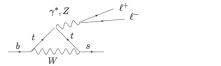
Exclusive semileptonic B and Λ_b decays at large hadronic recoil

Alexander Khodjamirian

Workshop: Beautiful Mesons and Baryons on the Lattice, ECT* Trento, 2-6 April 2012 Part 1: $B \to K\ell^+\ell^-$ at large hadronic recoil

$b \rightarrow s$ flavour-changing neutral currents (FCNC)

• $b \rightarrow s\ell^+\ell^-$, via virtual $t, Z, W \oplus \text{New Physics}$?



 \Rightarrow effective local operators $C(m_b) \otimes \{\bar{s} \, b \, \bar{\ell} \, \ell\}$

- experiment (LHCb) prefers exclusive channels, $B \to K\ell^+\ell^-$, $B \to K^*\ell^+\ell^-$, $B_s \to \phi\ell^+\ell^-$,
- the accuracy improving : recently, LHCb observed the zero in the FB asymmetry in $B \to K^* \ell^+ \ell^-$
- can the theory provide a competetive accuracy?
 (in what follows: mainly B → Kℓ⁺ℓ⁻ mode)

The anatomy of the effective Hamiltonian

$$H_{ ext{eff}} = -rac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_{i=1}^{10}C_i(\mu)O_i(\mu)\Big|_{\mu\sim m_b}$$

• local $b \rightarrow s\ell\ell$ operators:

$$O_{9(10)} = rac{lpha_{em}}{4\pi} [\bar{s}_L \gamma_\mu b_L] \ell \gamma^\mu (\gamma_5) \ell, \quad C_9(m_b) \simeq 4.4$$

$$C_{10}(m_b) \simeq -4.7,$$

• operators combined (nonlocally) with e.m. lepton-pair emission:

$$\begin{split} O_7 &= -\frac{e m_b}{8\pi^2} [\bar{s} \sigma_{\mu\nu} (1+\gamma_5) b] F^{\mu\nu} \;, \quad C_7(m_b) \simeq -0.3 \\ O_1^{(c)} &= [\bar{s}_L \gamma_\rho c_L] [\bar{c}_L \gamma^\rho b_L] \;, \qquad C_1(m_b) \simeq 1.1 \\ O_2^{(c)} &= [\bar{c}_L \gamma_\rho c_L] [\bar{s}_L \gamma^\rho b_L] \;, \qquad C_2(m_b) \simeq -0.25 \\ O_{8g} &= -\frac{m_b}{8\pi^2} \bar{s} \sigma_{\mu\nu} (1+\gamma_5) b G^{\mu\nu} \;, \quad C_8(m_b) \simeq 0.2 \\ O_{3-6} \; - \; \text{quark-penguin operators} \;, \qquad C_{3,4,5,6} < 0.03 \end{split}$$

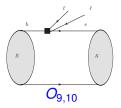
• neglected the $\sim V_{ub}V_{us}^*$ part

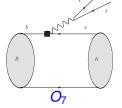
$B \to K\ell^+\ell^-$ decay in Standard Model

• the decay amplitude:

$$\begin{split} &A(B \to K\ell^+\ell^-) = \langle K\ell^+\ell^- \, | \, H_{eff} \mid B \rangle \\ &= -\frac{4G_F}{\sqrt{2}} \, V_{tb} \, V_{ts}^* \sum_{i=1}^{10} \, C_i \, \langle K\ell^+\ell^- | \, O_i \mid \! B \rangle \end{split}$$

dominant contributions factorize: ⇒ B → K form factors



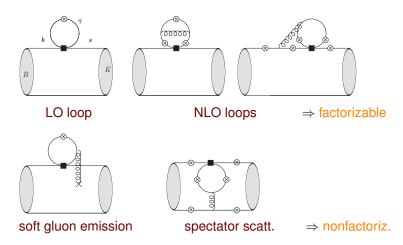


$$\langle K(p)|ar{\mathbf{s}}\gamma_{\mu}b|B(p+q)
angle \Rightarrow f^{+}_{BK}(q^{2}), \ \langle K(p)|ar{\mathbf{s}}\sigma_{\mu\nu}b|B(p+q)
angle \Rightarrow f^{T}_{BK}(q^{2})$$

