B-meson physics with dynamical domain-wall light quarks and nonperturbatively tuned relativisite b-quarks

Oliver Witzel for the RBC and UKQCD collaborations

Boston University, Center for Computational Science

Trento, April 5, 2012

Introduction Actions Tuning LPT Results $bar{b}$ B-physics Conclusion

Outline

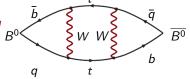
- ▶ Introduction
- Actions
- ► Nonperturbative tuning
- ► Lattice perturbation theory
- ▶ Results for bottomonium
- ► *B*-physics
- Conclusions

Phenomenological Importance

- $ightharpoonup B ar{B}$ -mixing allows us to determine CKM matrix elements
- ▶ Dominant contribution in SM: box diagram with top quarks

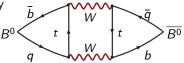
$$\frac{|V_{td}^*V_{tb}| \, \text{for} B_d - \text{mixing}}{|V_{ts}^*V_{tb}| \, \text{for} B_s - \text{mixing}} \Delta m_q = \frac{G_F^2 m_W^2}{6\pi^2} \eta_B S_0 m_{B_q} f_{B_q}^2 |V_{tq}^*V_{tb}|^2$$

- Non-perturbative contribution: $f_q^2 B_{Bq}$
- ▶ Define the SU(3) breaking ratio $\xi^2 = f_{B_s}^2 B_{B_s} / f_{B_d}^2 B_{B_d}$



CKM matrix elements are extracted by

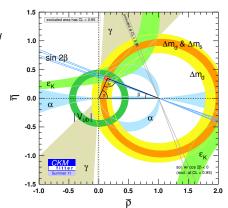
$$\frac{\Delta m_{\rm s}}{\Delta m_{d}} = \frac{m_{B_{\rm s}}}{m_{B_{d}}} \, \xi^{2} \, \frac{|V_{\rm ts}|^{2}}{|V_{td}|^{2}}$$



▶ Experimental error of Δm_q is better than a percent; lattice uncertainty for ε is about 3%

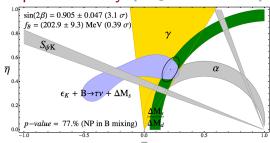
Constraining the CKM Unitarity Triangle

- ► The apex of the unitarity triangle is constrained by the ratio of B_s to B_d oscillation frequencies (Δm_a)
- $ightharpoonup \Delta m_q$ is experimentally measured to better than a percent [BABAR, Belle, CDF]
- ▶ Dominant error comes from the uncertainty on the lattice QCD calculation of the ratio ξ (\sim 3%)
- A precise determination is needed to help constrain physics beyond the Standard Model



Unitarity Fit without Semileptonic Decays [Lunghi and Soni 2009]

- Avoids 2-3 σ tension between inclusive and exclusive determinations of both V_{ub} and V_{cb}
- ▶ Requires precise determination of f_B (and also of BR($B \to \tau \nu$) and ΔM_s)



Possible Deviations from the SM [Lunghi and Soni 2010/11]

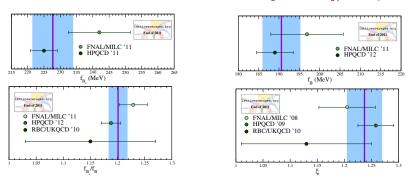
- ightharpoonup Experimental value for $\sin(2\beta)$ is 3.3σ lower than SM expectation
- ▶ Measured value for BR($B \to \pi I \nu$) is 2.8 σ lower than predicted
- ▶ Most likely source of deviation in $B_{d(s)}$ mixing and $\sin(2\beta)$;less likely in $B \to \tau \nu$

Latest Results (End of 2011) [http://www.latticeaverages.org]

New physics in $B \to \tau \nu$ decay prefered less so in in B-mixing

See also: http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it

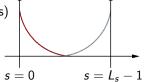
2+1 Flavor Lattice Calculations of f_{B_s} , f_B , f_{B_s}/f_B , ξ



- ▶ HPQCD and FNAL-MILC result both based on the asqtad-improved staggered ensembles generated by MILC
- ► RBC/UKQCD result only exploratory study computed on 16³ lattices and using static approximation for the *b*-quarks
- ► This project aims for an independent cross-check at high precision using domain-wall light-quarks and relativistic heavy quarks

