B-meson and Bottomonium spectroscopy from radiatively improved NRQCD

Rachel Dowdall

University of Glasgow HPQCD Collaboration

in collaboration with:

B. Colquhoun, J. O. Daldrop, C. T. H. Davies, I. D. Kendall, E. Follana, T. C. Hammant, R. R. Horgan, G. P. Lepage, C. J. Monahan, E. H. Müller

Intro

Recent improvements made in NRQCD and gluon actions

- $ightharpoonup O(\alpha_s)$ improved matching coefficients available for the first time
- Charm quarks now included in the sea
- Smaller gluon/sea quark discretisation errors
- High statistics 16k correlators
- Get the spectrum right before doing decays & mixing

We use NRQCD for heavy-heavy and heavy-light

References:

- "Prediction of the bottomonium D-wave spectrum from full lattice QCD", J.Daldrop et al., Phys.Rev.Lett. 108 (2012) 102003.
- "The Upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea", R. Dowdall et al., Phys. Rev. D 85, 054509 (2012).
- "Precise B, B_s and B_c meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea", R. Dowdall et al. In preparation.

Nonrelativistic QCD

- Effective field theory valid for small quark velocity v
- $ightharpoonup O(v^4)$ Hamiltonian including discretisation corrections:

$$H_{0} = -\frac{\Delta^{(2)}}{2m_{b}}$$

$$\delta H = -c_{1} \frac{(\Delta^{(2)})^{2}}{8(am_{b})^{3}} + c_{2} \frac{i}{8m_{b}^{2}} (\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla) - c_{3} \frac{1}{8m_{b}^{2}} \sigma \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$$

$$-c_{4} \frac{1}{2m_{b}} \sigma \cdot \tilde{\mathbf{B}} + c_{5} \frac{a^{2} \Delta^{(4)}}{24m_{b}} - c_{6} \frac{a(\Delta^{(2)})^{2}}{16nm_{b}^{2}}$$

- Wilson coeff, must be matched to QCD:
 - $c_i = 1$ at tree level by matching continuum NRQCD to QCD
- ▶ b quark mass am_b , $\tilde{\mathbf{E}}$, $\tilde{\mathbf{B}}$ improved clover chromo-electric/magnetic fields, $\Delta^{(2)}$, ∇ , $\Delta^{(4)}$ are lattice derivatives

Nonrelativistic QCD

Quark propagators generated by time evolution

$$G(\mathbf{x},t+1) = \left(1-\frac{\delta H}{2}\right)\left(1-\frac{H_0}{2n}\right)^n U_t^{\dagger}(x)\left(1-\frac{H_0}{2n}\right)^n \left(1-\frac{\delta H}{2}\right)G(\vec{x},t)$$

▶ *n* is a stability parameter, require $n > 3/(2am_b)$. We use n = 4.

Radiative corrections to c_i are the dominant systematic error in several quantities - e.g. hyperfine and radial splittings

- Matching coefficients in the action are a function of the cutoff amb
- ► Short distance coefficients ⇒ perturbative. They have the expansion:

$$c_i = 1 + \alpha_s c_i^{(1)} + O(\alpha_s^2)$$

- ▶ HPQCD have calculated most through $O(\alpha_s)$
- We also consider matching to experiment

Perturbative improvement

- Kinetic terms are found by computing the NRQCD quark self-energy and ensuring the correct energy-momentum relation holds
- c₄ term controls size of the spin dependent splittings
- Calculated by matching the effective action in NRQCD to continuum
 QCD [T. Hammant et al (2011)]
- ► Plot shows *c*₄ is well behaved in the region we are working
- ▶ Diverges for am_b < 1 as expected</p>

NRQCD

Advantages and disadvantages

Advantages:

- ▶ Very cheap numerically ⇒ high statistics
- Can extract excited states easily
- Effect of each term is well understood
- The same action can be used for onium and heavy-light systems
 - B-meson spectrum has no free parameters

NRQCD

Advantages and disadvantages

Advantages:

- ▶ Very cheap numerically ⇒ high statistics
- Can extract excited states easily
- Effect of each term is well understood
- The same action can be used for onium and heavy-light systems
 - B-meson spectrum has no free parameters

Disadvantages:

- ► Unphysical energy shift since *am_b* integrated out
 - $-M_{\Upsilon}=2m_{b}+(E_{\rm sim}-2E_{0})$
 - only calculate splittings or kinetic masses
- Non-renormalisable
 - requires matching or loss of predictive power for improved accuracy
- ► Coefficients diverge for $am_b \to 0 \implies$ cannot take $a \to 0$
 - This does not mean we cannot extract physical results!
- Current corrections and renormalisation

