,`

(Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT 2012)

(Drummond, Henn, Korchemsky, Sokatchev 2006)



The Amplituhedron

(Arkani-Hamed, JT 2013)



Volume of polyhedron

✤ New kinematical variables — momentum twistors 

✤ Tree-level process: 

✤ Comparison of two calculations of recursion relations

Z 2 C3

(Hodges 2009)

gg ! 5g

THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES 7

that recover the complete hyperbolic structure. A case-by-case analysis shows that this ex-
ample admits an index structure, thus the index IT exists. This example appears in [HRS,
Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. On the topological invariance of the index. Physics predicts that when defined,
the 3D index IT depends only on the underlying 3-manifold M . Recall that [HRS] prove
that every hyperbolic 3-manifold M that satisfies

(2.9) H1(M,Z/2) → H1(M, ∂M,Z/2) is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle struc-
ture, and conversely if M has an ideal triangulation with a strict angle structure, then M is
irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

M "→ {IT | T ∈ SM}

where M is a cusped hyperbolic 3-manifold with at least one cusp and SM is the set of ideal
triangulations of M that support an index structure. The latter is a nonempty (generally
infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use
the subset SEP

M of ideal triangulations T of M which are a refinement of the Epstein-Penner
cell-decomposition of M . Again, [HRS] implies that SEP

M is nonempty assuming (2.9). But
really, we would prefer a single 3D index for a cusped manifold M , rather than a finite
collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related
by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D
index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and T̃ with N and N+1 tetrahedra related by a 2−3
move shown in Figure 1.

Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and N + 1 tetrahedra for

T̃ .

Proposition 2.13. If T̃ admits a strict angle structure structure, so does T and IT̃ = IT .

For the next proposition, a special index structure on T is given in Definition 6.2.

(Picture by Stavros Garoufalidis) 11/39



Evidence for a new structure

3

2

1
6

7

4

5

Volume of polyhedron

which we can represent as a contour integral via

M

NMHV
n

= 4!

Z
d

4
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Z
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4W
(Z0 · W)5

. (58)

In order to actually compute this volume, we need a triangulation of e
P

n

in terms of

elementary 4-simplices. We may triangulate the polytope in any way we like. The BCFW

representation of the amplitude is one particular choice, which yields the shortest expressions

for the amplitude but has spurious poles. The BCFW triangulation adds no new planes, but

does add new vertices, and the spurious poles are associated with these “spurious” vertices.

The geometrically dual choice — adding no new vertices but adding spurious planes — will

yield expressions for the amplitude that allow us to expose manifest cyclicity and locality in

a new way.

We do this by first triangulating each of the faces of e
P

n

. All the boundaries of e
P

n

lie in

the planes dual to the Z
j

; we denote the face contained in this plane by F

j,n

. Conveniently,

the faces are 3-polytopes, which will allow us to visualize them easily. We can triangulate

F
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=
P
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T
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j,n

, where each of the T �

j,n

is a tetrahedron with 4 vertices. In order to triangulate
e
P

n

, we introduce a reference “suspension point”W⇤. With each tetrahedron T

�

j,n

, we associate

a 4-simplex T �

j,n

just by adding the point W⇤ to the 4 vertices of T �

j,n

. The sum over all these

4-simplices then gives a triangulation of e
P

n

given by e
P

n

=
P

j,�

T �

j,n

.

We have a natural choice for the “suspension point”W⇤. Given that our choice of Z0 leaves

the SL(4) acting on the usual bosonic momentum-twistors invariant, it is natural to choose

W⇤ to also preserve this SL(4). Explicitly, we can choose W⇤ = (0, 0, 0, 0, 1). Finally, for a

“local” triangulation, we will choose to triangulate the faces only using the given “physical”

vertices (i i+1 j j+1).

Following [4], let us get acquainted with the faces of P̃
n

by looking at F2,n. The vertices of

F2,n are all the points of the form (1 2 k k+1) and (2 3 l l+1). Two vertices (2abc), (2xyz) are

connected by an edge if the triples (abc), (xyz) share two indices in common. In the simplest

case n = 5, the face F2,5 is just a tetrahedron with vertices (1234), (1245), (2345), (2351). For

6 particles, F2,6 has six vertices, and while e.g. (2356) is connected by an edge to (2345),

there is no edge connecting (2356) to (1234).