2+1 Flavor Domain-Wall Gauge Field Configurations

- ▶ Domain-wall fermions for the light quarks (u, d, s) [Kaplan 1992, Shamir 1993]
- ▶ lwasaki gauge action [lwasaki 1983]



L	a(fm)	m_l	m _s	$m_\pi(MeV)$	approx. # configs.	# time sources
24	≈ 0.11	0.005	0.040	331	1636	1
24	≈ 0.11	0.010	0.040	419	1419	1
32	≈ 0.08	0.004	0.030	307	628	2
32	≈ 0.08	0.006	0.030	366	889	2
32	≈ 0.08	0.008	0.030	418	544	2

[C. Allton et al. 2008, Y. Aoki et al. 2010]

Relativistic Heavy Quark Action for the b-Quarks

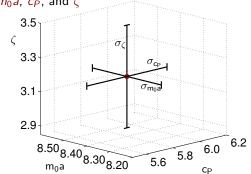
- ► Relativistic Heavy Quark action developed by Christ, Li, and Lin for the *b*-quarks in 2-point and 3-point correlation functions [Christ, Li, Lin 2007; Lin and Christ 2007]
- Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [Aoki, Kuramashi, Tominaga 2003]
- ▶ Heavy quark mass is treated to all orders in $(m_b a)^n$
- **Expand** in powers of the spatial momentum through $O(\vec{p}a)$
 - ▶ Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- ► Applies for all values of the quark mass
- ► Has a smooth continuum limit

Tuning the Parameters for the RHQ Action

$$S = \sum_{n,n'} \bar{\Psi}_n \left\{ m_0 + \gamma_0 D_0 - \frac{aD_0^2}{2} + \zeta \left[\vec{\gamma} \cdot \vec{D} - \frac{a(\vec{D})^2}{2} \right] - a \sum_{\mu\nu} \frac{ic_P}{4} \sigma_{\mu\nu} F_{\mu\nu} \right\}_{n,n'}$$

▶ Start from an educated guess for m_0a , c_P , and ζ

$$\begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix} \pm \begin{bmatrix} \sigma_{m_0 a} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sigma_{c_P} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ \sigma_{\zeta} \end{bmatrix}$$



▶ Compute for all seven parameter sets

spin-averaged mass
$$\overline{M} = (M_{B_s} + 3M_{B_s^*})/4 \rightarrow 5403.1(1.1) \text{ MeV}$$

hyperfine-splitting $\Delta_M = (M_{B_s^*} - M_{B_s}) \rightarrow 49.0(1.5) \text{ MeV}$
ratio $\frac{M_1}{M_2} = M_{\text{rest}}/M_{\text{kinetic}} \rightarrow 1$

▶ Assuming linearity

$$Y_{r} = \begin{bmatrix} \overline{M} \\ \Delta_{M} \\ \frac{M_{1}}{M_{2}} \end{bmatrix}_{r} = J^{(3\times3)} \begin{bmatrix} m_{0}a \\ c_{P} \\ \zeta \end{bmatrix}_{r} + A^{(3\times1)} \qquad (r = 1, \dots, 7)$$

and defining

$$J = \left[\frac{Y_3 - Y_2}{2\sigma_{m_0 a}}, \frac{Y_5 - Y_4}{2\sigma_{c_P}}, \frac{Y_7 - Y_6}{2\sigma_{\zeta}}\right] \qquad A = \begin{bmatrix} M \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}_1 - J \times \begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}_1$$

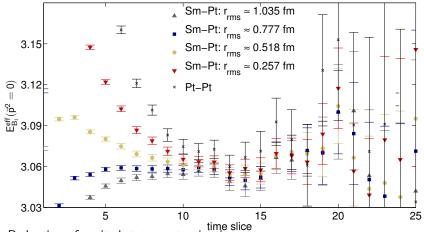
▶ We extract the RHQ parameters and iterate until result is inside uncertainties

$$\begin{bmatrix} m_0 a \\ c_P \\ \zeta \end{bmatrix}^{\mathsf{RHQ}} = J^{-1} \times \left(\begin{bmatrix} \overline{M} \\ \Delta_M \\ \frac{M_1}{M_2} \end{bmatrix}^{\mathsf{PDG}} - A \right)$$

