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I Review of magical supergravities in various dimensions.

I Orbits of extremal BPS and non-BPS black hole solutions in five dimensions and
conformal extensions of 5d U-duality groups as spectrum generating symmetry
group.

I Orbits of extremal BPS and non-BPS black hole solutions in four dimensions
and quasiconformal extensions of 4d U-duality groups as spectrum generating
symmetry group.

I Quantum spectra of extremal 4d black holes and unitary representations of their
3d U-duality groups

I Quantization of quasiconformal group actions, minimal unitary realizations and
harmonic superspace

I Minimal unitary representations of noncompact groups and supergroups and
AdS/CFT dualities

I Quantum spectra of magical and maximal sugras and the minimal unitary
realizations of their 3d U-duality groups.

I Open problems
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I Bosonic part of the 5D Maxwell-Einstein supergravity Lagrangian
(MESGT) MG, Sierra and Townsend (1983)
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coupling of (nV − 1) vector multiplets (Aa
µ, λ

ai , ϕa) to N = 2

supergravity (gµν , ψ
i
µ,Aµ) (I , J,K = 1, . . . , nV , i=1,2 , x, a = 1, . . . , (nV − 1) )

I 5D, N = 2 MESGT is uniquely determined by the constant
symmetric tensor CIJK .

I 5D MESGTs with symmetric scalar manifolds G/H such that G is a
symmetry of the Lagrangian ⇐⇒ CIJK is given by the norm
(determinant) N3 of a Euclidean Jordan algebra J of degree 3.

N3(J) = CIJKhIhJhK

Euclidean J :⇐⇒ X 2 + Y 2 = 0 =⇒ X = Y = 0 ∀X , Y ∈ J
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Symmetry Groups of Simple Jordan algebras
n × n Hermitian matrices over the division algebra A form a Jordan algebra JAn under
the symmetric product A · B ≡ 1/2(AB + BA).

J Rot(J) Lor(J) Conf (J)

JC2 SU(2) SL(2,C) SU(2, 2)

JRn SO(n) SL(n,R) Sp(2n,R)

JCn SU(n) SL(n,C) SU(n, n)

JHn USp(2n) SU∗(2n) SO∗(4n)

JO3 F4 E6(−26) E7(−25)

Γ(1,d) SO(d) SO(d , 1) SO(d , 2)

Table: The complete list of simple Euclidean Jordan algebras and their rotation (
automorphism), ”Lorentz” ( reduced structure) and ”Conformal” ( linear fractional)
groups. The symbols R, C, H, O represent the four division algebras. JAn denotes a
Jordan algebra of n × n hermitian matrices over A. Γ(1,d) denotes the Jordan algebra
of Dirac gamma matrices.
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I Unified N = 2 Maxwell-Einstein Supergravity theories in 5d ⇔ all the vectors
fields including the graviphoton transform in an irreducible representation of a
simple U-duality group of the action.

I There exist only four unified MESGTs in d = 5 with symmetric target spaces .
They are defined by the four simple Euclidean Jordan algebras JA3 of 3× 3
Hermitian matrices over R,C,H and O and describe the coupling of 5, 8, 14 and
26 vector multiplets to supergravity. Their symmetries in 5,4 and 3 dimensions
give the groups of the Magic Square of Freudenthal, Rozenfeld and Tits =⇒
Magical supergravity theories ( GST 1983)

I Scalar manifolds of five dimensional magical sugras are the irreducible
symmetric spaces

J = JR3 JC3 JH3 JO3
M5 = SL(3,R)/SO(3) SL(3,C)/SU(3) SU∗(6)/USp(6) E6(−26)/F4

I The generic Jordan family defined by non-simple Jordan algebras
J = Γ(1,n−1) ⊕ R has the scalar manifold (SO(n − 1, 1)× SO(1, 1)) /SO(n − 1)

I In addition there exist three infinite families of unified MESGT’s in 5d whose
scalar manifolds are neither symmetric nor homogeneous! They are defined by
Lorentzian Jordan of degree n ≥ 3 generated by n × n matrices over R,C,H
Hermitian with respect to the Lorentzian metric η (MG, Zagermann 2003)

(Aη)† = Aη
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I Under dimensional reduction of 5d MESGTs defined by Euclidean Jordan
algebras to four dimensions one has

M5 =
Lor(J)

Rot(J)
⇒ M4 =

Conf (J)

L̃or(J)× U(1)

where L̃or(J) is the compact real form of the Lorentz group of J.

I The bosonic sector of dimensionally reduced Lagrangian is

L(4) = −
1

2
R − gI J̄(∂µz

I )(∂µz̄J) +
1

4
Im(NAB)FA

µνF
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1

8
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B
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In 5D: Vector fields AµI ⇔ Elements of Jordan algebra J

In 4D: FA
µν ⊕ F̃A

µν ⇔ Freudenthal triple system (FTS) F(J) :

F(J) 3 X =

R J F 0
µν F I

µν

⇔
J̃ R F̃ I

µν F̃ 0
µν

Automorphism group of F(J) ∼= Conformal group of J
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N = 2 MESGTs reduce to N = 4 supersymmetric sigma models coupled to gravity in
d = 3. The target manifolds of magical supergravity theories in d = 3 are the
exceptional quaternionic symmetric spaces:

I F4(4)

Usp(6)×USp(2)
,

E6(2)

SU(6)×SU(2)
,

E7(5)

SO(12)×SU(2)
,

E8(−24)

E7×SU(2)

I The generic Jordan family of MESGT reduced to d = 3 have the target spaces:
SO(n+2,4)

SO(n+2)×SO(4)

I Pure N = 2 supergravity reduces to N = 4 sigma model with target space
G2(2)

SO(4)
.