NRQCD - physical results

In a relativistic action, physical quantities are const. up to scaling violations

$$a\frac{d}{da}f(a)=O(a^n(\ln a)^m)$$

So lattice data are fit to a form, e.g.

$$f(a) = f_{\text{phys}} (1 + k_1 (\Lambda a)^2 + k_2 (\Lambda a)^4 + ...)$$

with $k_i = O(1)$

- NRQCD action includes discretisation correction terms (c_5 and c_6)
- ▶ At tree level, lattice artifacts appear at $O(a^4)$
- ▶ Radiative corrections to $c_5, c_6 \implies$ terms higher order in α_s

$$a\frac{d}{da}f(a)=O(a^4,\alpha_s^2a^2)$$

► Coefficients of $\alpha_s^2 a^2$ depend on the effective field theory cutoff am_b

NRQCD - physical results

- Results can depend on amb as well as lattice spacing
- ▶ As long as we work with $am_b > 1$, dependence is mild
- Allow for this dependence with $\delta x_m = (am_b 2.7)/1.5$, varies between ± 0.5

$$f(a, am_b) = f_{\text{phys}} \left[1 + c_1 (\Lambda a)^2 (1 + c_{1b} \delta x_m + c_{1bb} (\delta x_m)^2) + c_2 (\Lambda a)^4 (1 + c_{2b} \delta x_m + c_{2bb} (\delta x_m)^2) \right]$$

- ▶ Priors are: 0.0(3) for a^2 terms, 0(1) for a^4 , 0(1) for δx_m
- Obtain physical results just as with any other quark formalism
- Must include an additional error from amb dependence in our error budget.
- Other terms such as sea quark mass dependence included as usual
- All data fit to a form of this kind

Ensembles

5 MILC ensembles including 2+1+1 flavours of HISQ sea quarks [Bazavov et al (2010)]

Set	β	a(fm)	am _l	am _s	am_c	$L/a \times T/a$
1	5.80	~ 0.15	0.013	0.065	0.838	16×48
2	5.80	~ 0.15	0.0064	0.064	0.828	24×48
3	6.00	~ 0.12	0.0102	0.0509	0.635	24×64
4	6.00	~ 0.12	0.00507	0.0507	0.628	32×64
5	6.30	~ 0.09	0.0074	0.037	0.440	32×96

- Tadpole and one-loop improved Lüscher-Weisz action
- ightharpoonup Coefficients include gluonic loops and effect of N_f HISQ sea quarks
- ~1000 cfgs in each ensemble
- Light quark masses of $m_l/m_s = 0.1, 0.2$ (Pion masses of 220MeV - 315MeV)
- s and c quarks well tuned
- $M_{\pi}L > 4$ for all except set 1
- Lattice spacings fixed with ↑(2S 1S) splitting

Bottomonium Results

Splitting Ratios

$$\begin{array}{ll} \frac{\Upsilon(3S-1S)}{\Upsilon(2S-1S)} & = 1.621(36) \\ \text{Expmt} & = 1.5896(12) \\ \\ \frac{1^{1}P_{1}-\overline{1S}}{\Upsilon(2S-1S)} & = 0.817(11) \\ \text{Expmt} & = 0.8088(23) \\ \\ \frac{1^{3}D_{2}-\overline{1S}}{\Upsilon(2S-1S)} & = 1.307(30) \\ \text{Expmt} & = 1.280(3) \\ \\ \text{Error budget \%:} \end{array}$$

-	R_P	R_S	R_D
stats/fitting	1.0	1.8	1.4
a-dependence	0.6	1.2	1.4
m_l -dependence	0.6	0.5	0.5
amb-dependence	0.1	0.2	0.1
systematics	0.5	1.0	1.0
f. volume & tuning	0	0	0
EM/ η_b	0.2	0.2	0.2
Total	1.4	2.4	2.3

$b\bar{b}$ Spin independent systematic errors

Sources:

- Missing relativistic corrections from higher order v⁶ terms
- ► Missing radiative corrections mostly $O(\alpha_s^2 v^4)$
 - These are estimated from a potential model
- ► Radiative corrections to discretisation correction terms $O(\alpha_s^2 a^2)$
- ► Higher order discretisation errors $O(a^4)$
 - Negligible based on comparison of M_{Kin} for different p