Improvement of Tuning

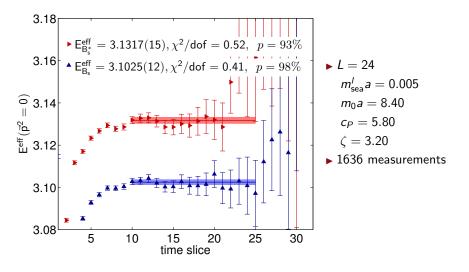
- ▶ Tuning method pioneered on 24^3 (a $\approx 0.11 \text{fm}$) by Min Li [M. Li 2009] Further studies by Hao Peng on 32^3 (a $\approx 0.08 \text{fm}$) [H. Peng 2010] Exploratory studies; results not suitable for production
- ▶ Improvements and new setup
 - Use of point-source strange quark operators and Gaussian-smeared heavy quarks
 - ▶ Performed optimization study of smearing parameters
 - ▶ Significantly increased statistics
 - ▶ Only use of heavy-light quantities
 - ▶ Check on linearity assumption

Improving the Signal by Smearing of Source



- ▶ Reduction of excited state contamination
- ▶ 818 measurements, $m_{\text{sea}}^l = m_{\text{val}}^l = 0.005, \; m_0 a = 7.38, \; c_P = 3.89, \; \zeta = 4.19$

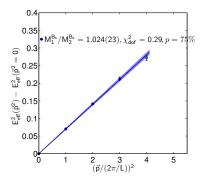
Effective Masses for Pseudoscalar and Vector State

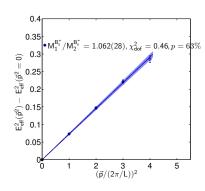


Determination $\frac{M_1}{M_2}$

- ▶ Compute effective masses for momenta $p^2 = 0, 1, 2, 3$
- ▶ Obtain $\frac{M_1}{M_2}$ from fit to dispersion relation

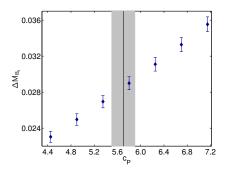
$$E_p^2 = \frac{M_1}{M_2} p^2 / (2\pi L)^2 + E_0^2$$

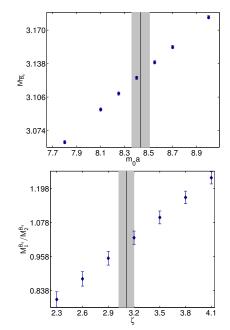




Test of Linearity

- ► Run simulation with 19 different RHQ parameter sets
- ▶ 1 center point and use variations roughly 1.5σ , 3σ and 4.5σ (based on initial iteration)
- ▶ Consistent result





Preliminary Parameters of the RHQ Action

Non-perturbatively tuned

m ^l _{sea}	m ₀ a	CP	ζ
0.005 0.010	8.43(7) 8.47(9)		3.11(9) 3.1(2)
average	8.45(6)	5.8(1)	3.10(7)

m_{sea}^{I}	m_0a	CP	ζ
0.004	4.07(6)	3.7(1)	1.86(8)
0.006	3.97(5)	3.5(1)	1.94(6)
0.008	3.95(6)	3.6(1)	1.99(8)
average	3.99(3)	3.57(7)	1.93(4)

RHQ Lattice Perturbation Theory I [C. Lehner]

Motivation

- ► Knowing the RHQ parameters nonperturbatively we can compare the outcome with lattice perturbation theory
- ▶ Helps to build confidence that lattice perturbation theory is working also in cases where we do not have fully non-perturbative matching (e.g. decay constants, form factors)

Method

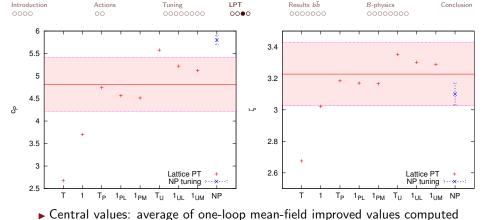
- ▶ Computation at 1-loop order
- ▶ Mean field improved
- ▶ Use nonperturbative inputs for $\langle P \rangle$, $\langle R \rangle$, $\langle L \rangle$ and $m_0 a$
- ▶ Predict: c_P and ζ
- ▶ Naive $\alpha_S^2 \sim$ 5% power-counting estimate

