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Introduction

The spectroscopy of a composite system of fundamental particles becomes richer by

the presence of spin. For mesons spin–dependent interactions lead to four–fold increase

in the richness. Classically, the spin–dependent interactions are classified as

spin–orbit, spin–spin, and tensor. Of these the spin–spin ~s1 · ~s2 interaction, also

called the hyperfine interaction, is perhaps the most important one because it gives rise

to the ground states of all mesons. It is the hyperfine interaction between heavy quarks

that I am going to talk about.

The existence of a spin-spin interaction between the spin of a nucleus and that of an

electron was first proposed by Pauli in 1924. For two spin= 1/2 particles the ~s1 · ~s2
interaction gives rise to the hyperfine splitting between S = ~s1 · ~s2 = 0 and 1

levels. The most famous of these is the hyperfine splitting in hydrogen with the

transition between the two levels giving rise to the famous λ = 21 cm (1420 MHz)

line which is the staple of radio-frequency astronomy. We will not be talking about it,

but about the similar transitions between the spin-triplet (S = 1) and spin-singlet

(S = 0) states in charmonium and bottomonium.
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At the tree-level in QED and QCD a non-relativistic reduction of the Bethe–Salpeter

equation makes the hyperfine interaction as a contact interaction, with the result that

it is finite only for L = 0 S–wave states, and zero for states of all higher L.

Thus, hyperfine splitting for S–wave is [1]

∆Mhf(nS) ≡M(n3S1)−M(n1S0) = (32/9)παS|ψn(0)|
2/m2

q (1)

For P–wave states at one–loop level Pantaleone and Tye [2] obtained a small

correction to the zero splitting,

∆Mhf(1P ) = [M(3P )−M(1P )] = −
3

4
[M(3P2)−M(3P0)]

(

10αS

81π

)

(2)

which amounts to a sub–MeV splitting.

• Note that in Eqs. (1) and (2) the triplet masses M(3S, 3P ) are not necessarily

the centroid masses of the three spin–orbit split triplet states. I return to this

point later.

• Also, keep in mind that these expressions are obtained assuming that there is

no long–range spin–spin interaction, as might arise from the exchange of

anything other than a single vector gluon.
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It is a fact of life that while Lattice may provide the ultimate answers in QCD, at this

point most existing theoretical predictions are from QCD–inspired potential models.

In one way or another they require assuming a central potential. The most popular

potential is the so-called “Cornell potential” [3] which consists of a one-gluon

exchange “Coulombic” central potential and a linear “confinement” potential:

V (qq̄) = V (Coulomb) + V (confinement) =
k

r
+Cr (3)

Variants often consist of different prescriptions for smoothing the Coulomb potential,

making different assumptions about the Lorentz structure of the confinement potential,

and including relativistic effects in various approximations.

The spin–dependent contributions arising from the Coulomb part are represented by

the well-known Breit–Fermi Hamiltonian. The uncertain part is the contribution that

the confinement interaction makes to the spin–dependent interaction.
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The relative contributions of the Coulombic

and confinement parts to the central potentials

are, of course , very r–dependent, as

illustrated. It is clear that the 1S states of

bottomonium are least affected by the

confinement potential and the 1P and 2S

states of charmonium are most sensitive to it.

The same follows for spin–dependent

potentials.
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Since one of the important open questions is about the Lorentz structure of the

confinement interaction, and whether it makes any long–range contribution to the

hyperfine interaction, it is important to study how the the hyperfine splitting varies

with variations in

• angular momenta: S–wave states versus P–wave states,

• radial excitations: 1S versus 2S, 1P versus 2P,

• quark flavor: charm quark versus beauty quark.

This is what I am going to talk about.
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Experimental Problems

Most of what we know about heavy quark spectroscopy comes from

electron–positron annihilation experiments done at the e+e− colliders, with the

early ones being at SLAC, DESY, Frascati, Orsay, and Novosibirsk, followed by those

at Cornell and Beijing, and the B–factories at SLAC (PEP–II) and KEK (Belle). High

precision measurements of charmonium states were done with pp̄ collisions at Fermilab,

and may soon be done at the PANDA facility under construction at GSI in Darmstadt.