Exceptional N = 2 versus Maximal N = 8 Supergravity:

I The exceptional N = 2 supergravity is defined by the exceptional Jordan algebra
JO3 of 3× 3 Hermitian matrices over real octonions O. Its global invariance
group in 5D is E6(−26) with maximal compact subgroup F4.

I The C-tensor CIJK of N = 8 supergravity in five dimensions can be identified
with the symmetric tensor given by the cubic norm of the split exceptional
Jordan algebra JOs

3 defined over split octonions Os . Its global invariance group
in 5D is E6(6) with maximal compact subgroup USp(8).

I In D = 4 and D = 3 the exceptional supergravity has E7(−25) and E8(−24) as its
U-duality group while the maximal N = 8 supergravity has E7(7) and E8(8),
respectively.
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D = 6 D = 5 D = 4 D = 3

SO(9,1)
SO(9)

−→
E6(−26)

F4
−→

E7(−25)

E6×SO(2)
−→

E8(−24)

E7×SU(2)

SO(5,1)
SO(5)

−→ SU∗(6)
USp(6)

−→ SO∗(12)
U(6)

−→
E7(−5)

SO(12)×SU(2)

SO(3,1)
SO(3)

−→ SL(3,C)
SO(3)

−→ SU(3,3)
SU(3)×SU(3)×U(1)

−→
E6(+2)

SU(6)×SU(2)

SO(2,1)
SO(2)

−→ SL(3,R)
SO(3)

−→ Sp(6,R)
U(3)

−→
F4(+4)

USp(6)×USp(2)

Table: Scalar target spaces of magical supergravities in 6, 5, 4 and 3
dimensions.

6d origins of magical supergravities was first investigated by Romans and later by van

Proeyen and others.

M. Günaydin, Paul Townsend Fest, July 2-3, 2012 8



Magical Supergravity Theories in 6 Dimensions coupled to
Hypermultiplets and Their Gaugings

MG, Samtleben , Sezgin , 1012.1818

Chiral N = (1, 0) supergravity coupled to nT tensor multiplets, nV vector
multiplets and nH hypermultiplets:

supergravity and tensor multiplets : {em
µ , ψ

i
µ,B

I
µν , χ

ai , LI} ,

vector multiplets : {AA
µ, λ

Ai} ,

hypermultiplets : {φX , ψr} ,

I = 0, 1, . . . , nT , a = 1, . . . , nT , A = 1, . . . , nV , X =

1, . . . , 4nH , r = 1, . . . , 2nH . The gravitino, tensorino and gaugino are all

doublets of the R-symmetry group USp(2)R (i = 1, 2). All fermions are

symplectic Majorana-Weyl, where (ψi
µ, λ

Ai ) have positive chirality and

(χai , ψr ) have negative chirality. LI denotes a representative of the coset

space SO(nT , 1)/SO(nT ) parameterized by nT real scalars of tensor

multiplets.
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I nT scalars of tensor multiplets parameterize the coset SO(nT , 1)/SO(nT ).
I Magical supergravities have nT = 2, 3, 5, 9 tensor multiplets with the vectors

transforming in the spinor representation of SO(nT , 1)

GT Rv AA
µ ΓIAB Rten

SO(9, 1) 16c MW ΓIAB 10

SO(5, 1)× USp(2) (4c , 2) SMW, A = (αr) ΓIαr,βs = ΓIαβεrs (6, 1)

SO(3, 1)× U(1) (2, 1)+ + (1, 2)− W, A = {α, β̇}
(

0 ΓI
αβ̇

Γ̄Iα̇β 0

)
(2, 2)0

SO(2, 1) 2 M ΓIAB 3

Table: GT = global symmetry groups, Rv= the representation of
vector fields under GT ; Rten =representation of tensors under GT .

I Magical supergravities satisfy

ΓI (ABΓI
C)D = 0

which are the Fierz identities of supersymmetric Yang-Mills theories in the
critical dimensions 3, 4, 6, 10 and follow from the adjoint identities satisfied by
their CIJK tensors (Sierra 1987). Hence the Abelian gauge anomaly vanishes:

A = cεµνλρσεΓIABΓI
CDΛAFB

µνF
C
λρF

D
σε
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M/Superstring Theoretic Origins of Magical Sugras
Quaternionic magical 4d MESGT without any hypermultiplets can be obtained from
IIB superstring by compactification on an orbifold of T 4 × S1 × S1. It has the same
bosonic field content as the N = 6 supergravity. Sen, Vafa (1995) & MG 2006
The 6d octonionic magical MESGT coupled to 28 hypermultiplets parametrizing the
quaternionic symmetric space E8(−24)/E7 × SU(2) is free of gravitational anomalies.
(nH − nV + 29nT = 273). Its 4d scalar manifold contains the moduli space of FHSV
model which is obtained from IIB superstring by compactification on a self-mirror
Calabi-Yau manifold with Hodge numbers h(1,1) = h(2,1) = 11 : MG (Paris 2006).