• additional nonlocal contributions: combining O_{1-2}^c , O_{3-6} , O_{8g} with the emission of $\gamma^* \to \ell^+\ell^-$

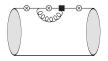
The nonlocal effects in $B \to K\ell^+\ell^-$

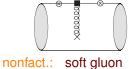
• 4-quark operators: $O_{1,2}^c$, O_{3-6}^q (q = u, d, s, c, b)

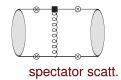


The nonlocal effects in $B \to K\ell^+\ell^-$

gluon-penguin operator O_{8g}

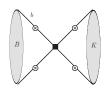






factoriz. NLO

• weak annihilation:
$$O_{3-6}^q q = u, d$$



Including nonlocal effects in the decay amplitude

schematically:

$$\begin{array}{lcl} A(B \to K \ell^+ \ell^-) & = & -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10} C_i \otimes (\bar{\ell}\ell) \otimes f_{BK}^i \\ & + & \sum_{i=1,2,3..6,8} C_i \otimes (\bar{\ell}\ell) \otimes \mathcal{H}_{BK}^i \Big] \end{array}$$

hadronic matrix elements of nonlocal contributions:

$$\mathcal{H}^{i}_{BK}(p,q) = \langle K(p) | \int d^4x \; e^{iq\cdot x} T \Big\{ j^{em}(x) \,, O^i(0) \Big\} | B(p+q)
angle$$

- in LO reducible to form factors ⊗ loop factor (OPE)
- first estimates of NLO contributions to $B \to K^{(*)} \ell^+ \ell^-$ in the QCD factorization scheme $(m_b \to \infty)$ at small q^2 (large hadronic recoil)

[Beneke, Feldmann, Seidel (2001)], ...

QCD calculation of $B \to K\ell^+\ell^-$

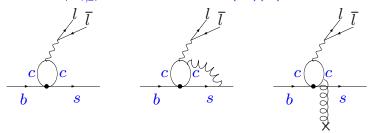
- $B \rightarrow K$ form factors:
 - lattice QCD,
 - light-cone QCD sum rules (LCSR)

(the same accuracy as LCSR for $B \to \pi$ FF's including $m_s \neq 0$ effects)

- \mathcal{H}^{i}_{BK} , the size of nonfactorizable nonperturbative contributions? ("soft" gluons, vacuum quark-antiquark pairs)
- the dominant part : $\mathcal{H}_{BK}^{1,2}$ due to $O_{1,2}^c$ (charm loops)

Charm-loops in $B \to K\ell^+\ell^-$

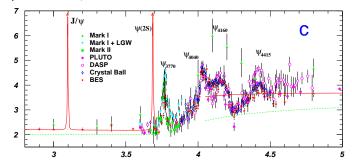
• Charm-loop effect: a combination of the $(\bar{s}c)(\bar{c}b)$ weak interaction $(O_{1,2})$ and e.m.interaction $(\bar{c}c)(\bar{\ell}\ell)$



 similar u, d, s, b-quark loops: suppressed by Wilson coeffs. (quark-penguin operators O₃₋₆) or by CKM (u-loops from O^u_{1,2})

Charm loop turns charmonium

- at $q^2 \to m_{J/\psi}^2$, $\bar{c}c$ loop becomes a hadronic state: e.g., $B \to K\ell^+\ell^- = \{ B \to J/\psi K \otimes J/\psi \to \ell^+\ell^- \}$
- heavier ψ -levels (charmonia with $J^P=1^-$) at $q^2=m_\psi^2$, $\bar{c}c$ states with the masses up to $m_B-m_K^{(*)}\simeq 4.8 {\rm GeV}(\simeq 4.4 {\rm GeV})$
- spectrum of ψ states as seen in $e^+e^- \rightarrow hadrons$



[PDG, V.V. Ezhela et al. hep-ph/0312114]

The $B \to \psi K^{(*)}$ amplitudes

- naive factorization fails in $B \to \psi K^{(*)}$, $(\psi = J/\psi, \psi(2S))$, $A(B \to \psi K) \sim \frac{G_F}{\sqrt{2}} V_{cb} V_{cs}^* (c_1(\mu) + c_2(\mu)/3) f_\psi f_{BK}^+ (q^2 = m_\psi^2)$ yields $\Gamma(B \to \psi K) \ll exp$.
- indicating large nonfactorizable contribuitons
 (which should effectively remove the μ-dependence)
- QCD factorization should not (and does not) work in these decays, due to heavy-mass final states

How to account for the charm-loop effect?