• In e+e− annihilation into a virtual photon the spin–triplet S–wave states with

JPC = 1−− are directly excited, and their spectroscopy was done in great detail for

cc̄ charmonium and bb̄ bottomonium early after the discovery of J/ψ in 1974 [4],

and the discovery of Υ(1S) in 1977 [5], but the identification of their partner

spin–singlet states presented serious problems, because they could only be reached

indirectly in transitions from higher excited states, the obvious one being via weak

M1 transitions from the triplet states. And there lies one of those rare and

interesting stories of the triumph of theory over experiment.

• In 1978 DASP [6] announced the identification of ηc(1S) at a mass of

M(ηc(1S)) = 2830± 50 MeV. This was immediately and forcefully challenged by

Shifman et al. [7] who made a firm prediction of M(ηc(1S)) = 3000± 30 MeV

based on QCD Sum Rules, which is of course where it was later found by the

Mark II and Crystal Barrel [8] at SPEAR (SLAC).
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Fun and Games with the Hyperfine Interaction

Before we go into details of hyperfine splittings, let us consider a toy model. The

simple QED result for hyperfine splitting is

∆Mhf(nS) = (32/9)παem|ψn(0)|
2/m1m2

We replace αem by αStrong, and borrow its mass dependent values from Godfrey and

Isgur. We make the simplifying assumption that in a Schrödinger equation

|ψn(0)|
2/m1m2 is nearly a constant, independent of the quark masses. We set it

= 31 MeV, so that ∆Mhf(nS) in MeV = 346αs. The table shows that the

predicted ∆Mhf(
3S1 −

1 S0) which result are in remarkable agreement with their

experimental values (jumping the gun a bit about charmonium and bottomonium):

∆Mhf (1S) (η, ω) (D,D∗) (Ds, D
∗

s ) (ηc, J/ψ) (ηc(2S), ψ(2S)) (ηb,Υ(1S)) (ηb(2S),Υ(2S))

αs(GI) 0.65 0.42 0.42 0.34 0.21

346αs 225 145 145 118 49 73 34

Expt. (MeV) 234 145 144 117 49 64 ?

• For the 2S excitations |ψ(0)|2/m2 is reduced by the experimentally determined

factors [|ψ(0)|2/m2]2S/[|ψ(0)|
2/m2]1S = Γee(2S)/Γee(1S) = 0.42(cc̄), 0.46(bb̄).

• This level of success of a frivolous(?) prediction ought to set a goal for

the Lattice!! We will see how close it comes.
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Hyperfine Interactions in Charmonium (Experimental)

Hyperfine Splitting in Charmonium 1S States

In 1980 Mark II and Crystal Barrel at SPEAR (SLAC) [8] finally identified the

charmonium ground state, ηc(1S). Better measurements have continued since, and the

PDG2010 average of hyperfine splitting is

∆Mhf(1S)cc̄ =M(J/ψ)−M(ηc(1S)) = 116.6± 1.2 MeV.

This is by far the best measurement so far of hyperfine splitting in a quarkonium

system.
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CLEO [9]: e+e− → J/ψ → γηc(1S) BaBar [10]: e+e− → e+e− ηc, ηc → KSKπ
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Hyperfine Splitting in the Charmonium 2S State

Measurement of hyperfine splitting in the radial excitation of the charmonium ground

state defied many attempts because the photon in the radiative transition,

ψ(2S) → γηc(2S) was expected to have very small energy, ∼ 60 MeV. One had to wait

for 22 years for the successful identification of ηc(2S) by Belle [11] in B decays in 2002.

It was confirmed by us at CLEO [12], and simultaneously by BaBar [13], in its

formation in two photon fusion and decay in KSKπ.

The result for hyperfine splitting is

∆Mhf(2S)cc̄ =M(ψ(2S))−M(ηc(2S)) = 49± 4 MeV.
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Hyperfine Splitting in Charmonium 1P States

Determining hyperfine splitting in P–wave

states required identification of hc, the
1P1

singlet state. It was even more challenging,

because the transition from the 1−− ψ(2S) to

the 1+− hc is only possible with a 0−+ π0. But

it is forbidden by isospin, and has very little

phase space. However, we identified it in 2005

at CLEO [14] via ψ(2S) → π0hc, and obtained

∆Mhf(1P )cc̄ =M(χ(13P ))−M(hc(1
1P1))

= −0.10± 0.22 MeV,

which is, of course, consistent with the lowest

order prediction of zero. (a) Inclusive, E1 tagged, (b) background

subtracted, (c) Exclusive, ηc decays

• The 2P states of charmonium all lie above the DD breakup threshold at

3730 MeV, and there is little hope of identifying them anytime soon. So, let me

now move on to bottomonium.