MV ×MH =
E7(−25)

E6 × U(1)
×

E8(−24)

E7 × SU(2)
⊃

SO(10, 2)× SU(1, 1)

SO(10)× U(1)× U(1)
×

SO(12, 4)

SO(12)× SO(4)

Bianchi and Ferrara (2008) reconsidered the string derivation of FSHV model over the
Enriques Calabi-Yau and argued that the octonionic magical MESGT admits a string
interpretation closely related to the Enriques model.
Type IIB superstring theory compactified over a CY threefold constructed by Todorov
leads to the complex magical N = 2 MESGT in d = 4 with moduli space

M4 =
SU(3, 3)

SU(3)× SU(3)× U(1)

coupled to (h(1,1) + 1) = 30 hypermultiplets.

The hyper-free N = 2 string models based on asymmetric orbifolds with N = (4, 1)

worldsheet superconformal symmetry using 2D fermionic construction given by

Dolivet, Julia and Kounnas include the complex and quaternionic magical

supergravities in d = 4.
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U-duality Orbits of Extremal , Spherically Symmetric Stationary
Black Hole Solutions of 5D Supergravity Theories with Symmetric
Target Spaces: ( MG and Ferrara, 1997 )

I The black hole potential that determines the attractor flow
takes on the following form for N = 2 MESGTs: (Ferrara, Gibbons,

Kallosh, Strominger )

V (φ, q) = qI
◦
a
IJ

qJ

where
◦
aIJ is the ”metric” of the kinetic energy term of the

vector fields. The (n + 1) dimensional charge vector in an
extremal BH background is given by

qI =

∫
S3

HI =

∫
S3

◦
aIJ ∗F J (I = 0, 1, ...n)

The entropy S of an extremal black hole solution of N = 2
MESGT with charges qI is determined by the value of the
black hole potential V at the attractor points

SBPS = (Vcritical)
3/4 =

(
C IJKqIqJqK

)3/4
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J OBPS = Str0(J)/Aut(J)
JR

3 SL(3,R)/SO(3)
JC

3 SL(3,C)/SU(3)
JH

3 SU∗(6)/USp(6)

JO
3 E6(−26)/F4

R⊕ Γ(1,n−1) SO(n − 1, 1)× SO(1, 1)/SO(n − 1)

Table: Orbits of spherically symmetric stationary BPS black hole
solutions in 5D MESGTs defined by Euclidean Jordan algebras J of
degree three. U-duality and stability groups are given by the Lorentz (
reduced structure ) and rotation ( automorphism) groups of J.

J Onon−BPS = Str0(J)/Aut(J(1,2))
JR

3 SL(3,R)/SO(2, 1)
JC

3 SL(3,C)/SU(2, 1)
JH

3 SU∗(6)/USp(4, 2)

JO
3 E6(−26)/F4(−20)

R⊕ Γ(1,n−1) SO(n − 1, 1)× SO(1, 1)/SO(n − 2, 1)

Table: Orbits of non-BPS extremal BHs with non-zero entropy.
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The orbits of BPS black hole solutions of N = 8
supergravity theory in five dimensions.

The 1/8 BPS black holes with non-vanishing entropy has the orbit

O1/8−BPS =
E6(6)

F4(4)

Maximal supergravity theory admits 1/4 and 1/2 BPS black hole
solutions with vanishing entropy. Their orbits under U-duality are

O1/4−BPS =
E6(6)

O(5, 4)sT16

O1/2−BPS =
E6(6)

O(5, 5)sT16

Vanishing entropy means vanishing cubic norm. Thus the black hole
solutions corresponding to vanishing entropy has additional symmetries
beyond the five dimensional U-duality group.

=⇒ They are invariant under the generalized special conformal

transformations of the underlying Jordan algebras.
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I The proposal: the conformal groups Conf [J] of underlying
Jordan algebras J of supergravity theories must act as
spectrum generating symmetry groups.
Conf [J] leaves invariant light-like separations with respect to
a cubic distance function N3(J1 − J2) and admits a 3-grading
with respect to their Lorentz subgroups

Conf [J] = KJ ⊕ Lor(J)×D ⊕ TJ

Lor(J) is the 5D U-duality group that leaves the cubic norm
invariant.

I Conf [J]⇔ U-duality group of corresponding 4D supergravity.
=⇒ 4D U-duality groups must act as spectrum generating
symmetry groups of corresponding five dimensional
supergravity theories.

M. Günaydin, Paul Townsend Fest, July 2-3, 2012 15



I U-duality group G4 of a 4D Maxwell-Einstein supergravity
defined by a Jordan algebra J of degree three ⇔
G4 ≡ Aut(F(J)) ≡ Conf [J]

I The entropy of an extremal dyonic black hole with charges
(p0, pI , q0, qI ) is given by the quartic invariant Q4(q, p) of the
Freudenthal triple system F(J).