RHQ Lattice Perturbation Theory II [C. Lehner]

- CP ► Match lattice quark-gluon vertex to the continuum counterpart in the on-shell limit
 - \blacktriangleright At intermediate steps infrared divergences are regulated with a nonzero gluon mass λ
 - lacktriangle Final results are obtained in the limit $\lambda o 0$
- - ▶ Require that this dispersion relation agrees with the continuum

Mean Field Improvement – two methods:

- ▶ Use $u_0 = \langle P \rangle^{1/4}$ to resum tadpole contributions
- ▶ Estimate u_0 from spatial link field in Landau gauge $\langle L \rangle$
- ▶ The maximum of the spread between both values and a naive α_s^2 estimate is used to estimate the systematic error



- with u_0 obtained from the plaquette and from the spatial Landau link

 Firer on particular seriodifference between mean field methods deminate
- \blacktriangleright Error on perturbative c_P : difference between mean field methods dominates
- ▶ Error on perturbative ζ : naive power-counting dominates
- ▶ Nonperturbative values statistical errors only
- ▶ Agreement within in 2σ MF improved LPT is working!

Preliminary Parameters of the RHQ Action

Non-perturbatively tuned

m_{sea}^{l}	m_0a	CP	ζ
0.005 0.010	8.43(7) 8.47(9)		3.11(9) 3.1(2)
average	8.45(6)	5.8(1)	3.10(7)

m_{sea}^{l}	m_0a	CP	ζ
0.004	4.07(6)	3.7(1)	1.86(8)
0.006	3.97(5)	3.5(1)	1.94(6)
0.008	3.95(6)	3.6(1)	1.99(8)
average	3.99(3)	3.57(7)	1.93(4)

Results RHQ Lattice Perturbation Theory [C. Lehner]

a in fm	$\langle P \rangle$	$\langle R \rangle$	$\langle L \rangle$	m ₀ a	СР	ζ
0.11	0.58803	0.34350	0.8439	8.45	4.8(6)	3.2(2)
0.086	0.61558	0.37984	0.8609	3.99	3.0(3)	2.1(1)

Predictions from seven RHQ parameter sets

- ▶ Compute quantity Q on all seven RHQ parameter sets
- ▶ Build-up prediction matrix J_p and vector A_p

$$J_{p} = \left[\frac{Q_{3} - Q_{2}}{2\sigma_{m_{0}a}}, \frac{Q_{5} - Q_{4}}{2\sigma_{c_{p}}}, \frac{Q_{7} - Q_{6}}{2\sigma_{\zeta}}\right] \qquad A_{p} = Q_{1} - J_{p} \times \begin{bmatrix} m_{0}a \\ c_{p} \\ \zeta \end{bmatrix}_{1}$$

▶ By linearity we can predict *Q* for the tuned parameter set

$$Q^{\mathsf{RHQ}} = J_p^{(1 \times 3)} \times \left[\begin{array}{c} m_0 a \\ c_P \\ \zeta \end{array} \right]^{\mathsf{RHQ}} + A_P$$

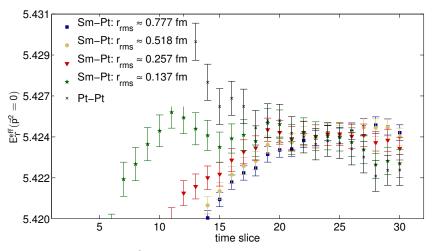
► Statistical errors in predicted value also reflect statistical uncertainty in the tuned RHQ parameters and account for statistical correlations between the three RHQ parameters

Computing Heavy-Heavy States

```
\eta_b pseudoscalar \Delta(\eta_b, \Upsilon)
 \Upsilon vector \Delta(\chi_{b0}, \chi_{b1})
 \chi_{b0} scalar \chi_{b1} axial h_b tensor
```

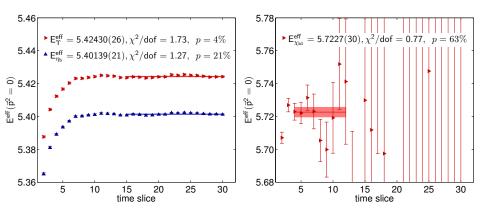
- ▶ For a good signal need different source smearing
- ▶ Higher sensitivity to non-linearity effects