Northwestern University 10 K. K. Seth



Lattice at Trento April 2–6, 2012

Hyperfine Interactions in Bottomonium (Experiment)

As for charmonium, the problem of studying the hyperfine interaction in bottomonium

consists of identifying the spin singlet states, ηb(n
1S0), and hb(n

1P1).

The spin singlet states Υ(n3S1) have been known for nearly 34 years, but even the spin

singlet ground state ηb(1
1S0), of bottomonium was not identified until three years ago.

The main problem is that the radiative M1 transitions from Υ(nS) states have even

smaller energies than in charmonium and backgrounds are far worse. Nevertheless,

remarkable success has been achieved recently.

The ηb(1S), hb(1P ) and hb(2P ), and as of today ηb(2S), have been

successfully identified, and we can now discuss hyperfine splitting in bottomonium.
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Observation of the Ground State of Bottomonium

• An early attempt to identify ηb(1S) in the inclusive allowed M1 radiative decays,

Υ(1S) → γηb(1S) by detecting the low energy (< 100 MeV) transition photons

was unsuccessful [15].

• Successful identification of ηb(1S) by BaBar [16], and its confirmation by

CLEO [17], was only made possible by detecting instead the ∼ 920 MeV transition

photons in the “forbidden” M1 decays Υ(3S) → γηb(1S).

The forbidden M1 transitions have zero overlap between the initial and final states

in the lowest order, and they become finite only because of relativistic and

higher–order effects. Fortunately, this weakness is partially compensated by the E3
γ

increase in the width. However, it is still very challenging to identify the transition

photons in the inclusive radiative decay of Υ(1S) as was done by BaBar and CLEO.

The following figure illustrates the difficulty in identifying the ηb(1S) signal in

presence of the huge yield of χbJ(1P ) and the ISR excitation of Υ(1S).
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And now by an

unexpected means—

BaBar [16]: Υ(3S) → γηb(1S) CLEO [17]: Υ(3S) → γηb(1S) Belle [18]: hb(1P ) → γηb(1S)

The net result is

∆Mhf(1S)bb̄ =M(Υ(1S))−M(ηb(1S)) = 64.1± 2.0 MeV
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Observation of the Singlet P–States of Bottomonium

As I already mentioned, we made the discovery of hc, the singlet P–state of

charmonium by means of the doubly difficult transition ψ(2S) → π0hc which is

forbidden by isospin conservation and has very little phase space.

Five years later CLEO [19] found another, rather

unexpected way to populate hc through the

unbound charmonium state, ψ(4160). The

reaction

ψ(4160) → π+π−hc(3525)

was found to populate hc stongly.

• Frankly, the mechanism for this successful

reaction is not well understood if ψ(4160) is a

pure 1−− state as is generally believed,

because the transition,

1−−
→ 1+− + (π+π−)

can not be a one-step transition.
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Observation of the Singlet P–States of Bottomonium

The success of CLEO in reaching hc from an unbound state of charmonium suggested

to Belle [20] that perhaps they could also find the hb states of bottomonium by

searching for them in the corresponding π+π− transitions from the unbound region of

bottomonium. They tried, and strangely enough, while it did not work at Υ(4S), it

worked beautifully from e+e− annihilations near Υ(5S)

To understand how difficult it is to find the hb, first look at the raw π+π− recoil

spectrum for
e+e− → Υ(∼ 5S) → π+π−X, X =?
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You can see nothing. But if you have monstrous statistics you can look with a

microscope. Lo, and behold, a whole world is revealed, with beautiful peaks

corresponding to hb(1P ) and hb(2P )!!
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The identifications lead (Belle [20]) to

∆Mhf(1P )bb̄ = 0.8± 1.1 MeV, ∆Mhf(2P )bb̄ = 1.6+1.6
−1.2 MeV

Both results again confirm the rather naive pQCD expectation that ∆Mhf(P-wave)= 0.

And now for the “stop the press” news!
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Observation of the Radially Excited ηb(2S)

We have now made successful observation of the radially excited ηb(2S) state, and the

measurement of the hyperfine splitting of the 2S state of bottomonium [20]. Since this

is the first announcement of the observation of ηb(2S) let me give you some

details.

• As mentioned earlier, the inclusive radiative transitions in Υ(nS) → γηb(nS) are

essentially impossible to measure. The only hope was to identify ηb(nS) in

radiative decays of Υ(nS) by “tagging” ηb(nS) by their exclusive hadronic decays.