I black hole attractor equations ⇒ criticality conditions for
black hole scalar potential

VBH ≡ |Z |2 + G I J(DIZ )(DJZ )

Z ≡ central charge function.

I

∂IVBH = 0

implies

2Z DIZ + iCIJKG JJGKKDJZ DKZ = 0
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J

1
2

-BPS orbits
O 1

2
−BPS

non-BPS, Z 6= 0 orbits
Onon−BPS,Z 6=0

non-BPS, Z = 0 orbits
Onon−BPS,Z=0

− SU(1,n+1)
SU(n+1)

− SU(1,n+1)
SU(1,n)

R⊕ Γ(1,n−1)
SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2+n)

SU(1,1)⊗SO(2,2+n)
SO(1,1)⊗SO(1,1+n)

SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2,n)

JO3
E7(−25)

E6

E7(−25)
E6(−26)

E7(−25)
E6(−14)

JH3
SO∗(12)
SU(6)

SO∗(12)
SU∗(6)

SO∗(12)
SU(4,2)

JC3
SU(3,3)

SU(3)⊗SU(3)
SU(3,3)
SL(3,C)

SU(3,3)
SU(2,1)⊗SU(1,2)

JR3
Sp(6,R)
SU(3)

Sp(6,R)
SL(3,R)

Sp(6,R)
SU(2,1)

Table: Non-degenerate orbits of N = 2, D = 4 MESGTs with symmetric
scalar manifolds. Except for the first row all such theories originate from
five dimensions and are defined by Jordan algebras that are indicated in
the first column. (MG & Ferrara, 1997) ( Bellucci, Ferrara , MG, Marrani , 2006 )

M. Günaydin, Paul Townsend Fest, July 2-3, 2012 17



I The orbits of BH solutions of 4D N = 8 supergravity under
E7(7):

I4 > 0 : O 1
8
−BPS =

E7(7)

E6(2)
⇐⇒ 1

8
-BPS;

I4 < 0 : Onon−BPS =
E7(7)

E6(6)
⇐⇒ non-BPS.

Generic light-like orbit with 1 vanishing eigenvalue:

E7(7)

F4(4)sT26

Critical light-like orbit with 2 vanishing eigenvalues:

E7(7)

O(6, 5)s(T32 ⊕ T1)

Doubly critical light-like orbit with 3 vanishing eigenvalues :

E7(7)

E6(6)sT27
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I Classification of the orbits of spherically symmetric stationary
extremal black holes of 4D, N = 8 sugra and 4D, N = 2
MESGTs with symmetric target spaces. ( Ferrara and MG , 1997 ).

I Question: Can the 3D U-duality groups act as spectrum
generating conformal symmetries of corresponding 4D
supergravity theories ? ( MG, Koepsell, Nicolai 1997 )

I No conformal realization for any real forms of E8,G2 and F4

⇔ No 3-grading with respect to a subgroup of maximal rank.

I However, all simple Lie algebras admit a 5-grading with
respect to a subalgebra of maximal rank

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

such that the grade ±2 subspaces are one-dimensional.
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I QUASICONFORMAL REALIZATION OF E8(8) MG, Koepsell, Nicolai, 2000

E8(8) = 1−2 ⊕ 56−1 ⊕ E7(7) + SO(1, 1)⊕ 56+1 ⊕ 1+2

g = K̃ ⊕ ŨA ⊕ [S(AB) + ∆]⊕ UA ⊕ K

over a space T coordinatized by the elements X of the exceptional FTS F(J
OS
3 )

plus an extra singlet variable x : 56+1 ⊕ 1+2 ⇔ (X , x) ∈ T :

K (X ) = 0

K (x) = 2

UA (X ) = A

UA (x) = 〈A, X〉
SAB (X ) = (A, B, X )

SAB (x) = 2 〈A, B〉 x

ŨA (X ) =
1

2
(X , A, X )− Ax

ŨA (x) = −
1

6
〈(X , X , X ) , A〉 + 〈X , A〉 x

K̃ (X ) = −
1

6
(X , X , X ) + Xx

K̃ (x) =
1

6
〈(X , X , X ) , X〉 + 2 x2

Freudenthal triple product ⇔ (X ,Y ,Z)
Skew-symmetric invariant form ⇔ 〈X ,Y 〉 = −〈Y ,X 〉
Quartic invariant of E7(7) ⇔ 〈(X ,X ,X ),X 〉
A,B, .. ∈ F(J

OS
3 )
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I Geometric meaning of the quasiconformal action of the Lie
algebra g on the space T ?

I Define a quartic norm of X = (X , x) ∈ T as
N4(X ) := Q4(X )− x2

Q4(X ) is the quartic norm of the underlying Freudenthal
system and X ∈ F .

I Define a quartic “distance” function between any two points
X = (X , x) and Y = (Y , y) in T as

d(X ,Y) := N4(δ(X ,Y)

δ(X ,Y) is the “symplectic” difference of X and Y :

δ(X ,Y) := (X − Y , x − y + 〈X ,Y 〉) = −δ(Y,X )

I Light-like separations d(X ,Y) = 0 are left invariant under
quasiconformal group action.
−→ Quasiconformal groups are the invariance groups of
”light-cones” defined by a quartic distance function.