It is very easy to recursively build F2,n systematically, starting from the tetrahedron for

F2,5. While the vertices (1234), (1245), (2345) occur in both F2,5 and F2,6, the vertex (2351)

occurring in F2,5 is absent in F2,6; conversely there are three new vertices (2356), (1256) and

(2356) in F2,6 not contained in F2,5. Thus we can obtain F2,6 by starting with F2,5, “chopping

15

at tree-level

8. (Super) Conformal and Dual Conformal Invariance

In this section, we will describe how the Grassmannian formulation of on-shell dia-

grams makes all the symmetries of the theory—both the super-conformal and dual

super-conformal symmetries—completely manifest. Along the way, we will find it

useful to recast the on-shell di↵erential form’s dependence on external kinemati-

cal data in a way which more transparently reflects the geometry of momentum-

conservation; doing so, we will discover a correspondence between (some) cells C 2
G(k, n) with cells bC2G(k 2, n).

8.1 The Grassmannian Geometry of Momentum Conservation

Consider an arbitrary on-shell graph associated with the cell �
�

2G(k, n) labeled by

the permutation � associated with an on-shell di↵erential form f (k)

�
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As we saw in section 7, this can also be written as a residue of the top-form,
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Recall from section 4, the (ordinary) �-functions in (8.2) have the geometric

interpretation of constraining the k-plane C to be orthogonal to the 2-plane e� and

to contain the 2-plane �, [14]:

(8.3)

Because e� ⇢ �?, 4 of the 2n(= 2(n k)+2k) constraints always represent momentum-

conservation, leaving (2n 4) constraints imposed on C in general. Therefore, cells

of G(k, n) with precisely (2n 4) degrees of freedom can be fully-localized by these

constraints, and become ordinary super-functions of the external momenta; cells

of lower dimension become functions with �-function support, and cells of higher

dimension represent integration measures on auxiliary, internal degrees of freedom

(which may represent, for example, the degrees of freedom of internal loop-momenta).

The simplest example illustrating this localization is for k = 2. Here the 2-plane

C is just identified with the �-plane, and equation (8.2) directly becomes the familiar

Parke-Taylor formula for tree-level MHV super-amplitudes, [65, 106]:
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of lower dimension become functions with �-function support, and cells of higher

dimension represent integration measures on auxiliary, internal degrees of freedom

(which may represent, for example, the degrees of freedom of internal loop-momenta).

The simplest example illustrating this localization is for k = 2. Here the 2-plane

C is just identified with the �-plane, and equation (8.2) directly becomes the familiar

Parke-Taylor formula for tree-level MHV super-amplitudes, [65, 106]:

– 70 –

Grassmannian

Configurations of k-planes  
in n dimensions

(Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT 2010) (Arkani-Hamed, Cachazo, Cheung, Kaplan 2009)

Amplitude = volume All-loop order information

gg ! gg . . . g
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“Conjecture”

Amplitudes are volumes
of some regions in some space
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Strategy

✤ Simple intuitive geometric ideas: use equations

✤ Generalization: 

✤ Same equations persist

More complicated geometry

Higher dimensions
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Road to Amplituhedron
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Road to Amplituhedron

1

2 3

5
4

3

2

1
6

7

4

5

Start: 
Point inside a 

convex polygon

Amplituhedron An,k,`

A k-dim plane and ` lines
inside a (k + 4)-dim convex

space defined by n vertices



✤ Volume of             :

✤ Consistency check: Locality and Unitarity

✤ Explicit checks against reference theoretical data

Amplitudes in maximally
supersymmetric Yang-Mills theory

number of particles

k
helicity information

`
number of loops

` = 0 : Amplitudes of gluons in QCD

An,k,` n

16/39
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Volume of the space

✤ Differential form with logarithmic singularities

✤ Simple examples: 

y > x > 0 : Vol =

dx

x

dy

y � x

y > 0, x > 0 : Vol =

dx

x

dy

y

x > 0 : Vol =

dx

x

17/39

⌦ ⇠ dx

x

near x = 0



✤ In the definition of Amplituhedron

✤ Positivity: crucial property of geometry

The Amplituhedron

Y = C · Z

Amplituhedron Positive matrices:
Minors are positive

Locality, unitarity, even planarity derived from it
Hidden symmetry of this theory (Yangian) manifest