Since individual exclusive decays are expected to be very weak, with product

branching fractions in the 10−5 range, many such decays need to be measured in

order to obtain a statistically significant result. We have done just that. We have

measured 26 exclusive decays of ηb(2S) into charged hadrons

Υ(2S) → ηb(2S), ηb(2S) →Xi,

with Xi comprising of up to ten π± , K± , and p/p̄. To validate our analysis

procedures we have made identical analysis of

Υ(1S) → ηb(1S), ηb(1S) →Xi,

We use CLEO III data consisting of 9.3 million Υ(2S), and 20.9 million Υ(1S).
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• The exclusive final states in the reaction we construct are: Υ(nS) → γXi,

X = 2(π+π−), 3(π+π−), 4(π+π−), 5(π+π−), K+K−π+π−, K+K−2(π+π−),

K+K−3(π+π−), K+K−4(π+π−), 2(K+K−), 2(K+K−)π+π−,

2(K+K−)2(π+π−), 2(K+K−)3(π+π−), pp̄π+π−, pp̄2(π+π−), pp̄3(π+π−),

pp̄4(π+π−), pp̄K+K−π+π−, pp̄K+K−2(π+π−), pp̄K+K−3(π+π−), K0
SK

±π∓,

K0
SK

±π∓π+π−, K0
SK

±π∓2(π+π−), K0
SK

±π∓3(π+π−), 2K0
Sπ

+π−, 2K0
S2(π

+π−),

2K0
S3(π

+π−).

• In the first step of analysis, for example for Υ(1S), if you look at the raw spectrum

of reconstructed hadrons alone, presented in terms of the mass difference

∆M =M(Υ)−M(hadrons), or the inclusive spectrum of photons, you can not

expect to see any enhancement for ηb(1S), and you do not.
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• We have to reconstruct the full event, i.e., the hadrons and the photons, and

impose the energy-momentum constraint for the full event. When we do that, most

of the background events are removed, and we see resonance enhancements in both

Υ(1S) and Υ(2S) data.

• Fit to the Υ(1S) data yield the mass of the enhancement as

∆M = 67.8± 3.9 MeV, which unambiguously identifies it to be due to ηb(1S).

• Fit to the Υ(2S) data yields the mass of the enhancement as

∆M = 48.7± 2.7 MeV, with significance level ∼ 5σ.

We cannot find any other explanation for this enhancement except to attribute it

to ηb(2S).

• Thus, we conclude that the hyperfine splitting for the bottomonium 2S state is

∆Mhf(2S)bb̄ =M(Υ(2S))−M(ηb(2S)) = 48.7± 2.7 MeV
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Summary of Experimental Results

M(1S0,
1 P1) (MeV) Hyperfine Splitting (MeV)

M(ηc(1S)) = 2980.3± 1.2 ∆Mhf (1S)cc̄ = ψ(1S)− ηc(1S) = 116.6± 1.2

M(ηc(2S)) = 3637± 4 ∆Mhf (2S)cc̄ = ψ′(2S)− η′c(2S) = 49± 4

M(hc(1P )) = 3525.20± 0.15 ∆Mhf (1P )cc̄ = 〈χcJ (1P )〉 − hc(1P ) = −0.06± 0.15

M(ηb(1S)) = 9396.2± 2.0 ∆Mhf (1S)bb̄ = Υ(1S)− ηb(1S) = 64.1± 2.0

M(ηb(2S)) = 9974.6± 2.7 ∆Mhf (2S)bb̄ = Υ(2S)− ηb(2S) = 48.7± 2.7

M(hc(1P )) = 9898.3± 1.6 ∆Mhf (1P )bb̄ = 〈χbJ (1P )〉 − hb(1P ) = 0.8± 1.1

M(hb(2P )) = 10259.8± 1.3 ∆Mhf (2P )bb̄ = 〈χbJ (2P )〉 − hb(2P ) = 0.5+1.6
−1.2

As experimentalists our job is done, and we can assign the job of understanding these

hard–fought numbers to the theorists.