I E8(8) is the invariance group of a quartic light-cone in 57
dimensions!
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I Scalar manifolds of N = 2 MESGTs defined by Jordan
algebras of degree three ( 8 real supersymmetries)

M5 =
Lor(J)

Rot(J)

M4 =
Conf (J)

L̃or(J)× U(1)

M3 =
QConf (J)

C̃onf (J)× SU(2)
I Quasiconformal extensions of 4D U-duality groups ≡ 3D

U-duality groups.
I Extremal black hole solution of 4D , N = 8 sugra with 56

charges qI , p
I and entropy s: light-like vectors in 57

dimensional charge-entropy space

N4(qI , p
I , s) = 0→ Q4 = s2

I Proposal: 3D U-duality groups must act as spectrum
generating symmetry groups of the extremal black hole
solutions of 4D supergravity theories. GKN 2000
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M5 = M4 = M3 =

J Lor (J) /Rot (J) Conf (J) / L̃or (J)× U(1) QConf(F(J))/ ˜Conf (J)× SU(2)

JR3 SL(3,R)/SO(3) Sp(6,R)/U(3) F4(4)/USp(6)× SU(2)

JC3 SL(3,C)/SU(3) SU(3, 3)/S (U(3)× U(3)) E6(2)/SU(6)× SU(2)

JH3 SU∗(6)/USp(6) SO∗(12)/U(6) E7(−5)/SO(12)× SU(2)

JO3 E6(−26)/F4 E7(−25)/E6 × U(1) E8(−24)/E7 × SU(2)

R⊕ Γ(1,n−1)
SO(n−1,1)×SO(1,1)

SO(n−1)
SO(n,2)×SU(1,1)

SO(n)×SO(2)×U(1)
SO(n+2,4)

SO(n+2)×SO(4)

Table: Scalar manifolds Md of N = 2 MESGT’s defined by Jordan algebras J of

degree 3 in d = 3, 4, 5 dimensions. L̃or (J) and C̃onf (J) denote the compact real
forms of the Lorentz group Lor (J) and conformal group Conf (J) of a Jordan algebra
J. QConf (F (J)) denotes the quasiconformal group associated with J.
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I A concrete implementation of the proposal that 3D U-duality
groups must act as spectrum generating quasiconformal groups of
spherically symmetric stationary BPS black holes of 4D supergravity
theories:

MG, Neitzke, Pavlyk, Pioline, Waldrom 2005,2006

I Equations of motion for a spherically symmetric stationary black
hole of four dimensional supergravity theories are equivalent to
equations for geodesic motion of a fiducial particle on the moduli
space M∗

3 of 3D supergravity obtained by reduction on a time-like
circle.

Breitenlohner, Gibbons, Maison 1987

I 3D scalar manifold from compactification on a space-like (time-like)
circle

M3 =
G3

K3

(
M∗

3 =
G3

H3

)
where K3 is the maximal compact subgroup of G3 and H3 is a
noncompact real form of K3. For N = 2 MESGTs defined by Jordan
algebras M∗

3 is a para-quaternionic symmetric space.
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nQ nV M4 M∗
3 J

8 1 ∅ U(2,1)
U(1,1)×U(1) R

8 2 SL(2,R)
U(1)

G2,2

SO(2,2) R
8 7 Sp(6,R)

SU(3)×U(1)

F4(4)

Sp(6,R)×SL(2,R) JR
3

8 10 SU(3,3)
SU(3)×SU(3)×U(1)

E6(2)

SU(3,3)×SL(2,R) JC
3

8 16 SO∗(12)
SU(6)×U(1)

E7(−5)

SO∗(12)×SL(2,R) JH
3

8 28
E7(−25)

E6×U(1)

E8(−24)

E7(−25)×SL(2,R) JO
3

8 n + 2 SL(2,R)
U(1) ×

SO(n,2)
SO(n)×SO(2)

SO(n+2,4)
SO(n,2)×SO(2,2) R⊕ Γ(1,n−1)

16 n + 2 SL(2,R)
U(1) ×

SO(n−4,6)
SO(n−4)×SO(6)

SO(n−2,8)
SO(n−4,2)×SO(2,6) R⊕ Γ(5,n−5)

24 16 SO∗(12)
SU(6)×U(1)

E7(−5)

SO∗(12)×SL(2,R ) JH
3

32 28
E7(7)

SU(8)

E8(8)

SO∗(16) JOs

3

Table: Above we give the number of supercharges nQ , 4D vector fields nV , scalar
manifolds of supergravity theories before and after reduction along a timelike Killing
vector from D = 4 to D = 3, and associated Jordan algebras J. Isometry groups of 4D
and 3D supergravity theories are given by Conf (J) and QConf (J), of J, respectively.

M. Günaydin, Paul Townsend Fest, July 2-3, 2012 25



I The quantization of the motion of fiducial particle on M∗3
leads to quantum mechanical wave functions that provide the
basis of a unitary representation of the isometry group G3 of
M∗3 .