����
⇤ ⇤
⇤ ⇤

���� > 0
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Inequalities

✤ Amplituhedron variables

✤ The definition of Amplituhedron: inequalities

✤ Boundaries of the space 

Pj(zi) � 0

Pj(zi) = 0

zi

(pi, ✏j , `k) ! (xi, ⌘̃j , yk) ! (Zi, ⌘j , Z
(k)
AB) ! zi

P1 > 0

P2 > 0

P3 > 0
P4 > 0

P5 > 0

19/39



Legal and illegal boundaries

✤ Singularities and cuts of the amplitude: localize 

✤ Inequalities hold

✤ One or more inequalities violated 

zi

Pj(zi) � 0

Point inside the Amplituhedron space
Physical cut or singularity of the amplitude

Pj(zi) < 0

Point outside the Amplituhedron space
Unphysical cut or singularity of the amplitude

20/39

zi > 0`k 2 C $



Example 1: One-loop amplitude

✤ Consider 4pt one-loop amplitude

✤ Inequalities: 

✤ Boundaries of the space: 

✤ Differential form 

z1, z2, z3, z4 � 0

⌦ =
dz1
z1

dz2
z2

dz3
z3

dz4
z4

z1, z2, z3, z4 = (0,1)

1

2 3

4

21/39



Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4
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Example 1: One-loop amplitude

✤ Cuts of the amplitude
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Example 1: One-loop amplitude

✤ Cuts of the amplitude

1

2 3

4

z1 = 0

z2 = 0
z3 = 0

1

2 3

4

z4 = 0

1

2 3

4

` = 0

z4 = 1

1

2 3

4

`!1

z4 2 C
“no-triangle”
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✤ Consider 4pt two-loop amplitude

✤ Inequalities: 

Example 2: Two-loop amplitude

z1, z2, z3, z4 � 0
1

2 3

4

z5, z6, z7, z8 � 0

(z1 � z5)(z6 � z2) + (z3 � z7)(z8 � z4) � 0

1

2 3

4
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✤ Consider 4pt two-loop amplitude

✤ Inequalities: 

✤ Check: one-loop cut

Example 2: Two-loop amplitude

z1, z2, z3, z4 � 0
1

2 3

4

z5, z6, z7, z8 � 0

(z1 � z5)(z6 � z2) + (z3 � z7)(z8 � z4) � 0

1

2 3

4

z1 = 0
z2 = 0
z3 = 0
z4 = 0

�z5z6 � z7z8 � 0

⌦ vanishes on this cut
23/39



Example 3: Unitarity cut

✤ Standard formulation

✤ Set of inequalities split into two sets

Pj(zi) � 0
P (1)
j (zi) � 0

P (2)
j (zi) � 0 i = k + 1, . . . ,m

i = 3, . . . , k

i = 1, . . . ,m

z1 = z2 = 0

where k is a free parameter

CutMn,` =
X

`1+`2=`�1

Mn1,`1Mn2,`2

24/39



Physics vs geometry

Standard methods
Planar diagrams

Match physical cuts/singularities

Construction not known in general

Locality + Planarity

Unitarity

Amplituhedron

Inequalities

Pj(zi) � 0

Logarithmic form

⌦ ⇠ dx

x

Complete set known

Cut(I) =

25/39



Matching zeroes

✤ Inequalities 

✤ Smaller set of information fixes the form

✤ Checked explicitly for several examples

Pj(zi) � 0 Unique form ! ⌦

up to an overall constant
⌦ =

N(zi)

D(zi)

Physical poles

Fixed by zeroes N(zi) = 0

Points outside the Amplituhedron
Points inside with multiple poles 

(Arkani-Hamed, Hodges, JT 2014)