- $\bar{c}c$ loops $\oplus \psi$ resonances a double counting !!
- the experimentalists (BABAR,Belle,CDF,LHCb): subtract the "bins" of J/ψ and $\psi(2S)$ from the q^2 -distribution data in $B\to K^{(*)}\ell^+\ell^-$
- the effect of intermediate/virtual $\bar{c}c$ states remains at $q^2 \ll m_{J/\psi}^2$ (nonperturbative at $q^2 \sim 4m_c^2$)
- Can we use the { loop \oplus corrections } ansatz in the small $q^2 \ll 4m_c^2$ region (large hadron recoil) ?
- soft-gluon emission from c-quark loop from OPE on the light-cone
 [A.K., Th. Mannel, A. Pivovarov and Yu-M. Wang, 1006.4945 [hep-ph]]

Charm-loop in $B \to K\ell^+\ell^-$ at $q^2 \ll 4m_c^2$

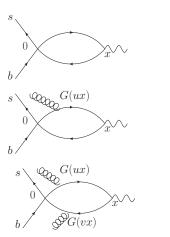
• the hadronic matrix element:

$$\mathcal{H}^{\mu}_{BK}(p,q) = i\langle K(p)| \int d^4x \ e^{iq\cdot x} T\Big\{ \overline{c}(x) \gamma^{\mu} c(x) \,, \ \Big[C_1[\overline{s}_L(0)\gamma_{\rho} c_L(0)\overline{c}_L(0)\gamma^{\rho} b_L(0)] + C_2... \Big] \Big\} |B(p+q)
angle$$

• at $q^2 \ll 4m_c^2$, contracting *c*-quark fields in propagators: $\langle c(0)\bar{c}(x)\rangle$ and $\langle c(x)\bar{c}(x)\rangle$, including gluon emission:

Expansion near the light-cone

- ullet at $q^2 \ll 4 m_c^2$, the dominant region: $\langle x^2
 angle \sim 1/(2 m_c \sqrt{q^2})^2$
- *T* product of $\bar{c}c$ -operators can be expanded near the light-cone $x^2 \sim 0$, diagrammatically:



the simple loop (unit operator LO \oplus NLO)

one-gluon emission

(non-local, $x \neq 0$) ($\bar{s}(0)G(x)b(0)$)

two-gluon emission

. . . .

The resulting effective operators

 LO reduced to simple c̄c -loop, no difference between local and LC,

$$\mathcal{O}_{\mu}(q) = (q_{\mu}q_{
ho} - q^2g_{\mu
ho})rac{9}{32\pi^2}\;g(m_c^2,q^2)ar{s}_{L}\gamma^{
ho}b_{L}\,.$$

- gluon emission: use c-quark propagator near the light-cone in the external gluon field [I. Balitsky, V. Braun (1999)]
- define LC kinematics (n_{\pm}) in the rest-frame of B, $q \simeq (m_b/2)n_{+}$
- one-gluon emission yields a new nonlocal operator:

$$\widetilde{\mathcal{O}}_{\mu}(q) = \int d\omega \ I_{\mu
holphaeta}(q,m_{c},\omega) \overline{s}_{L} \gamma^{
ho} \delta[\omega - rac{(in_{+}\mathcal{D})}{2}] \widetilde{G}_{lphaeta} b_{L} \ ,$$

Hadronic matrix elements for the charm-loop effect

• the LO: factorized c̄c loop

$$\left[\mathcal{H}^{\mu}_{BK}(\rho,q)\right]_{\text{fact}} = \left(\frac{C_1}{3} + C_2\right) \left\langle K(\rho) | \mathcal{O}^{\mu}(q) | B(\rho+q) \right\rangle,$$

