Extracting B physics from lattice simulations via lattice perturbation theory

Chris Monahan HPQCD Collaboration

College of William and Mary

ECT*, Trento, 6 April 2012

With Christine Davies, Rachel Dowdall, Ron Horgan, Andrew Lee, G. Peter Lepage, Heechang Na, and Junko Shigemitsu

Outline

Two applications of lattice perturbation theory (LPT)

• one-loop: f_B and f_{B_s}

arXiv:1202.4914

- motivation
- calculating f_B
 - perturbative matching
 - automated LPT
 - simulation details
- results
- two-loop: *m_b*
 - motivation
 - calculating m_b
 - perturbative matching a mixed approach
 - results

But first: an aside on LPT

Wait, lattice perturbation theory ...?

... "perturbation theory for lattice actions"

Calculate:

- renormalisation parameters
- improvement coefficients
- matching to continuum QCD matrix elements

Lattice cutoff $\Rightarrow \alpha_{S}(\pi/a) < 1$

Lepage, arXiv:hep-lat/9607076

Calculating f_B and f_{B_s} : some motivation

 f_{B_q} parameterises weak decay of B_q mesons

Direct input into Unitarity Triangle analyses of CKM matrix

Previous results from HPQCD collaboration:

- 1. f_{B_d} , f_{B_s} : NRQCD b and ASQTad d/s arXiv:0902.1815
 - MILC lattices with 2 + 1 ASQTad sea quarks and Symanzik-improved gluons with Lüscher-Weisz coefficients
 - 5 lattice spacings
 - one-loop operator matching
 - uncertainties of 6 7% in $\mathit{f}_{B_d}, \mathit{f}_{B_s}$ and \sim 2% in $\mathit{f}_{B_s}/\mathit{f}_{B_d}$
- 2. f_{B_s} : HISQ b and s quarks

arXiv:1110.4510

- 5 lattice spacings
- $1/M_b$ expansion up to physical b quark mass
- uncertainties of $\sim 2\%$ in $\mathit{f}_{\mathit{B_s}}$

New results:

- ideally calculate f_B with HISQ b and s quarks
 - but fine lattices and light masses \Rightarrow expensive
- (currently) more efficient to update NRQCD calculation
 - ASQTad \rightarrow HISQ valence u/d and s quarks
 - taste-breaking discretisation errors reduced by factor of ~ 3
- calculate $f_B/f_{B_c}^{(NRQCD)} \times f_{B_c}^{(HISQ)}$
 - uncertainty in f_B and f_{B_s} largely cancels in f_{B_s}/f_B
 - result has errors $\sim 2\%$
 - require new operator matching calculation $\Rightarrow \mathsf{LPT}$

NRQCD action correct to $\mathcal{O}(1/M^2, v^4)$:

$$S_{
m NRQCD} = \sum_{\mathbf{x}, au} \psi^+(\mathbf{x}, au) \left[\psi(\mathbf{x}, au) - \kappa(au) \psi(\mathbf{x}, au - 1)
ight]$$

with

$$\kappa(\tau) = \left(1 - \frac{\delta H}{2}\right) \left(1 - \frac{H_0}{2n}\right)^n U_4^{\dagger} \left(1 - \frac{H_0}{2n}\right)^n \left(1 - \frac{\delta H}{2}\right)$$

and

$$\delta H = -c_1 \frac{(\Delta^{(2)})^2}{8M^3} - c_4 \frac{1}{2M} \sigma \cdot \widetilde{\mathbf{B}} + c_5 \frac{\Delta^{(4)}}{24M} - c_6 \frac{(\Delta^{(2)})^2}{16nM^2} + c_2 \frac{ig}{8M^2} (\widetilde{\Delta}^{(\pm)} \cdot \widetilde{\mathbf{E}} - \widetilde{\mathbf{E}} \cdot \widetilde{\Delta}^{(\pm)}) - c_3 \frac{g}{8M^2} \sigma \cdot (\widetilde{\Delta}^{(\pm)} \times \widetilde{\mathbf{E}} - \widetilde{\mathbf{E}} \times \widetilde{\Delta}^{(\pm)})$$

М	c_1 and c_6	<i>C</i> 4	<i>C</i> ₅	
2.50 1.72	$1+0.95 lpha_V (2.0/a) \ 1+0.766 lpha_V (1.8/a)$	$1+0.78lpha_V(\pi/a) \ 1+0.691lpha_V(\pi/a)$	$1+0.41 lpha_V(2.0/a) \ 1+0.392 lpha_V(1.4/a)$	