I BPS black holes correspond to a special class of geodesics
which lift holomorphically to the twistor space Z3 of M∗3.
Spherically symmetric stationary BPS black holes of N = 2
MESGT’s are described by holomorphic curves in Z3

I The relevant unitary representations of the 3D isometry
groups QConf (J) for BPS black holes are those induced by
their holomorphic actions on the corresponding twistor spaces
Z3, which belong to quaternionic discrete series
representations.

I For rank two quaternionic groups SU(2, 1) and G2(2) unitary
representations induced by the geometric quasiconformal
actions and their spherical vectors were studied in ( MG, Neitzke,

Pavlyk , Pioline , 2007).
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I Construction of the quaternionic discrete series representations
of SU(2, 1) and G2(2) using the quasiconformal realizations
twisted with a unitary character ν : GNPP (2007)
Starting point is the determination of the spherical vector |O〉
of the QCG group G with the maximal compact subgroup K :

K |O〉 = |O〉

Consider the Verma module generated by the action of the
noncompact generators Pa of G :

|O〉 ⊕ Pa|O〉 ⊕ PaPb|O〉 ⊕ · · ·

The quaternionic discrete series representations are obtained
as submodules of the above Verma module for certain discrete
values of ν.
U-duality groups of magical sugras in d=3 are the quaternionic
real forms of exceptional groups F4,E6,E7 and E8.
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I Unified realization of 3D U-duality groups of all N = 2 MESGTs defined by
Jordan algebras as spectrum generating quasiconformal groups covariant with
respect to their 5D U-duality groups. MG, Pavlyk (2009)

I Unified construction of the spherical vectors of quasiconformal realizations of
F4(4),E6(2),E7(−5),E8(−24) and SO(d + 2, 4) twisted by a unitary character ν
with respect to their maximal compact subgroups and determination of their
quadratic Casimir operators

I For ν = −(nV + 2) + iρ the quasiconformal action induces unitary
representations that belong to the principle series. For special discrete values of
ν the quasiconformal action leads to unitary representations belonging to the
quaternionic discrete series and their analytic continuations. (nV = number of
vector fields of the 5d , N = 2 MESGT.)

I Extension of the above results to F4(4),E6(6),E7(7),E8(8) and of
SO(n + 3,m + 3). as QCGs covariant with respect to
SL(3,R), SL(3,R)× SL(3,R), SL(6,R),E6(6) and SO(n,m)× SO(1, 1),
respectively.
Quaternionic discrete series of E8(−24) ⇒ ”Octonionic discrete series” of E8(8) !
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Minimal Unitary Representations and Quasiconformal Groups:
I Quantization of the quasiconformal realization of a non-compact Lie group leads

directly to its minimal unitary representation ⇒ Unitary representation over an
Hilbert space of square integrable functions of smallest number of variables
possible.

I Minimal unitary representation of E8(8) over L2(R29) from its geometric
realization as a quasiconformal group MG, Koepsell & Nicolai 2000

E8(8) = 1−2 ⊕ 56−1 ⊕ E7(7) + SO(1, 1)⊕ 56+1 ⊕ 1+2

I Minimal unitary representation of E8(−24) over L2(R29) from its geometric
realization as a quasiconformal group MG, Pavlyk, 2004

E8(−24) = 1−2 ⊕ 56−1 ⊕ E7(−25) + SO(1, 1)⊕ 56+1 ⊕ 1+2

56 of E7 ⇒ 28 coordinates and 28 momenta. These 28 coordinates plus the
singlet coordinate yield the minimal number ( 29) of variables for E8.
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QCG Approach to Minimal Unitary Representations
GKN & MG, Pavlyk

I Lie algebra g of a quasiconformal realization of a group G can be decomposed
as :

g = g−2 ⊕ g−1 ⊕ (h⊕∆)⊕ g+1 ⊕ g+2

g = E ⊕ Eα ⊕ (Ja + ∆)⊕ Fα ⊕ F

∆ = − i
2

(yp + py) ([y , p] = i) determines the 5-grading and Ωαβ is the
symplectic invariant tensor of h generated by Ja (α, β, .. = 1, 2, ..., 2n) and[
ξα , ξβ

]
= Ωαβ

E =
1

2
y2 Eα = y ξα, Ja = −

1

2
λaαβξ

αξβ

F =
1

2
p2 +

κI4(ξα)

y2
, Fα = [Eα,F ]

I4(ξα) = Sαβγδξ
αξβξγξδ ⇔ quartic invariant of h

Choosing a polarization ξα = (x i , pj ) one has [x i , pj ] = iδij (i , j = 1, 2, .., n)
Minimal Gelfand-Kirillov dimension for the minimal unitary representation is
n + 1 ↔ (x i , y).