Correction	relativistic	radiative	discretisation
Est. %age in 2S – 1S			
very coarse	0.5	0.6	0.5
coarse	0.5	0.5	0.3
fine	0.5	0.3	0.1
Est. %age in 1 <i>P</i> – 1 <i>S</i>			
very coarse	1.0	1.5	2.3
coarse	1.0	1.1	1.2
fine	1.0	0.6	0.4

- ► Finite volume effects negligible large spatial volumes
- ► Estimates of annihilation, EM effects

P-wave spin splittings

P-wave spectrum $\chi_{b0}, \chi_{b1}, \chi_{b2}$ is used to non-perturbatively tune c_3, c_4

$$\textit{M}(\chi_{b2}) - 3\textit{M}(\chi_{b1}) + 2\textit{M}(\chi_{b0}) \varpropto c_4^2, \quad \ 5\textit{M}(\chi_{b2}) - 3\textit{M}(\chi_{b1}) - 2\textit{M}(\chi_{b0}) \varpropto c_3$$

- Tree level coefficients give slightly incorrect splittings
- Tuned c_4 agrees well with perturbative calculation $\implies O(\alpha_s^2)$ corrections small
- P-wave hyperfine splitting is zero

Figure: P-wave splittings on coarse ensembles. ³*P*₂ has *E*, *T*₂ irreps

S-wave hyperfine splitting

Hyperfine splitting $M_{\Upsilon}-M_{\eta_b}$ proportional to square of $c_4\frac{g}{2aM_b}\sigma\cdot\tilde{\mathbf{B}}$ term \Longrightarrow Tree level calculation suffers from large $O(2\alpha_s)$ systematic error

Both pert. and nonpert. values are fit to the same function as R_P , R_S including

- Adjustment for mass mistuning
- 4-quark operator corrections
- Correlated $O(\alpha_s^2)$ systematic error on perturbative values
- Stat. + expmt error on non-pert tuned values
- Correlated NRQCD systematic error on non-pert tuned values
- ▶ 10% error from v⁶ added to final answer

Consistent results are obtained from both

S-wave hyperfine splitting

Combined fit to perturbative and nonperturbative values $(c_4 = 1 \text{ data not included in fit})$

- Only uncorrelated errors shown
- Previous HPQCD value [Gray et al 2004]: $M_{\Upsilon} M_{\eta_b} = 61(14) \text{ MeV}$
- New result: $M_{\Upsilon} M_{\eta_b} = 70(9) \text{ MeV}$
- ▶ 9 MeV systematic error dominated by missing $O(v^6)$ terms
- ► Non-pert. tuned v⁶ gives 60.3(5.5)(5.0)(2.1) MeV [Meinel 2010]
- Radiatively improved v⁶ calculation underway

S-wave hyperfine ratio

- ► Ratio $R_H = \frac{\Upsilon(2S) \eta_b(2S)}{\Upsilon(1S) \eta_b(1S)}$ should be independent of c_4
- ► Fit data the same way as 1*S* hyperfine but without *c*₄ errors

- Result: $M_{\Upsilon'} M_{\eta'_b} = 35(3) \text{ MeV}$
- Prediction for $M_{\eta_b'} = 9988(3) \text{MeV}$
- Consistent with charmonium hyperfine ratio

D-wave states

First prediction of bottomonium D-wave spin splittings from QCD

- 2 lattice spacings, 2 light quark masses
- All states fit simultaneously
- ▶ Mixing of 3D_1 with 3S_1 is non-zero but amplitudes of cross terms are small
- Correlated priors of 40(40)MeV relative to ³D₂
- ► Reconstruct states using ratios of splittings independent of c₃, c₄

$$\Delta_{\mathbf{L}\cdot\mathbf{S}} = 14M_3 - 5M_2 - 9M_1 \propto c_3, \quad \Delta_{S_{ij}} = -2M_3 + 5M_2 - 3M_1 \propto c_4^2$$

Bottomonium spectrum [PDG, CLEO]

B-meson Results

NRQCD-HISQ mesons

Heavy-light meson correlators constructed with NRQCD b and HISQ light quarks

- ▶ 16 time sources + forwards and backwards propagation
- Local and 2 exponentially smeared sources
- Random noise sources
- Fit ranges from $t_0 = 4, ..., 8$ up to $L_t/2$
- ▶ Priors of ~500(250) MeV on energy splittings
- Unphysical energy shift removed with, e.g.