ASQTad action correct to $\mathcal{O}(a^2)$, strongly reduced $\mathcal{O}(\alpha_S a^2)$ errors:

$$\mathcal{S}_{\mathrm{ASQTad}} = \sum_{x} \overline{\psi}(x) \left(\gamma^{\mu} \Delta^{\mathrm{ASQTad}}_{\mu} + m \right) \psi(x)$$

where

$$\Delta_{\mu}^{\mathrm{ASQTad}} = \Delta_{\mu}^{\mathcal{F}} - rac{1}{6} (\Delta_{\mu})^3.$$

F indicates

$$U_{\mu}
ightarrow \mathcal{F}_{\mu} \widetilde{U}_{\mu} = u_0^{-1} \left[\prod_{
u
eq \mu} \left(1 + rac{\Delta_{
u}^{(2)}}{4}
ight)_{ ext{symm}} - \sum_{
u
eq \mu} rac{(\Delta_{
u})^2}{4}
ight] U_{\mu}$$

HISQ action correct to $\mathcal{O}(a^4)$, $\mathcal{O}(\alpha_5 a^2)$ with reduced taste-changing:

$$S_{\mathrm{HISQ}} = \sum_{x} \overline{\psi}(x) \left(\gamma^{\mu} \Delta^{\mathrm{HISQ}}_{\mu} + m \right) \psi(x)$$

where

$$\Delta^{\mathrm{HISQ}}_{\mu} = \Delta_{\mu} \left[\mathcal{F}^{\mathrm{HISQ}}_{\mu} U_{\mu}(x)
ight] - rac{1+\epsilon}{6} (\Delta_{\mu})^3 \left[U \mathcal{F}^{\mathrm{HISQ}}_{\mu} U_{\mu}(x)
ight].$$

and

$$\mathcal{F}^{\mathrm{HISQ}}_{\mu} = \mathcal{F}^{\mathrm{ASQTad}}_{\mu} \mathit{U}_{\mu} \mathcal{F}_{\mu}$$

Operator matching

 f_{B_q} defined through

$$\langle 0|A_{\mu}|B_{q}\rangle_{QCD}=f_{B_{q}}p_{\mu}$$

Simulations carried out with effective lattice operators

$$J_0^{(0)} = \overline{\Psi}_q \Gamma_0 \Psi_Q \qquad J_0^{(1)}(x) = -\frac{1}{2M_b} \overline{\Psi}_q \Gamma_0 \gamma \cdot \overrightarrow{\nabla} \Psi_Q$$
$$J_0^{(2)}(x) = -\frac{1}{2M_b} \overline{\Psi}_q \gamma \cdot \overleftarrow{\nabla} \gamma_0 \Gamma_0 \Psi_Q$$

- Ψ_q four-component HISQ u/d or s quark field
- Ψ_Q two-component NRQCD field

Matching gives

$$\langle A_0 \rangle_{QCD} = (1 + \alpha_s \rho_0) \langle J_0^{(0)} \rangle + (1 + \alpha_s \rho_1) \langle \widetilde{J_0}^{(1)} \rangle + \alpha_s \rho_2 \langle \widetilde{J_0}^{(2)} \rangle$$

where

$$\widetilde{J}_0^{(i)} = J_0^{(i)} - \alpha_s \zeta_{10} J_0^{(0)}$$

Here ρ_0 , ρ_1 , ρ_2 and ζ_{10} are one-loop matching coefficients

Continuum diagrams for $\langle A_0 \rangle_{QCD}$:

• calculated analytically with $1/M_b$ expansion

Calculating matching coefficients

Lattice diagrams for ρ_0 , ρ_1 , ρ_2 and ζ_{10} :

- Independent determinations:
 - 1. automated lattice perturbation theory: HiPPy and HPsrc
 - HiPPy python routines produce Feynman rules encoded as "vertex files" Hart, von Hippel, Horgan arXiv:0904.0375
 - HPsrc Fortran 90 routines reconstruct diagrams and evaluate integrals with VEGAS
 - 2. "by hand" calculation
 - Mathematica file handles Dirac algebra
 - Fortran suite extracts Feyman rules via iterated convolution
 - integrals evaluated numerically with VEGAS

Automated LPT: HiPPy

HiPPy generates Feynman rules, encoded as "vertex files" To generate vertex files:

• Expand link variables Lüscher and Weisz, NPB 266 (1986) 309

$$U_{\mu>0}(x) = \exp\left(gA_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)\right) = \sum_{r=0}^{\infty} \frac{1}{r!} \left(gA_{\mu}\left(x+\frac{\hat{\mu}}{2}\right)\right)^{r}$$

with $U_{-\mu}\equiv U^{\dagger}_{\mu}(x-\hat{\mu})$

Actions built from products of link variables - Wilson lines

$$L(x, y; U) = \sum_{r} \left(\frac{g^{r}}{r!}\right) \sum_{k_{1}, \mu_{1}, a_{1}} \cdots \sum_{k_{r}, \mu_{r}, a_{r}} \widetilde{A}_{\mu_{1}}^{a_{1}}(k_{1}) \cdots \widetilde{A}_{\mu_{r}}^{a_{r}}(k_{r})$$
$$\times V_{r}(k_{1}, \mu_{1}, a_{1}; \ldots; k_{r}, \mu_{r}, a_{r})$$

where the V_r are "vertex functions"

 Vertex functions decomposed into colour structure matrix, Cr and "reduced vertex", Yr

 $V_r(k_1, \mu_1, a_1; \ldots; k_r, \mu_r, a_r) = C_r(a_1; \ldots; a_r)Y_r(k_1, \mu_1; \ldots; k_r, \mu_r)$

Reduced vertices are products of exponentials

$$Y_r(k_1, \mu_1; ...; k_r, \mu_r) = \sum_{n=1}^{n_r} f_n \exp\left(\frac{i}{2} \left(k_1 \cdot v_1^{(n)} + \dots + k_r \cdot v_r^{(n)}\right)\right)$$

where the f_n are amplitudes and the $v^{(n)}$ the locations of each of the *r* factors of the gauge potential

• Feynman rules encoded as ordered lists

$$E = (\mu_1, \cdots, \mu_r; x, y; v_1, \cdots, v_r; f)$$

For example, the product of two links, $L(0, 2x, U) = U_x(0)U_x(x)$, is

$$\begin{aligned} U_{x}(0)U_{x}(x) &= \left[\sum_{r_{1}=0}^{\infty}\frac{1}{r_{1}!}\left(gA_{x}\left(\frac{x}{2}\right)\right)^{r_{1}}\right]\left[\sum_{r_{2}=0}^{\infty}\frac{1}{r_{2}!}\left(gA_{x}\left(\frac{3x}{2}\right)\right)^{r_{2}}\right] \\ &= 1+g\sum_{k_{1}}\widetilde{A}_{x}(k_{1})e^{ik_{1}\cdot x/2} + g\sum_{k_{2}}\widetilde{A}_{x}(k_{2})e^{i2_{1}\cdot 3x/2} + \dots \\ &= 1+g\sum_{k_{1}}\sum_{a_{1}}\widetilde{A}_{x}^{a_{1}}(k_{1})T^{a_{1}}\left(e^{ik_{1}\cdot x/2} + e^{ik_{1}\cdot 3x/2}\right) \end{aligned}$$

Vertex function

$$V_1(k_1, x, a_1) \equiv C_1(a_1)Y_1(k_1, x) = T^{a_1}\left(e^{ik_1 \cdot x/2} + e^{ik_1 \cdot 3x/2}\right)$$

Reduced vertex

$$Y_1(k_1,x) = \left(e^{ik_1 \cdot x/2} + e^{ik_1 \cdot 3x/2}\right)$$

Reduced vertex

$$Y_1(k_1, x) = \sum_{n=1}^{n_1=2} f_n \exp\left(\frac{i}{2} \left(k_1 \cdot v_1^{(n)}\right)\right)$$

So in this case

$$f_1 = f_2 = 1$$
; $v_1^{(1)} = (1/2, 0, 0, 0)$, $v_1^{(2)} = (3/2, 0, 0, 0)$

We store this information as the list

$$E = (\mu_1; x, y; v_1^{(1)}, v_1^{(2)}; f)$$

= (x; (0, 0, 0, 0), (2x, 0, 0, 0); (1/2, 0, 0, 0), (3/2, 0, 0, 0); (1, 1))

HPsrc routines build Feynman diagrams and evaluate them numerically with VEGAS

Vertex files read-in by appropriate module

• e.g. module mod_vertex_qqg.F90 reads in vertex file corresponding to quark-quark-gluon vertex