Source Smearing for Heavy-Heavy States e.g. T



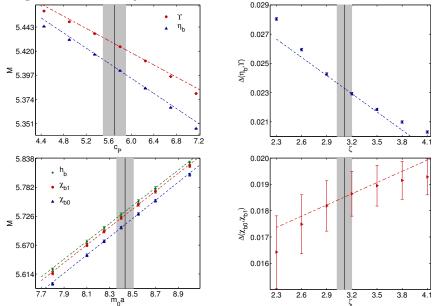
▶ 818 measurements, $m_{\text{sea}}^{I} = 0.005$, $m_{0}a = 8.40$, $c_{P} = 5.80$, $\zeta = 3.20$

Effective Mass Plots for η_b , Υ and χ_{b1}



▶ 818 measurements, $m_{\text{sea}}^{l} = 0.005$, $m_0 a = 8.40$, $c_P = 5.80$, $\zeta = 3.20$

Higher Sensitivity to Non-Linearity Effects

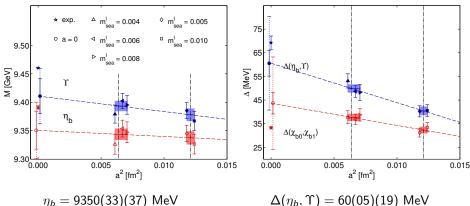


Preliminary Predictions for the Heavy-Heavy States

▶ RHQ action describes heavy-light as well as heavy-heavy mesons

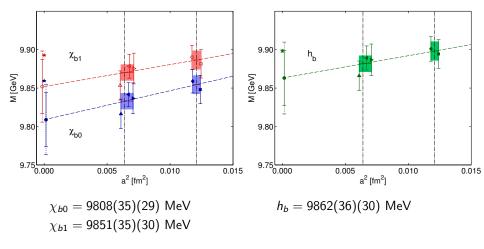
 $\Upsilon = 9410(30)(38) \text{ MeV}$

▶ Tuning the parameters in the B_s system we can predict bottomonium states and mass splittings



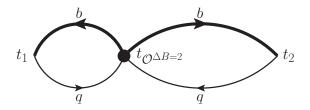
 $\Delta(\chi_{b0}, \chi_{b1}) = 44(05)(19) \text{ MeV}$





▶ Publication on tuning and bottomonium spectroscopy is in preparation

$B^0 - \overline{B^0}$ Mixing Matrix Element Calculation



- ▶ Location of four-quark operator is fixed
- ▶ Location of *B*-mesons is varied over all possible time slices
- ► Need: one point-source light quark and one point-source heavy quark originating from operator location
- ▶ Propagators can be used for B- and \overline{B} -meson
- ▶ Project out zero-momentum component using a Gaussian sink

Mostly Nonperturbative Renormalization

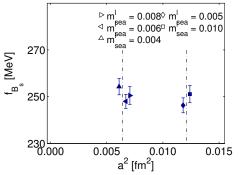
For f_{B_d} , f_{B_s} and $B\to\pi$ we plan to compute mostly non-perturbative renormalization factors á la [El Khadra et al. 2001]

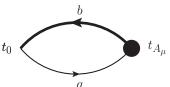
$$\varrho^{bl} = \frac{Z_V^{bl}}{\sqrt{Z_V^{bb} Z_V^{ll}}}$$

- \blacktriangleright Compute Z_V^{ll} and Z_V^{bb} non-perturbatively and only ϱ^{bl} perturbatively
- ▶ Enhanced convergence of perturbative serious of ϱ^{bl} w.r.t. Z_V^{bl} because tadpole diagrams cancel in the ratio
- \blacktriangleright Bulk of the renormalization is due to flavor conserving factor $\sqrt{Z_V'' Z_V^{bb}} \sim 3$
- lacksquare ϱ^{bl} is expected to be of $\mathcal{O}(1)$; receiving only small corrections
- For domain-wall fermions $Z_A = Z_V + \mathcal{O}(m_{\text{res}})$ i.e. we know Z_V^{II} [Y. Aoki et al. 2011]
- ► Mostly nonperturbative renormalization not yet computed for $B \bar{B}$ mixing

B-meson Decay Constant Calculation

- ▶ Re-use: point-source light quark and generate Gaussian smeared-source heavy quark
- ▶ Final result will use mostly nonperturbative renormalization