$$\Delta_{B_s} = aE_{B_s} - \frac{1}{2}aE_{b\bar{b}}$$

Adjusting for mistuning

Meson masses sensitive to the valence heavy and light quarks

- ► Slope of Δ_{B_s} vs $M_{b\bar{b}}$, $M_{\eta_s}^2$ studied in [E.Gregory et al.]
- Shift found by interpolating to correct values
- Error on retuning taken as 50% of shift
- Mistuning is typically very small, less than a few MeV on all ensembles
- ▶ Similar shifts in the B_c case
- Sea quark mass mistuning accounted for in fits using

$$\delta x_q = \frac{m_{q,sea} - m_{q,sea,phys}}{m_{s,sea,phys}}$$

Set	$\Delta_{M_{bar{b}}}$ (MeV)	$\Delta_{M_{\eta_s}^2}$ (MeV)	δx_l	δx_s
1	-1.9	0.0	0.17	0.01
2	-1.2	0.2	0.06	0.01
3	3.3	2.0	0.16	-0.04
4	0.0	2.4	0.06	-0.04
5	-2.8	-0.1	0.16	0.02

Table: Shifts applied to Δ_{B_s} due to mistuning of b and s quark

- Obtain mass using $\Delta_{B_s} = aE_{B_s} \frac{1}{2}aE_{b\bar{b}}$
- Scale error is 1/2 naive value when retuning is taken into account
- Error dominated by scale uncertainty and spin-ind NRQCD syst

Result

$$M_{B_s} = 5.367(8)_{\rm stat}(4)_{\rm sys} {\rm GeV}$$

Systematics in light grey

Systematic errors

Various sources of systematic error and estimates:

- Spin indep. NRQCD syst:
 - Errors are $O(\alpha_s^2 v^4)$ and v^6 in bottomonium
 - v^2 effects are ~ 500 MeV
 - allow $0.3^2 \times 0.1 \times 500 = 4.5$ MeV and 5 MeV.
- Spin dep. NRQCD syst:
 - Only affects B_s due to spin average.
 - Dominant error from c4 radiative corrections
 - Take 3/4 error in B_s hyperfine = 2.5 MeV
- ► EM: estimated at ~ 0.1 MeV, include as error
- ► Finite volume effects: negligible
- $ightharpoonup M_{b\bar{b},exp}$:
 - Negligible effect on tuning.
 - $M_{b\bar{b}, \exp} = 9.445(2)$ GeV adjusted for EM, annihilation.
 - 1 MeV error when reconstructing M_{B_s} from Δ_{B_s}
- ► M_{η_s} : 1.2 MeV error translates into 0.5 MeV in B_s
- 4 MeV total systematic error. Similar errors affect B_c

B_c heavy-heavy subtraction method

Two different methods of reconstructing the B_c mass

- Reconstruct mass using $\Delta_{B_c} = E_{B_c} \frac{1}{2}(E_{b\bar{b}} + M_{\eta_c})$
- ► Discretisation errors set with scale $\Lambda = am_c$
- Error dominated by scale uncertainty and NRQCD syst

Result

$$M_{B_c} = 6.276(6)_{\rm stat}(8)_{\rm sys} {\rm GeV}$$

Systematics in light grey

B_c heavy-strange subtraction method

Alternative splitting to compare systematics

- ► Reconstruct mass using $\Delta_{B_s} = E_{B_c} (E_{B_s} + M_{D_s})$
- Scale error is 1/2 naive value when retuning is taken into account
- Discretisation errors set with scale
 Λ = am_c
- Error dominated by stats

Result

$$M_{B_c}=6.267(14)_{\rm stat}{\rm GeV}$$

Systematics negligible

B meson

Heavy meson chiral perturbation theory used for fits [Jenkins 1992]

- ▶ NRQCD systematics cancel in $M_{B_s} M_{B_d}$
- ▶ 1-loop formula up to M_{π}^3 , including heavy meson spin symmetry breaking

$$\begin{array}{lcl} M_{B_s} - M_{B_d} & = & -\frac{3}{4}(2a + 2\Delta^{(\sigma)})(m_s - m_l) - \frac{g^2\pi}{\Lambda^2} \left[\frac{3}{2} M_\pi^3 - 2M_K^3 - \frac{1}{2} M_\eta^3 \right] \\ & & + \frac{3g^2\Delta}{4\Lambda^2} \left[-\frac{3}{2} I(M_\pi^2) + I(M_K^2) + \frac{1}{2} I(M_\eta^2) \right] \end{array}$$