But no! Let us point out some of the important problems, as we see them.
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The Problems

The first problem relates to what we are calling the experimental measure of

hyperfine splittings in P–wave . We have been calculating, for example,

∆Mhf(nP ) = 〈M(n3PJ)〉 −M(n1P1),

with 〈M(n3Pj)〉 calculated as the centroid of the three spin-orbit split states, 3P0,
3P1, and

3P2,

〈M(n3PJ)〉 = [M(3P0) + 3M(3P1) + 5M(3P2)]/9

but this is not equal to M(n3P ) except in the limit of perturbatively small spin-orbit

splitting. The fact is that the measured spin–orbit splittings are hardly small,

M(3P2)−M(3P0) in charmonium being 142 MeV. An often used measure of

spin–orbit splitting is the ratio,

R = [M(3P2)−M(3P1)]/[M(3P1)− 3M(3P0)]

For a Coulombic potential the perturbative prediction is R = 4/5, or 0.8.

For charmonium 1P states the experimental value is R(1P )cc̄ = 0.475(2).

For bottomonium R(1P )bb̄ = 0.583(2), and R(2P )bb̄ = 0.574(4).

Thus the measured values of R(nP ) are all telling us that the centroid 〈M(n3Pj)〉 is

not a proper measure of the unsplit triplet mass M(n3P ).
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So, we have been calculating the P–wave hyperfine splittings using the wrong triplet

state masses. But these wrong masses are giving us the expected result of zero

hyperfine splittings for P–wave states. This is rather weird. Doing the manifestly

“wrong” calculation is giving us the “right” answer.

This raises two possibilities. Either the calculation is not “wrong”, or the answer is not

“right”. To be more specific, the possibilities are:

1. The observed spin–orbit splittings receive large contributions from the

non–Coulombic part of the potential, i.e., from the confinement potential, which in

some magical way makes the centroid 〈M(n3PJ)〉 an excellent measure of the

unsplit triplet mass M(n3P ).

2. The contact nature of the hyperfine interaction, based on non-relativistic reduction

of the Bethe–Salpeter equation, and the assumption of a Lorentz scalar nature of

the confinement potential lead to the expectation of zero hyperfine splitting for

non–L=0 states. This expectation may not be correct.
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The second problem concerns theoretical predictions of singlet state masses.

An infinite number of potential model calculations for charmonium and bottomonium

exist in the literature. Their predictions run all over the map. Let me illustrate the

point by reproducing the compilation of potential model predictions of bottomonium

hyperfine splittings from the Ph.D. dissertation of S. Dobbs [21].

Even in the post–1990 papers the potential-model predictions for the bottomonium

hyperfine splittings range from ∆Mhf(1S)bb̄ = 46 MeV to 87 MeV and from

∆Mhf(2S)bb̄ = 23 MeV to 44 MeV. The situation is not much better with the Lattice

predictions, and they range from

∆Mhf(1S)bb̄ = 20 MeV to 70 MeV and

∆Mhf(2S)bb̄ = 12 MeV to 30 MeV.
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Potential Model Calculations

Reference(year) ∆Mhf (1S)
bb̄

∆Mhf (2S)
bb̄

(MeV) (MeV)

Potential Models

CGM(78) 90 40

BT(81) 46 23

EF(81) 95 41

BJ(82) 27 13

GRR(82) 35 19

MB(83),ZB(83) 101 40

MR(83) 57 26

GOS(84) 67a, 78b 31a, 37b

GI(85) 63 27

GRR(86) 44 26

IO(86) 40− 45 —

PTN(86) 39− 49 21− 24

GRS(89),ZSG(91) 48 23

F(91) 46 23

EQ(94) 87 44

ZOR(95) 49 26

GJR(96) 43 —

LNR(99) 79 44

EFG(03) 60 30

RR(07) 47d, 68e 24d, 36e

Effective Field Theories

CO(96) 36− 49 20− 23

BSV(01) 36− 55 —

RS(04) 44 21

KPPSS(04) 39± 14 —

Model Independent 79± 3 36± 1

Lattice Calculations

Reference(year) ∆Mhf (1S)
bb̄

∆Mhf (2S)
bb̄

(MeV) (MeV)

BSW(97) 44,50 —

MBD(01) 40,44 —

LM(02) 59± 20 —

TWQCD(07) 70± 5 —
∗CP–PACS(00) 20− 33 —
∗HP–UKQCD(05) 61± 14 30± 19
∗BE(07) 37± 8 13± 19
∗FNL–MILC(10) 54.0± 12.4 (12± 60)
∗RBC–UKQCD(10) 60.3± 7.7 23.5± 4.6

∗ Unquenched calculation.
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I hope to hear a lot from the assembled Lattice experts in the next few days, but

before then I will make my credibility cuts among the lattice predictions as follows:

I will only consider

• unquenched lattice calculations.