- reduced to $f_{BK}^+(q^2)$ form factors, (\otimes loop function)
- The gluon emission yields:

$$\left[\mathcal{H}^{\mu}_{BK}(p,q)
ight]_{nonfact} = 2C_1 \langle K(p)|\widetilde{\mathcal{O}}^{\mu}(q)|B(p+q)
angle \,.$$

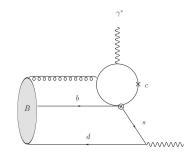
new hadronic matrix element (⊗ coeff.function)

$$\langle K(p)|\bar{s}_L\gamma^{\rho}\delta[\omega-\frac{(in_+\mathcal{D})}{2}]\widetilde{G}_{\alpha\beta}b_L|B(p+q)\rangle$$
,

LCSR for the soft-gluon hadronic matrix element

• the correlation function:

$$\begin{array}{l} \mathcal{F}^{(B\to K)}_{\nu\mu}(p,q) = i \int d^4y e^{ip\cdot y} \\ \langle 0|T\{j^K_\nu(y)\widetilde{\mathcal{O}}_\mu(q)\}|B(p+q)\rangle\,, \end{array}$$



hadronic dispersion relation in the kaon channel

$$\mathcal{F}^{(B\to K)}_{\nu\mu}(p,q) = \frac{\text{if}_K p_\nu}{m_K^2 - p^2} \langle K(p) | \widetilde{\mathcal{O}}^\mu(q) | B(p+q) \rangle + \int_{s_h}^\infty \text{d} s \; \frac{\widetilde{\rho}_{\mu\nu}(s,q^2)}{s - p^2}$$

B meson DA's used as nonperturbative input

Nonlocal effects in $B \to K\ell^+\ell^-$ in terms of ΔC_9

• the Wilson coefficient $C_9(\mu=m_b)\simeq 4.4$, a process-dependent correction to be added:

$$\Delta C_9^{BK}(q^2) \sim rac{\sum_i \mathcal{H}_{BK}^i(q^2)}{f_{BK}^+(q^2)}$$

 previously we investigated only the role of c-loop soft nonfact, effect vs LO and found

$$\Delta \textit{C}_9^{\textit{BK}(\bar{\textit{c}}\textit{c},\textit{LO}\oplus\textit{nf})}(\textit{q}^2=0)\sim 0.2$$

Nonlocal effects in $B \to K\ell^+\ell^-$ in terms of ΔC_9

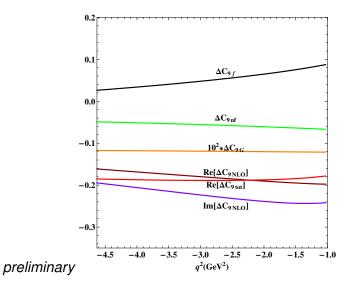
[A.K., Th.Mannel, Y.M. Wang, work in progress]

- preliminary results including nonlocal effects due to
 - O^c_{1,2} LO and soft nonfact.
 - O₃₋₆ LO and soft nonfact.
 - O₈ soft nonfact. (new LCSR estimate)
 - $O_{1,2}^c$ NLO two-loop factorizable contributions using diagrams from [Asatrian, Greub, Walker(2002)],
 - O_{1,2} NLO spectator contributions

[Beneke, Feldmann, Seidel (2001)], ...

 we use OPE results at negative q² having in mind the presence of light-quark loops

Nonlocal effects for $B \to K\ell^+\ell^-$ in spacelike region



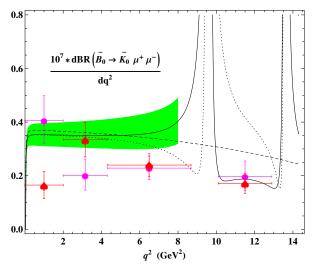
Accessing the timelike q^2 region ?