I (E ,F ,∆) =⇒ SL(2,R) of conformal quantum mechanics with the quartic
invariant I4 playing the role of coupling constant.
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4D, N = 2 σ-models coupled to Supergravity in Harmonic
Superspace and Minimal Unitary Representations

MG 2007
I In HSS the metric on a quaternionic target space is given by a quartic potential
L(+4). The action is Galperin, Ogievetsky 1993

S =

∫
dζ(−4)du{Q+

αD
++Q+α − q+

i D++q+i + L(+4)(Q+, q+, u−)}

ζ, u±i are analytic superspace coordinates

Q+
α (ζ, u), α = 1, ..., 2n are hypermultiplets and q+

i (ζ, u), (i = 1, 2) are

supergravity compensators. Q+
α and q+

i are analytic N = 2 superfields.
” Hamiltonian mechanics” with D++ playing the role of time derivative and Q+

and q+ corresponding to phase space coordinates under Poisson brackets

{f , g} =
1

2
Ωαβ

∂f

∂Q+α

∂g

∂Q+β
−

1

2
εij

∂f

∂q+i

∂g

∂q+j
,

Isometries are generated by Killing potentials KA(Q+, q+, u−) that obey the
”conservation law” ∂++KA + {KA,L(+4)} = 0

L(+4) =
P(+4)(Q+)

(q+u−)2

P(+4)(Q+) = 1
12

Sαβγδ Q+αQ+βQ+γQ+δ

Sαβγδ is a completely symmetric invariant tensor of H.
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The Killing potentials that generate the isometry group G are given by

Sp(2) : K++
ij = 2(q+

i q+
j − u−i u−j L

(+4)),

H : K++
a = taαβQ

+αQ+β ,

G/H× Sp(2) : K++
iα = 2q+

i Q+
α − u−i (q+u−)∂−α L(+4)

N = 2 σ-model in HSS Minrep of Isometry Grp G
compensator w coordinate y
conjugate p++ momentum p

{ , } i [ , ]
harmonic superfields Q+α symplectic coords ξα

P(+4)(Q+) I4(ξ)

K a++ = taαβQ
+αQ+β Ja = λaαβξ

αξβ

T+++
α = {T+

α ,M
++++} Fα = [Eα,F ]

T+
α = −

√
2wQ+

α Eα = y ξα

M++++ = 1
2

(p++)2 − P(+4)(Q+)

w2 F = 1
2
p2 + κ(I4(ξα))

y2

M0 = 1
2
w2 E = 1

2
y2

M++ = 1
2

(
wp++ + p++w

)
∆ = − i

2
(yp + py)

Table: The correspondence between the harmonic superspace formulation of N = 2
sigma models coupled to supergravity and the minimal unitary realizations of their
isometry groups G obtained by quantization of quasiconformal action of G .
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I The Poisson brackets (PB) {, } in HSS formulation go over to i times the
commutator [, ] in the minimal unitary realization and the harmonic superfields
w , p++ corresponding to supergravity hypermultiplet compensators , that are
canonically conjugate under PB map to the canonically conjugate coordinate
and momentum operators y , p. Similarly, the harmonic superfields Q+α that
form N/2 conjugate pairs under Poisson brackets map into the symplectic
bosonic oscillators ξα on the MINREP side. One finds a normal ordering
ambiguity in the quantum versions of the quartic invariants. The classical
expression relating the quartic invariant polynomial P(+4) to the quadratic
Casimir function in HSS formulation differs from the expression relating the
quartic quantum invariant I4 to the quadratic Casimir of H by an additive
c-number depending on the ordering chosen.

I On the MINREP side we are working with a realization in terms of quantum
mechanical coordinates and momenta, while in HSS side the corresponding
quantities are classical harmonic analytic superfields. The above correspondence
can be extended to the full quantum correspondence on both sides by reducing
the 4D N = 2 σ model to one dimension and quantizing it to get a
supersymmetric quantum mechanics ( with 8 supercharges). The bosonic
spectrum of the corresponding quantum mechanics must furnish a minimal
unitary representation of the isometry group , which extends to a fully
supersymmetric spectrum.
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I The above mapping implies that the fundamental spectra of the ”quantum”
N = 2 , quaternionic Kähler σ models coupled to sugra in d = 4 must fit into
the minimal unitary representations of their isometry groups.

I The N = 2 , d = 4 MESGT’s , under dimensional reduction, lead to d = 3
supersymmetric σ models with quaternionic Kähler manifolds M3 (C-map).
After T-dualizing the three dimensional theory one can lift it back to four
dimensions, thereby obtaining an N = 2 sigma model coupled to supergravity
that is in the mirror image of the original N = 2 MESGT.

I The above results suggest that there must be a correspondence between the
fundamental and full quantum spectrum of a 4D, N = 2 MESGT and the
minimal unitary representation of its three dimensional U-duality group and
those representations obtained by tensoring of its minrep.

I Important problem: decomposition of tensor products of minreps into irreducible
representations of the spectrum generating symmetry groups. In particular, how
to obtain quaternionic series representations by tensoring minimal unitary
representations.
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AdS/CFT : Aspen Summer 1984
I The Kaluza-Klein spectrum of IIB supergravity on AdS5 × S5 was first obtained

via the oscillator method by simple tensoring of the CPT self-conjugate
doubleton supermultiplet of N = 8 AdS5 superalgebra PSU(2, 2 | 4).