• those calculations which include continuum extrapolation.

• those calculations which succeed in predicting the known 1S hyperfine splitting of

64± 2 MeV within errors, and make prediction of the 2S hyperfine splitting.

With these non–expert subjective criteria only four predictions survive.

∆Mhf (1S)bb̄ ∆Mhf (2S)bb̄

HP–UKQCD (2005) 61± 14 MeV 30± 19 MeV

FNAL–MILC (2010) 54± 12 MeV 12± 60 MeV (from graph)

RBC-UKQCD (2010) 60± 8 MeV 24± 5 MeV

HPQCD (2012) 70± 9 MeV 35± 3 MeV

Experiment 64± 2 MeV 49± 3 MeV

I am sure you see the big problem. Our measured 2S hyperfine splitting is considerably

larger than the existing lattice predictions, even though all of them make the caveat

that predictions for radial and P-wave excitations are not very reliable at this point.
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The experimental measurement has two parts:

1. Our observation of the enhancement. How sure?

with ∼ 5σ significance, we are sure it is real.

2. Our assignment of it to ηb(2S)

This is, of course, a best explanation call,

because we can not think of what else it could be.

What about the apparent discrepancy

with the existing Lattice calculations?

Should one seriously look into speculation a la

Domingo et al. (PRL 103, 111802 (2009))

which invokes:

• Mixing of ηb States with a Light

CP–Odd Higgs Boson

to predict larger hyperfine splitting.
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The third problem concerns theoretical predictions about formation and decay

probabilities of the singlet states, or what we experimentalists call branching fractions.

These are obviously more difficult to predict than masses because they involve details

of overlaps between initial and final state wave functions. As the nuclear physicists

among us know very well, predicting level spectra is relatively easy compared to

predicting spectroscopic factors.

One of our important reasons for studying the allowed M1 transitions

Υ(nS) → γηb(nS) was to get away from the difficult problems associated with the

theoretical understanding of the forbidden M1 transitions Υ(nS) → γηb(n
′S).

The hope was that at least for these, the theoretical predictions would be reliable.

However, this turns out to be not true.

There are absolutely no predictions of hadronic widths or branching fractions from

Lattice. And, as usual, potential model predictions are numerous and they vary all over

the map. This is illustrated in the following table.
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Reference Γ(ηb(1S) → γγ) Γ(ηb(1S) → gg) Γ(ηb(2S) → γγ) Γ(ηb(2S) → gg)
(keV) (MeV) (keV) (MeV)

GI(85) 0.38 10.21 — —
AB(92) 0.17 4.57 0.13 2.21
AM(95) 0.52 13.97 — —
M(96) 0.22 ± 0.04 5.91 ± 1.07 0.11 ± 0.02 1.87 ± 0.34
GJR(96) — 12.46 — —
SBG(98) 0.46 12.36 0.20 3.40
EFG(03) 0.35 9.40 0.15 2.55
F(03) 0.47 ± 0.08 12.52 ± 2.71 — —
PPSS(04) 0.66 ± 0.09 17.71 ± 2.47 — —
KLW(05) — 6.98 ± 0.85 — 3.47 ± 0.45
KLW(05) 0.38 ± 0.05 10.32 ± 1.26 0.19 ± 0.03 3.25 ± 0.43
LS(06) 0.23 6.18 0.07 1.19
LP(07) 0.56 15.04 0.27 4.58
KPS(10) 0.54 ± 0.15 14.52 ± 4.03 — —
CLY(11) 0.51 ± 0.10 13.71 ± 2.69 0.24 ± 0.4 4.00 ± 0.73

Range 0.17 − 0.66 4.57 − 14.52 0.07 − 0.27 1.19 − 4.58

Υ(1S) → γηb(1S) Υ(2S) → γηb(2S)

Reference B × 104
B × 104

ZB83 8.3 0.83
GOS84 3.3, 3.5 0.54, 0.63
GI85 2.2 0.24
ZSG91 0.74 0.31
LNR99 3.5 0.88
EFG03 1.1 0.44
BJV06 2.8 1.7

Non–Relativistic 0.17 − 8.7 0.02 − 0.72

So, what are the prospects of doing better. Are we experimentalists laboring in vain to

make the awefully difficult measurements of formation and decays of bottomonium

states. Can Lattice really help?

Once again, I am here to hear your answers to this challenge.
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