analyticity of the hadronic matrix element in q²,
 ⊕ unitarity ⇒ hadronic dispersion relation:

$$egin{aligned} \mathcal{H}^{(B o K)}(q^2) &= \mathcal{H}^{(B o K)}(0) + q^2 \Big[\sum_{\psi=J/\psi,\psi(2S),..} rac{f_{\psi}A_{B\psi K}}{m_{\psi}^2(m_{\psi}^2-q^2-im_{\psi}\Gamma_{\psi}^{tot})} \ &+ \int_{4m_{\mathcal{D}}^2}^{\infty} ds rac{
ho(s)}{s(s-q^2-i\epsilon)} \Big] \end{aligned}$$

- the residues $|A_{B\psi K}|$ and $|f_{\psi}|$ determined by $BR(B \to \psi K)$, $BR(\psi \to \ell^+\ell^-)$
- FSI phase attributed to $A(B \to \psi K)$, (Im part in $(p+q)^2$)
- a certain ansatz (z-parameterization) used for the integral
- \bullet dispersion relation fitted to the calculated $\mathcal{H}^{(B\to K)}$ at $\emph{q}^2<0$

The width of $B \to K\ell\ell$ [preliminary]

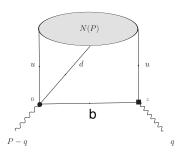


- exp. data on $B \to K\ell\ell$, [Belle '09 (violet), CDF'11(red)]
- solid (green shaded-theor. uncertainties) and dotted two different ansaetze for dispersion relation; dashed - without nonlocal effects

Part 2: $\Lambda_b \rightarrow p$ form factors from LCSR

[A.K., Ch.Klein, Th.Mannel, Y.-M. Wang arXiV:1108.2971]

The LCSR method



vacuum-to-nucleon correlation function:

$$\Pi_{\mu(5)}(P,q) = i \int d^4z \ e^{iq\cdot z} \langle 0 | T \left\{ \eta_{\Lambda_b}(0), \bar{b}(z) \gamma_{\mu}(\gamma_5) u(z) \right\} | N(P) \rangle \,.$$

- $ullet q^2 \ll m_b^2 \ , \ (P-q)^2 \ll m_b^2 , \ P^2 = m_N^2 \ ,$
- Λ_b interpolating 3-quark current, we use

$$\eta_{\Lambda_b}^{(\mathcal{P})} = (u \, C \, \gamma_5 \, d) \, b, \quad \eta_{\Lambda_b}^{(\mathcal{A})} = (u \, C \, \gamma_5 \gamma_\lambda \, d) \, \gamma^\lambda \, b.$$

Nucleon Distribution Amplitudes (DA's)

[V.Braun, A.Lenz et al (2000-2009)],

• definition, schematically ($z^2 \sim 0$):

$$egin{aligned} \langle 0|\epsilon^{ijk}u_{lpha}^{i}(0)u_{eta}^{j}(z)d_{\gamma}^{k}(0)|N(P)
angle &=\sum_{t}\mathcal{S}_{lphaeta\gamma}^{t} \ & imes\int dx_{1}dx_{2}dx_{3}\delta(1-\sum_{i=1}^{3}x_{i})e^{-ix_{2}P\cdot z}F_{t}(x_{i},\mu)\,, \end{aligned}$$

- twist expansion: 27 DA's of twist 3,4,5,6
- coefficients and normalization parameters determined from 2-point sum rules
- proton e.m. form factors were calculated from LCSR

Accessing the $\Lambda_b \rightarrow p$ form factors

hadronic dispersion relation, schematically

$$egin{aligned} \Pi_{\mu(5)}(P,q) &= rac{\langle 0 | \eta_{\Lambda_b} | \Lambda_b
angle \langle \Lambda_b | ar{b} \gamma_{\mu}(\gamma_5) u | N
angle}{m_{\Lambda_b}^2 - (P-q)^2} \ &+ rac{\langle 0 | \eta_{\Lambda_b} | \Lambda_b^*
angle \langle \Lambda_b^* | ar{b} \gamma_{\mu}(\gamma_5) u | N
angle}{m_{\Lambda_b^*}^2 - (P-q)^2} + \int_{s_0^h}^{\infty} ds \, rac{
ho_{\mu(5)}(s,q^2)}{s - (P-q)^2} \end{aligned}$$