26/39



Summary of the planar part

✤ Amplituhedron

✤ Differential form                                

Pj(zi) � 0

⌦

Points on boundaries — physical poles
Points outside — unphysical poles

Standard:
Physical, logarithmic poles
No poles outside Amplituhedron
Residues on the inside: reduced inequalities

Conjecture:
Yes
Yes

Redundant

Homogeneous
problem

⇠ dx

x
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Generalizations

✤ Next step:

Stay planar, go beyond              SYM 

Go to non-planar               SYM

N = 4

N = 4
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Generalizations

✤ Next step:

Stay planar, go beyond              SYM 

Go to non-planar               SYM

N = 4

N = 4

In this talk
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Non-planar amplitudes

(Arkani-Hamed, Bourjaily, Cachazo, JT 2014)
(Bern, Herrmann, Litsey, Stankowicz, JT 2014 + in progress)



What is     ?

No global variables

✤ Absence of global variables

✤ We can not guess/test inequalities immediately

✤ Check implications for the amplitude form 

1 1 1

222 3

3

3 4

44

`

⌦
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Non-planar form 

✤ Use of standard momenta

✤ No single form, sum of diagrams 

✤ Each has its own variables

3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.
We also construct another version of the three-loop

four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
An important feature of the supergravity solution dis-

played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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color-ordered tree amplitude and Mandelstam invariants
stAtree
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l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
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To impose the duality (3) on the amplitude, we step

through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
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lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).
Imposing the duality on the ansatz, at this point, com-
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squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.
We also construct another version of the three-loop

four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
An important feature of the supergravity solution dis-

played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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color-ordered tree amplitude and Mandelstam invariants
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4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
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We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
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l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.
To impose the duality (3) on the amplitude, we step

through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).
Imposing the duality on the ansatz, at this point, com-

pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.
We also construct another version of the three-loop

four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
An important feature of the supergravity solution dis-

played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

etc

color factorCj

⌦ =
X

�,j

Cj · ⌦j(ki, `k)
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Constraints

✤ Inspired by the planar sector we conjecture:

✤ Stronger condition: each diagram individually

✤ Find the basis and expand the amplitude

Logarithmic singularities
No poles at 

⌦ ⇠ dx

x

` ! 1
3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.
To initially constrain the parameters, we use the uni-

tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.
To impose the duality (3) on the amplitude, we step

through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).
Imposing the duality on the ansatz, at this point, com-

pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.
We also construct another version of the three-loop

four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.
An important feature of the supergravity solution dis-

played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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Evidence 1: Two-loop amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Evidence 1: Two-loop amplitude
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free of such poles through at least two-loops.
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can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
�

In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
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)2, and notice that eI(P )

1,2,3,4 becomes the
product of two boxes—motivating the following change
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
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extra propagator by multiplying the integrand by
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and
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usually given in terms of two integrand topologies—one
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
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Evidence 1: Two-loop amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes
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dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.
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the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
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representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
first normalize it to have unit leading singularities.
This is accomplished by rescaling it according to:
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1,2,3,4, where s⌘(p
1

+p

2

)2 and t⌘(p
2

+p

3

)2

are the usual Mandelstam invariants. Now that it is
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extra propagator by multiplying the integrand by
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✤ New expansion of the 4pt two-loop amplitude

Evidence 1: Two-loop amplitude
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
�

4|2N (�·q) encodes super-momentum conservation with

q⌘(e�, e⌘); the factors KN are the permutation-invariants,

K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

(7)

and

I(NP )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
f

abc’s according to the diagrams above for N =4, and are
both equal to (p

1

+ p

2

)2 for N =8.
While the representation (5) is correct, it obscures
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[21]. These unpleasantries are of course cancelled in
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representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.