- Chiral scale $\Lambda = 4\pi f_{\pi}$, leading hyperfine splitting Δ
- ▶ Prior of 0.5(5) on $BB^*\pi$ coupling g
- ► Chiral logarithms $I(M^2) = M^2 \left(\ln \frac{M^2}{\Lambda^2} + \delta^{FV}(ML) \right)$
- ► Finite volume correction $\delta^{FV}(ML) = \frac{4}{ML} \sum_{\vec{n} \neq 0} K_1(|\vec{n}|ML)/|\vec{n}|$
- Very small partial quenching effect m_s^{sea} well tuned
- ▶ Discretisation terms included $(1.0 + c_1(\Lambda a)^2 + c_2(\Lambda a)^4)$

$B_s - B$ #preliminary

Fit from SU(2) with disc. terms

- Different fits give consistent results
- Error dominated by M_{B_s}
- Significant difference from HISQ
 D_s D

Results:

$$M_{B_s} - M_B = 83(3) \; {
m MeV}, \quad M_{D_s} - M_D = 98(4) \; {
m MeV}$$

$$M_B = 5.284(3)_{\text{stat/fit}}(8)_{B_s} \text{GeV}$$

B meson hyperfine splittings

Provides a good test of the radiative corrections

- smaller systematic error than bottomonium

- ightharpoonup Hyperfine splitting proportional to c_4 , v^6 much smaller for heavy-light
- Correlated systematic for missing α_s^2 corrections (not shown)

$$\Delta_{B_d}^{\text{hyp}} = 49(3) \text{MeV}$$
 $\Delta_{B_s}^{\text{hyp}} = 51(3) \text{MeV}$
 $\Delta_{B_c}^{\text{hyp}} = 58(5) \text{MeV}.$

B_c radial excitations

B_c correlators are accurate enough to extract first excited state on coarse and fine

These states are below BD threshold

$$M_{B'_c} - M_{B_c} = 612(15) \text{MeV}$$

 $M_{B''_c} - M_{B''_c} = 583(18) \text{MeV}$

Scalar and axial vector states

Staggered correlators have the form

$$C_{\text{meson}}(i,j,t) = \sum_{n=1}^{N_{\text{exp}}} b_{i,n} b_{j,n}^* e^{-E_n t} + \sum_{k=1}^{N_{\text{exp}}-1} d_{i,k} d_{j,k}^* (-1)^{t/a} e^{-E_k' t}$$

Energies of the oscillating states E'_k correspond to opposite parity states 0^+ and 1^+

- ▶ Only clearly below threshold for the B_c these are the B_{c0} and B_{c1}
- Identification for B_s , B_d is harder
- ightharpoonup No light mass dependence and wrong energy for BK state so likely $B_{\rm s0}$ and $B_{\rm s1}$

B_c scalar and axial-vector splittings

Signal on fine and coarse ensembles. Results:

$$M_{B_{c0}^*} - M_{B_c} = 0.425(14) \text{ MeV}$$

 $M_{B_{c1}} - M_{B_c^*} = 0.407(14) \text{ MeV}$

- ► M_{B_{c1}} could be one of two 1⁺ states
- Our result should project out lightest state
- Statistical error too large to distinguish

B-meson spectrum [PDG]

Summary

Meson masses from NRQCD in good agreement with experiment

- Radiative corrections to Wilson coefficients included for the first time
- Charm quarks included in the sea
- Ratios to 1.4, 2.4% accuracy
- First prediction of D-wave splittings
- Accurate hyperfine splittings in HL and HH mesons

Future work:

- Leptonic width including current corrections
- f_B at the physical point
- Mixing amplitudes
- ▶ Spin dependent $O(v^6)$ terms and 4-quark operators

Appendix

Perturbative improvement - kinetic terms

- Matching coefficients in the action are a function of the cutoff amb
- ► Short distance coefficients ⇒ perturbative. They have the expansion:

$$c_i = 1 + \alpha_s c_i^{(1)} + O(\alpha_s^2)$$

 $c_1^{(1)}, c_5^{(1)}, c_6^{(1)}$ are found by computing the NRQCD quark self-energy and ensuring the correct energy-momentum relation holds