- ▶ Very preliminary result for f_{B_e}
- ▶ Renormalization to be improved: nonperturbative Z_{V}^{II} perturbative Z_V^{bb} (1-loop) $\rho_{bl}=1$
- Scaling violations observed to be small

$B \to \pi I \nu$ form factor

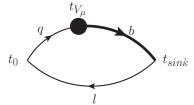
ightharpoonup Allows to determine the CKM matrix element V_{ub} from the experimental branching ratio

$$\frac{d\Gamma(B\to\pi I\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \left[(m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2 \right]^{3/2} |f_+(q^2)|^2$$

▶ Tension between exclusive determination and inclusive determinations of V_{ub} is greater than 3σ

$B \to \pi l \nu$ form factor

- $lackbox{ Compute matrix element of the }b o u$ vector current between $B ext{-meson}$ and pion
- ▶ Fix location of pion at t_0 and B meson at $T t_{sink} t_0$
- lacktriangle Vary operator location $t_{V_{\mu}}$ in that range
- ▶ B-meson is at rest, inject momentum on pion side
- ▶ Using partially quenched daughter quark-masses should help to better resolve quark-mass dependence and pion-energy dependence



$B \to \pi I \nu$ form factor

 $lackbox{}{} f_+$ is a linear combination of $f_{||}$ and f_{\perp}

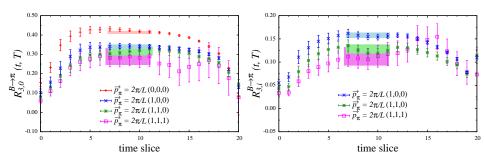
$$f_{+}(q^2) = rac{1}{\sqrt{2m_0^B}} \left[f_{\parallel}(E_{\pi}) + (m_0^B - E_{\pi}) f_{\perp}(E_{\pi})
ight]$$

▶ Compute f_{\parallel} and f_{\perp} from the ratio

$$R_{3,\mu}^{B\to\pi}(t,T) = \frac{C_{3,\mu}^{B\to\pi}(t,T)}{\sqrt{C_2^{\pi}(t)C_2^{B}(T-t)}} \sqrt{\frac{2E_0^{\pi}}{\exp(-E_0^{\pi}t)\exp(-m_0^{B}t)}}$$

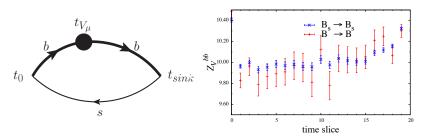
with
$$f_{\parallel}^{\text{lat}} = \lim_{\substack{t-t0\to\infty\\T-t\to\infty}} R_{3,0}^{B\to\pi}$$
 and $f_{\perp}^{\text{lat}} = \lim_{\substack{t-t_0\to\infty\\T-t\to\infty}} \frac{1}{p_{\pi}^i} R_{3,i}^{B\to\pi}$

First Results for $B \to \pi I \nu$ [T. Kawanai]



- ▶ 1636 measurements $m_{\rm sea}^l = m_{\rm val}^l = 0.005$, $m_0 a = 8.40$, $c_P = 5.80$, $\zeta = 3.20$
- $t_0 = 0$, $T = t_{sink} = 20$

Computing Z_v^{bb} [T. Kawanai]



- ▶ Computation of $B \to B$ (to get Z_v^{bb}) similar to $B \to \pi$
- \blacktriangleright Independent of the light spectator quark mass
- ightharpoonup Significantly reduce statistical uncertainty by using strange quark and considering $B_s o B_s$
- ▶ 1636 measurements $m_{\text{sea}}^{l} = 0.005$, $m_{\text{val}}^{l} = 0.005$, 0.0343 and T = 20 $m_0 a = 8.40$, $c_P = 5.80$, $\zeta = 3.20$

Conclusion

- ▶ We have completed tuning the parameters of the RHQ action for b-quarks, and find good agreement between our predictions for bottomonium masses and fine splittings with experiment.
- Given this success, we are now using this method for B-meson quantities such as decay constants and form factors, and expect to obtain errors competitive with other groups.
- ► The RHQ action can also be used for charm quarks, and Hao Peng is currently performing the necessary parameter tuning.
- ▶ We should have results for decay constants, mixing parameters, and form factors within the next year, and maybe sooner!