The four-point, two-loop amplitude in N =4 SYM and
N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:
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� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Numerator
Double 

pole
Pole at
infinity

Original

BCJ
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3

by various constraints. We include only those Lorentz
products not simply related to the others via momentum
conservation. After factoring out a universal factor of the
color-ordered tree amplitude and Mandelstam invariants
stAtree

4 (1, 2, 3, 4), which appears in each term for N = 4
sYM, the remaining polynomial has total degree four in
the external and loop momenta. In order to respect the
known power counting, we require that the numerator of
each diagram is at most quadratic in the loop momenta.
We also require that each kinematic numerator respect
the symmetries of the diagram, accounting for the anti-
symmetry of each cubic vertex under an interchange of
any two legs.

To initially constrain the parameters, we use the uni-
tarity method to compare each cut of the ansatz against
the corresponding cut of the N = 4 sYM amplitude,

∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (7)

invoking kinematics that place all cut lines on shell,
l2i = 0. Once a solution consistent with a complete set
of cuts is found, we have the amplitude. From ref. [11]
we know that for this amplitude the maximal and near
maximal cuts are sufficient (although we also evaluated
other complete sets of cuts as a cross check). We perform
all cut evaluations in D dimensions using the known D-
dimensional results [19] for the cuts. Matching to the
cut conditions determines the amplitude but still allows
freedom, as contact terms can be assigned to various di-
agrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we
can describe any internal line, carrying some momentum
ls, in terms of formal graph vertices V (pa, pb, ls), and
V (−ls, pc, pd) where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of fig. 1.
The duality (3) requires the following:

n({ V (pa, pb, ls), V (−ls, pc, pd), · · · }) =

n({ V (pd, pa, lt), V (−lt, pb, pc), · · · })

+n({ V (pa, pc, lu), V (−lu, pb, pd), · · · }) , (8)

where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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FIG. 2: Loop diagrams contributing to both N = 4 sYM and

N = 8 sugra three-loop four-point amplitudes. Integrals (6)

are specified by combining their propagators with numerator

factors given in table I. The (internal) symmetry factor for di-

agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Old numerator

New numerator

N = (`5 + k4)
2[(`5 + k3)

2 + (`5 + k4)
2]

N = (`5 + k4)
2(k1 + k2)

2
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Evidence 2: Three-loop amplitude

✤ Basis for three-loop four point amplitude3
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of cuts is found, we have the amplitude. From ref. [11]
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where n represents the numerator associated with the di-
agram specified by the set of vertices, the omitted vertices
are identical in all three diagrams, and ls ≡ (pc + pd),
lt ≡ (pb + pc) and lu ≡ (pb + pd) in the numerator ex-
pressions. There is one such equation for every propa-
gator in every diagram. Solving the system of distinct
equations enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in fig. 2 contribute, with the nu-
merator factors given in table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
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agram (d) is S(d) = 2, the rest are unity. All distinct external

permutations of each diagram contribute.

squaring these numerator factors should give the numer-
ators for N = 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11, 19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off-shell, albeit with sums
over states and restricted kinematics. This suggests that
higher-point amplitudes will be consistent with our con-
jecture.

We also construct another version of the three-loop
four-point N = 8 sugra expression via (6) using the ni

given in table I of the present Letter and the correct,
but duality violating, ñi from table I of ref. [11]. We find
that this is also a valid representation of the N = 8 sugra
three-loop four-point amplitude, providing a strong con-
sistency check on table I and our conjecture. Such repre-
sentations are valid at loop level by the same argument
as at tree level: they differ from one where both ni and
ñi satisfy the duality by a generalized gauge transforma-
tion (2). In the same spirit, we expect that N = p + 4
sugra loop amplitudes can be obtained simply by taking
any corresponding N = p sYM amplitude and replacing
the color factors ci with duality satisfying ni of N = 4
sYM theory.

An important feature of the supergravity solution dis-
played in table I is that each contribution to eq. (6) has
no worse power counting than the leading behavior of the
N = 4 sYM amplitude. This is worthy of further study,

Numerator
Double 

pole
Pole at
infinity

Original

BCJ

YES YES

YES YES

New NO NO

Expansion of the amplitude:
YES
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Fixing coefficients

✤ Standard approach:

✤ Proposal: 

Illegal cuts                       fix uniquely result!

Unitarity cut
Maximal cut
Leading singularityNon-zero RHS 

(up to an overall constant)

Cut(I) = . . .