• 6 form factors, standard definitions (cf nucleon β decay):

$$\begin{split} \langle \Lambda_b(P-q)|\bar{b}\,\gamma_\mu\,u|N(P)\rangle &= \bar{u}_{\Lambda_b}(P-q)\bigg\{f_1(q^2)\,\gamma_\mu + i\frac{f_2(q^2)}{m_{\Lambda_b}}\,\sigma_{\mu\nu}\,q^\nu + \frac{f_3(q^2)}{m_{\Lambda_b}}\,q_\mu\bigg\}u_N(P)\,,\\ 0 &\leq q^2 \leq \left(m_{\Lambda_b}^2 - m_N^2\right)\,, \quad \gamma_\mu \to \gamma_\mu\gamma_5\;,\; f_i(q^2) \to g_i(q^2) \end{split}$$

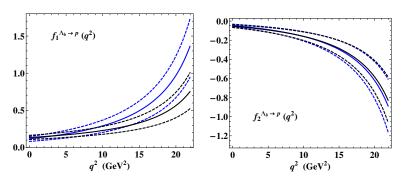
decay constant of Λ_b from two-point sum rules

LCSR in detail

- specific problems for baryon QCD sum rules
 - the contributions of Λ_b^* , ($J^P=1/2^-$ state, $m_{\Lambda_b^*}-m_{\Lambda_b}\sim 200-300~{\rm MeV}$ we used linear combinations of kinematical structures in the correlation function to eliminate Λ_b^*
 - baryon interpolating current: multiple choice we used pseudoscalar and axial currents
- replace *b* by *c* in LCSR $\Rightarrow \Lambda_c \rightarrow N$ form factors (used to calculate strong couplings)
- inputs: finite m_b , a few universal parameters of nucleon DA's, two-point sum rules for η_{Λ_b} currents:

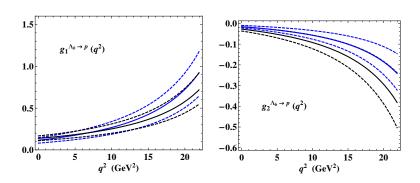
$$\lambda_{\Lambda_b}^{(\mathcal{A})} = 1.27^{+0.35}_{-0.34} \times 10^{-2} \,\, \text{GeV}^2 \,, \ \, \lambda_{\Lambda_b}^{(\mathcal{P})} = 1.09^{+0.31}_{-0.30} \times 10^{-2} \,\, \text{GeV}^2 \,, \label{eq:lambda_lambda_lambda_lambda}$$

Numerical results for the $\Lambda_b \to p$ vector form factors



- $q^2 \le 11 \text{ GeV}^2$ direct calculation from LCSR, at larger q^2 z-parameterization and extrapolation
- reasonable agreement between sum rules with different baryon currents

Numerical results for the axial-vector $\Lambda_b \to p$ form factors

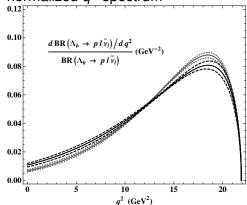


The width of $\Lambda_b \to p\ell\nu_\ell$ decay

• can be used to extract $|V_{ub}|$

$$\frac{d\Gamma}{dq^2}(\Lambda_b \to p l \nu_l) = \frac{G_F^2 m_{\Lambda_b}^3}{192 \pi^3} |V_{ub}|^2 \left\{ k_1(q^2, m_{\Lambda_b}, m_N) |f_1(q^2)|^2 + \ldots \right\}$$

normalized q²-spectrum



The width of $\Lambda_b \to p\ell\nu_\ell$ decay

partially integrated width: pure prediction of LCSR

$$\Delta\zeta(0, q_{max}^2) = \frac{1}{|V_{ub}|^2} \int_0^{q_{max}^2} dq^2 \frac{d\Gamma}{dq^2} (\Lambda_b \to p l \nu_l)$$
$$= 5.5_{-2.0}^{+2.5} \text{ ps}^{-1} \left(= 5.6_{-2.9}^{+3.2} \text{ ps}^{-1} \right)$$