I The CPT self-conjugate doubleton supermultiplet of PSU(2, 2 | 4) of AdS5 × S5

solution of IIB supergravity does not have a Poincaré limit in five dimensions
and decouples from the Kaluza-Klein spectrum as gauge modes and the field
theory of CPT self-conjugate doubleton supermultiplet of PSU(2, 2 | 4) lives on
the boundary of AdS5, which can be identified with 4D Minkowski space on
which SO(4, 2) acts as a conformal group, and the unique candidate for this
theory is the four dimensional N = 4 super Yang-Mills theory that was known to
be conformally invariant. MG , Marcus (1984)

I The spectra of 11D supergravity over AdS4 × S7 and AdS7 × S4 were fitted into
supermultiplets of the symmetry superalgebras OSp(8 | 4,R) and OSp(8∗|4)
constructed by oscillator methods. The entire Kaluza-Klein spectra over these
two spaces were obtained by tensoring the singleton and doubleton
supermultiplets of OSp(8 | 4,R) and OSp(8∗|4), respectively.

I The relevant singleton supermultiplet of OSp(8 | 4,R) and doubleton
supermultiplet of OSp(8∗|4) do not have a Poincaré limit in four and seven
dimensions, respectively, and decouple from the respective spectra as gauge
modes. Again it was proposed that field theories of the singleton and scalar
doubleton supermutiplets live on the boundaries of AdS4 and AdS7 as
superconformally invariant theories. MG, Warner (1984), MG, PvN, Warner (
1984).

I Singletons of Sp(4,R) are the remarkable representations of Dirac (1963).
Subsequent important work of Fronsdal and collaborators.
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Minimal Unitary Representations versus Singletons &
Doubletons and Supersymmetry

MG, Pavlyk (2006), MG, Fernando (2009/10)

I The minimal unitary representations of symplectic groups Sp(2n,R) are the
singletons and their generators can be written as bilinears of bosonic oscillators
since their quartic invariants vanish. Tensoring procedure becomes simple for
the symplectic groups. Minreps of OSp(2n|2m,R) are supersingletons

I Minimal unitary representation of SU(2, 2) = SO(4, 2) over L2 functions in 3
variables ⇔ conformal scalar = scalar doubleton

I Minrep of SU(2, 2) admits a one-parameter, ζ , family of deformations
corresponding to massless conformal fields in d = 4 with helicity ζ/2.

I Minrep of PSU(2, 2|4) is the 4D Yang-Mills supermultiplet (CPT-self-conjugate
doubleton)

I Minrep of SU(2, 2|N) admits a one-parameter family of deformations ⇔ Higher
spin doubleton supermultipllets studied in MG, Minic , Zagermann (1998).

I Minrep of SO∗(8) ' SO(6, 2) realized over the Hilbert space of functions of five
variables and its deformations labeled by the spin t of an SU(2) subgroup
correspond to massless conformal fields in six dimensions. Minimal unitary
supermultiplet of OSp(8∗|2N) admits deformations labeled by the spin t of an
SU(2) subgroup of the little group SO(4) of lightlike vectors in 6D.

I Minrep of OSp(8∗|4) is the massless supermultiplet of (2, 0) conformal field
theory that is dual to M-theory on AdS7 × S4.
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I To summarize: minreps and their deformations describe the CFT side of
AdS/CFT dualities. For AdS supergroups the minreps act like ”quarks” of
positive energy unitary representations → AdS/CFT

I Furthermore the above results imply that the minrep of any noncompact group
G must admit deformations if it occurs as a factor in the even subgroup G × K
of a supergroup. ( For K compact such supergroups admit unitary
representations in general.) Groups F4,E6,E7 and E8 do not occur as subgroups
of any simple Lie supergroups !

I The mapping between the HSS formulation of N = 2 sigma models coupled to
sugra in d = 4 and the minimal unitary realizations of their isometry group =⇒
suggest that the minimal unitary representations of 3d U-duality must act as the
”quarks” of the spectrum of these theories whose quantum completion may
require extension to M/superstring theory.
The corresponding sigma models reduced to one dimension give supersymmetric
sigma models. Indeed the quantization of certain one-dimensional sigma models
with 8 super symmetries yields the minimal unitary representation of
D(2, 1;α) ⊃ SU(1, 1)× SU(2)× SU(2) and its deformations.

Govil & MG (2012)
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OPEN PROBLEMS

I Decomposition of tensor products of minreps of U-duality groups into irreps. Of
particular interest are E8(8) and E8(−24).

I Physical meaning of the states of minrep of U-duality groups. For AdS
supergroups the minreps act like ”quarks” of positive energy unitary
representations → AdS/CFT

I For 3D U-duality groups of MESGTs with 8 real supersymmetries the
fundamental spectrum corresponds to ”super BPS” states, i.e they preserve full
susy!

I Explicit construction of the quaternionic discrete series for F4(4),E6(2),E7(−5)

and E8(−24) and the corresponding discrete series for E8(8)

I Construction of the full spectrum by tensoring of minreps and embedding into
their quantum completion ( M/Superstring theory).

I Supersymmetry of the black hole spectra & relation to the work of Townsend
et.al. on the black holes and conformal quantum mechanics and Calogero
models.

I At the non-perturbative level one expects only the discrete subgroups of
U-duality groups to be symmetries of M/superstring theory compactified to
various dimensions on tori or their orbifolds ( Hull and Townsend) . How to
extend the above results to the discrete subgroups? Automorphic
representations ?
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HAPPY BIRTHDAY PAUL !
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