- Diagrams generated automatically and evaluated numerically
- Gauge fields are tadpole improved to improve matching
- $ightharpoonup \alpha_V(q)$ from heavy quark potential

$$V(q) = -\frac{C_f 4\pi\alpha_V(q)}{q^2}$$

▶ BLM scheme used to set the scale *q**

Perturbative improvement - c_4 and 4-quark terms

c₄ term controls size of the spin dependent splittings

- Calculated by matching the effective action in NRQCD to continuum QCD using the background field method. [T. Hammant et al (2011)]
- ► Plot shows *c*₄ is well behaved in the region we are working
- ▶ Diverges for am_b < 1 as expected</p>
- 4 quark terms:

$$S_{4q} = d_1 \frac{\alpha_s^2}{(am_b)^2} (\psi^{\dagger} \chi^*) (\chi^T \psi) + d_2 \frac{\alpha_s^2}{(am_b)^2} (\psi^{\dagger} \sigma \chi^*) \cdot (\chi^T \sigma \psi)$$

Give a shift in the hyperfine of:

$$\Delta E_{\rm hyp} = rac{6lpha_{
m s}^2(d_2 - d_1)}{m_{
m h}^2} |\psi(0)|^2$$

Gauge action

The action is a tadpole and one-loop improved Lüscher-Weisz action,

$$S_G = \beta \left[c_P \sum_{P} \left(1 - \frac{1}{3} \operatorname{ReTr}(P) \right) + c_R \sum_{R} \left(1 - \frac{1}{3} \operatorname{ReTr}(R) \right) + c_T \sum_{T} \left(1 - \frac{1}{3} \operatorname{ReTr}(T) \right) \right]$$

- Sums are over plaquettes P, rectangles R and twisted loops T
- Action is improved completely through order $O(\alpha_s a^2)$
- Coefficients include gluonic loops and effect of N_f HISQ sea quarks
- Coefficients are

$$C_{P} = 1.0$$

$$C_{R} = \frac{-1}{20u_{0P}^{2}} (1 - (0.6264 - 1.1746N_{f}) \log(u_{0P}^{2}))$$

$$C_{T} = \frac{1}{u_{0P}^{2}} (0.0433 - 0.0156N_{f}) \log(u_{0P}^{2})$$
(1)

Scale setting

 $\Upsilon(2S-1S)$ used to fix the lattice spacing

- Small systematic error
- ► Weak *am_b* dependence
 - insensitive to mistuning
- Accuracies of ~ 1% achieved

Set	a _↑ (fm)
1	0.1474(5)(14)(2)
2	0.1463(3)(14)(2)
3	0.1219(2)(9)(2)
4	0.1195(3)(9)(2)
5	0.0884(3)(5)(1)

Errors are: (stat)(syst)(expmt/EM)

- Also calculated with HISQ f_{ηs}
- Comparision of two methods by calculating r₁ using MILC r₁/a values

Combined gives N_f = 2 + 1 + 1 value of

$$r_1 = 0.3209(26) \text{fm}$$

S-wave hyperfine splitting

No significant evidence for light quark mass dependence in raw $\emph{c}_4=1$ data

Comparison of hyperfine splittings

HPQCD(NRQCD) 2011

HPQCD(NRQCD) 2005

Meinel(NRQCD) 2010

Fermilab/MILC 2010

Tuned b quark masses

We can give tuned am_b values for each ensemble assuming $M_{Kin}=2m_b+B$

Errors are:

- Stats from lattice spacing
- Syst from lattice spacing
- Stats from M_{Kin}
- Syst from M_{Kin}

Quark masses are well tuned for sets 3,4,5

Set	$am_b(a_{\Upsilon})$
1	3.297(11)(35)(7)(16)
2	3.263(7)(35)(4)(16)
3	2.696(4)(22)(7)(13)
4	2.623(7)(22)(7)(13)
5	1.893(6)(12)(5)(9)

m_b/m_s

Quark mass ratio obtained by converting tuned masses to \overline{MS} via the pole mass

$$\frac{m_b^{\overline{\rm MS}}(\mu)}{m_s^{\overline{\rm MS}}(\mu)} = \frac{am_b}{am_s} \left[1 + \alpha_s (A^{\rm NRQCD} - A^{\rm HISQ}) + O(\alpha_s^2) \right]$$

- Using tuned values for HISQ s quark
- Mass renormalisations calculated perturbatively to $O(\alpha_s)$
- Result: $m_b/m_s = 54.7(2.5)$
- Figure Error dominated by missing $O(\alpha_s^2)$ corrections
- Compared to previous HISQ/HISQ ratio (black), independent results agree

$B_s - B$: different g prior

Changing the prior on $g_{BB^*\pi}$ to 0.5(1) does not alter the fit significantly. Fit from SU(2) with disc. terms:

Result:

$$M_B = 5.283(2)_{\text{stat/fit}}(8)_{B_s} \text{GeV}$$