Cut(I) = 0
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Explicit check

✤ Two-loop amplitude
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While the bubble integration measure is not logarithmic,
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Notice that while both the triangle and box integrals

are logarithmic, only the box is free of a pole at ` 7!1.
And while both integrals are UV-finite (unlike the bub-
ble), poles at infinity could possibly signal bad UV be-
havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.
There are many reasons to expect that loop amplitudes

which are logarithmic have uniform (maximal) transcen-
dentality; and integrands free of any poles at infinity are
almost certainly UV-finite. This makes it natural to to
ask whether these properties can be seen term-by-term
at the level of the integrand.

LOGARITHMIC FORM OF THE TWO-LOOP
FOUR-POINT AMPLITUDE IN N =4 AND N =8

Our experience with planar N = 4 SYM suggests that
the natural representation of the integrand which makes
logarithmic singularities manifest in terms of on-shell di-
agrams, which are not in general manifestly local term-
by-term. However at low loop-order, it has also been
possible to see logarithmic singularities explicitly in par-
ticularly nice local expansions [18, 19]. Since we don’t yet
have an on-shell reformulation of ‘the’ integrand beyond
the planar limit (which may or may not be clearly defined
for non-planar amplitudes) we will content ourselves here
with an investigation of the singularity structure starting
with known local expansions of two-loop amplitudes.
The four-point, two-loop amplitude in N =4 SYM and

N =8 SUGRA has been known for some time, [20]. It is
usually given in terms of two integrand topologies—one
planar, one non-planar—and can be written as follows:

A2-loop

4,N =
KN
4

X

�2S4

Z h
C

(P )

�,NI(P )

� +C
(NP )

�,N I(NP )

�

i
�

4|2N�
�·q

�
(5)

where � is a permutation of the external legs and
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K
4

⌘ [3 4][4 1]

h1 2ih2 3i and K
8

⌘
✓

[3 4][4 1]

h1 2ih2 3i

◆
2

; (6)

the integration measures I(P )

� , I(NP )

� correspond to,

(7)

and

I(NP )

1,2,3,4 ⌘ (p
1

+ p

2

)2 ⇥ (8)

for � = {1, 2, 3, 4}; and the coe�cients C

(P ),(NP )

{1,2,3,4},N are
the color-factors constructed out of structure constants
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abc’s according to the diagrams above for N =4, and are
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)2 for N =8.
While the representation (5) is correct, it obscures

the fact that the amplitudes are ultimately logarithmic,
maximally transcendental, and free of any poles at
infinity. This is because the non-planar integral’s

measure, I(NP )

� , is not itself logarithmic. We will show
this explicitly below by successively taking residues until
a double-pole is encountered; but it is also evidenced
by the fact that its evaluation (using e.g. dimensional
regularization) is not of uniform transcendentality,
[21]. These unpleasantries are of course cancelled in
combination, but we would like to find an alternate
representation of (5) which makes this fact manifest
term-by-term. Before providing such a representation,
let us first show that the planar double-box integrand
can be put into dlog-form, and then describe how the
non-planar integrands can be modified in a way which
makes them manifestly logarithmic.

The Planar Double-Box Integral I(P )
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In order to write I(P )

1,2,3,4 in dlog-form, we should
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And while both integrals are UV-finite (unlike the bub-
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havior. Although the absence of poles at infinity may
not be strictly necessary for finiteness, the amplitudes
for both N = 4 SYM and N =8 SUGRA are remarkably
free of such poles through at least two-loops.

There are many reasons to expect that loop amplitudes
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at the level of the integrand.
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Non-planar summary

✤ Absence of global variables: no inequalities yet

✤ Test of implications:
Logarithmic form
No poles at infinity
Diagrams + Zeroes fix the answer

Homogeneous conditions
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Outlook

✤ Final conjecture:

✤ Future directions:

Amplitudes in               SYM are fixed by homogeneous conditionsN = 4

Search for global variables
Inequalities and geometric interpretation
Exploring                SUGRA and               SYM N = 8 N < 4

Logarithmic singularities
Fixed by zeroes
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