for axial-vector (pseudoscalar) interpolating current of Λ_b

• improvements in the future possible: nucleon DA parameters, α_s corrections

Conclusions

- with LC OPE and LCSR the effects of four-quark and penguin operators in $b \to s \ell^+ \ell^-$ exclusive decays can be systematically accounted including soft-gluon effects in the region q^2 <few GeV²,
- $B \to K\ell^+\ell^-$ allows for more accurate treatment than $B \to K^*\ell^+\ell^-, K^*\gamma$ both in FF's and nonlocal effects
- ullet are (or will be) the \mathcal{H}^i_{BK} amplitudes accessible on the lattice ?
- Λ_b form factors can be calculated from LCSR

both topics will be discussed further in the talk by Thorsten Feldmann

BACKUP SLIDES

The hierarchy of contributions in LC OPE

after integrating over x and taking hadronic matrix element

- each extra gluon brings one power of $\sim \frac{\Lambda_{QCD}^2}{4m_c^2-q^2}$ suppression
- perturbative gluon corrections are α_s suppressed
- reexpanding the one-gluon nonlocal operator near x=0 in derivatives of $G_{\mu\nu}(0)$:

term with k-th derivative
$$\Rightarrow \sum_{k=0}^{\infty} \frac{(q \Lambda_{QCD})^k}{(4m_c^2 - q^2)^{k+1}}$$

 $q \sim m_b/2$ and $m_b \Lambda_{QCD} \sim m_c^2$.

the OPE near the light-cone works, but not the local OPE

The local OPE limit

• $\omega \to 0$ in the nonlocal operator, no derivatives of $G_{\mu\nu}$

$$\widetilde{\mathcal{O}}_{\mu}^{(0)}(q) = \emph{I}_{\mu\rho\alpha\beta}(q) \bar{\emph{s}}_{\emph{L}} \gamma^{\rho} \widetilde{\emph{G}}_{\alpha\beta} \emph{b}_{\emph{L}} \; ,$$

$$I_{\mu
holphaeta}(q,m_c) = (q_\mu q_lpha g_{
hoeta} + q_
ho q_lpha g_{\mueta} - q^2 g_{\mulpha} g_{
hoeta})
onumber \ imes rac{1}{16\pi^2} \int_0^1 dt \, rac{t(1-t)}{m_c^2 - q^2 t(1-t)}$$

At $q^2=0$, the quark-gluon operator obtained in $B\to X_s\gamma$ in [M.Voloshin (1997)] in $B\to K^*\gamma$ [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

the neccesity of resummation was discussed before [Z. Ligeti, L. Randall and M.B. Wise,(1997);
 A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei (1997);
 J. W. Chen, G. Rupak and M. J. Savage,(1997);
 G. Buchalla, G. Isidori and S.J. Rey (1997)]

Charm-loop effect for $B \to K^* \ell^+ \ell^-$

- factorizable part determined by the three $B \to K^*$ form factors $V^{BK*}(q^2)$, $A_1^{BK*}(q^2)$, $A_2^{BK*}(q^2)$,
- three kinematical structures for the nonfactorizable part:

$$\begin{split} \Delta \textit{C}_{9}^{(\bar{c}c,B\to K^*,V)}(\textit{q}^2) &= \left(\textit{C}_1 + 3\textit{C}_2\right)\textit{g}(\textit{m}_c^2,\textit{q}^2) \\ -2\textit{C}_1 \frac{32\pi^2}{3} \frac{\left(\textit{m}_B + \textit{m}_{K^*}\right)\widetilde{\textit{A}}_{\textit{V}}(\textit{q}^2)}{\textit{q}^2\textit{V}^{\textit{BK}^*}(\textit{q}^2)}\,, \end{split}$$

• nonfactorizable part enhances the effect, $1/q^2$ factor

$$\begin{split} &\Delta C_9^{(\bar{c}c,B\to K^*,V)}(1.0\text{GeV}^2) = 0.7^{+0.6}_{-0.4} \\ &\Delta C_9^{(\bar{c}c,B\to K^*,A_1)}(1.0\text{GeV}^2) = 0.8^{+0.6}_{-0.4} \\ &\Delta C_9^{(\bar{c}c,B\to K^*,A_2)}(1.0\text{GeV}^2) = 1.1^{+1.1}_{-0.7} \end{split}$$