Fundamental vertices defined as functions using TaylUR package, carrying analytic derivatives

• e.g. vert_qqg(k_1,k_2,k_3;a_1,a_2,a_3)

User generates Feynman diagrams by multiplying fundamental vertices as in the continuum

For example, vertex diagram contribution to ρ_0

$$\begin{split} \rho_0^{\text{vert}} &= \frac{4\pi}{(2\pi)^4} \sum_{c=1}^8 \sum_{\mu,\nu=1}^4 \int_{-\pi}^{\pi} d^4 k \text{ vert_nrqcd_qqg(p, -k, k - p; a, c, a; \mu)} \\ &\times \text{nrqcd_prop(k - p, -k + p; a, a)} \\ &\times J_0^{(0)} \\ &\times \text{hisq_prop(-k - p', k + p'; b, b)} \\ &\times \text{vert_hisq_qqg(-k - p', k, p'; a, c, b; \nu)} \\ &\times \text{gluon_prop(k, -k; c, c; \mu; \nu)} \end{split}$$

for quarks with external momenta p, p' and colour indices a, b

Outline

Two applications of lattice perturbation theory

- one-loop: f_B and f_{B_s}
 - motivation
 - calculating f_B
 - perturbative matching
 - automated LPT
 - simulation details
 - results
- two-loop: *m*_b
 - motivation
 - calculating m_b
 - perturbative matching a mixed approach
 - results

But first: an aside on LPT

Simulation

Some simulation details:

- NRQCD action see also Rachel Dowdall's talk:
 "B meson and Bottonium spectroscopy from radiatively improved NRQCD"
- HISQ action see also Christine Davies' talk: "Relativistic heavy quarks on the lattice"
- Updated r_1 value from HPQCD \Rightarrow retuned bare *b* quark mass, M_b
- M_b fixed via spin-averaged Υ mass
- s quark mass fixed via fictitious η_s mass

Results

We find

 $f_B = 0.191(9) \,{
m GeV}$ and $f_{B_s} = 0.227(10) \,{
m GeV}$ so $rac{f_{B_s}}{f_B} = 1.188(18)$ Agreement with previous HPQCD HISQ result

$$f_{B_s}^{(HISQ)} = 0.225(4) \,\mathrm{GeV}$$

 \Rightarrow non-trivial consistency check!

Error budget

	f _B	f_{B_s}	f_{B_s}/f_B
statistical	1.2	0.6	1.0
$\mathcal{O}(lpha_{s})$ operator matching	4.1		0.1
relativistic	1.0		0.0
r ₁ scale	1.1		-
continuum extrapolation	0.9		0.9
chiral extrapolation	0.2	0.5	0.6
mass tuning	0.2	0.1	0.2
finite volume	0.1	0.3	0.36

f_B and f_{B_s} results

f_{B_s}/f_B and $f_B^{({\rm fit})}$ results

Outline

Two applications of lattice perturbation theory

- one-loop: f_B and f_{B_s}
 - motivation
 - calculating f_B
 - perturbative matching
 - automated LPT
 - simulation details
 - results
- two-loop: *m_b*
 - motivation
 - calculating *m_b*
 - perturbative matching a mixed approach
 - results

But first: an aside on LPT

Extracting m_b

Fundamental parameter of the Standard Model

Direct input into Unitarity Triangle analyses of CKM matrix

Previous results from HPQCD collaboration:

1. NRQCD b quarks

```
PRD 72 (2005) 094507
```

- MILC lattices with 2 + 1 ASQTad sea quarks and Symanzik-improved gluons with Lüscher-Weisz coefficients
- 3 lattice spacings
- one-loop matching dominated uncertainty of $\sim 7\%$
- 2. HISQ *b* quarks

arXiv:1004.4285

- 5 lattice spacings
- $1/M_b$ expansion up to physical b quark mass
- uncertainty of $\sim 0.5\%$

New results: two-loop matching reduces dominant error \Rightarrow LPT

Matching condition

Matching condition

 $E^{
m sim}(0)$ from HPQCD lattice NRQCD simulation; $M_{\Upsilon}^{
m expt} = 9.46030(26)$ from experiment

Extracting E_0

- quenched high- β simulations
- automated LPT

Quenched contributions

Quenched high- β simulations:

- $L^3 \times T$ lattices, T = 3L, $L \in [3, 10]$
- twisted boundary conditions
- 17 values of β from $\beta = 9$ to $\beta = 120$
- fix to Coulumb gauge using conjugate method
- tadpole-improved

To extract results:

1. exponential fit to

$$G(\mathbf{p},t) = Z_{\Psi} \exp\left(-\left[\frac{E_0}{2Z_M^{\text{latt}} + \dots}\right]t\right)$$

2. convert β to α_V

3. joint fit to α_V and L in $L \to \infty$ limit

with

$$E_0 = E_0^{(1)} \alpha_V(3.33/a) + E_0^{(2),q} \alpha_V^2(3.33/a) + E_0^{(3),q} \alpha_V^3(3.33/a)$$

 $E_0^{(1)}$ - calculated using exact mode summation $E_0^{(2,3),q}$ - extracted with $E_0^{(1)}$ constrained to exact value

Fermionic contributions

• In this case we need to calculate

- Feynman rules: HiPPy python routines produce vertex files
- Diagrams: HPsrc Fortran 90 routines reconstruct diagrams and evaluate integrals with VEGAS

Results

Extract b quark mass from

$$M_{\overline{MS}}(M_{\overline{MS}}) = \frac{1}{2} Z_{\text{cont}}^{-1}(M_{\overline{MS}}, M_{\text{pole}}) \left[M_{\Upsilon}^{\text{expt}} - \left(E^{\text{sim}}(0) - 2a^{-1}E_{0} \right) \right]$$

with

$$E_0 = E_0^{(1)} \alpha_V + \left(E_0^{(2),q} + n_f E_0^{(2),f} \right) \alpha_V^2 + E_0^{(3),q} \alpha_V^3$$

М	$E_{0}^{(1)}$	$E_0^{(2),q}$	$E_0^{(2),f}$	$E_0^{(3),q}$	$E^{ m sim}(0)$ (GeV)	$M_{\overline{MS}}$ (GeV)
2.50	0.6864(5)	1.35(10)	0.2823(6)	2.2(8)	0.7397(66)	4.185(26)
1.72	0.5873(6)	1.56(11)	0.3041(3)	2.2(8)	0.96417(13)	4.154(27)

Error budget

- Statistical errors
 - $E^{\rm sim}(0)$, $M^{\rm expt}_{\Upsilon}$, E_0
 - $\sim 3 \text{ MeV}$
- Perturbative errors:
 - all three-loop contributions included
 - $E_0^{(3),f}$ estimated as $\mathcal{O}(1 \times \alpha_s^3)$
 - $\sim 26 \text{ MeV}$
- Systematic
 - lattice spacing dependence
 - best way to estimate this from two data points?
 - agree within average $\Rightarrow \sim$ 22 MeV
 - fit to $F(M) = M_0 + A/a^2 M^2$

Comparison to other results

Summary

LPT important tool in extracting precise results from lattice QCD:

- HISQ/NRQCD operator matching for f_B and f_{B_s} \Rightarrow combined results give uncertainties of $\sim 2\%$ for f_B
- extend to massive HISQ for B_c
- two-loop perturbation theory allows extraction of precise m_b from NRQCD simulations

 \Rightarrow reduced uncertainties from \sim 7% to \sim 0.6% for m_b

Thank you!

Fits and correlators

- Delta function and Gaussian smearing used at both source and sink for meson correlators
- Random wall sources in operator-meson correlators
- Correlators fitted between
 - $t_{\rm min} = 2 \sim 4$ and $t_{\rm max} = 16$ on coarse ensembles
 - $t_{\rm min} = 4 \sim 8$ and $t_{\rm max} = 24$ on fine ensembles
- Bayesian multiexponential fits with t_{\min} , t_{\max} fixed and no. exponentials increased until saturation in results

Chiral and lattice spacing fits

Fit to lattice spacing dependence as described by Rachel Dowdall, but include chiral fit.

• Fit to

$$\Phi_q = f_{B_q} \sqrt{M_{B_q}} = \Phi_0 \left(1 + \delta f_q + [\text{analytic}]\right) \left(1 + [\text{disc.}]\right)$$

- + δf_q includes chiral logs using one-loop $\chi {\rm PT}$ and lowest order in 1/M
- [analytic] powers of $m_{\rm val}/m_c$ and $m_{\rm sea}/m_c$, with m_c scale chosen for convenience
- [disc.] powers of $(a/r_1)^2$ with expansion coefficient functions of aM_b or am_q