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Introduction

A key feature of supergravity theories is the fact that they have hidden
(duality) symmetries.

In particular, for MSG we have E6,E7,E8 for D = 5, 4, 3 and E9 in
D = 2.

Cremmer,Scherk,Schwarz | Cremmer, Julia | Marcus, Schwarz | Nicolai, Warner

For D = 1 the algebra E10 has been proposed and the final possibility
would seem to be E11.

Damour, Henneaux, Julia, Nicolai, | Julia; West

These enhanced algebras would imply that there are new states in the
theory, including forms.
On the other hand, there are algebraic structures that arise directly
from the forms themselves together with their spacetime duals.

Cremmer, Julia, Lü, Pope; Lavrinenko,Lü, Pope,Stelle

It was later realised that these structures could be viewed as truncated
Borcherds algebras. Henry-Labordére,Julia,Paulot
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Introduction II

As well as the physical forms there are their duals and the
(D− 2)-form duals of the scalars.

Addionally, there can be non-physical (D− 1) and D-forms. (Or
de-forms and top forms).

These are related to massive deformations and space-filling branes.

These forms, and the representations of the duality group that they
transform under, are predicted by E11.

Riccioni,West; Bergshoeff,de Roo,Kerstan,Riccioni

and also by Borcherds algebras. The relation between the two was
studied in

Henneaux,Julia,Levie
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Introduction III

These forms also arise in the tensor hierarchies associated with
gauged supergravities.

These are constructed by gauging a subgroup G0 of the duality group
G and involve the introduction of a mass parameter.

In the construction it is found to be necessary to introduce
higher-degree forms to maintain covariance, a procedure which leads
to a hierarchy of forms.

de Wit,Samtleben,Trigiante;de Wit, Nicolai, Samtleben
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Introduction IV

In this talk a very simple account of forms and algebras in
supergravity theories will be given using only supersymmetry and
duality in a superspace setting.

The use of superspace offers some advantages:

Supersymmetry is manifest.

We can work in terms of field strengths rather than potentials so
that gauge invariance is also manifest.

The forms can have arbitrary degrees so there is no need to
truncate.

This is because the odd basis forms in superspace commute.
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Introduction V

The last point implies, in particular, that the top forms can be studied
in terms of their (D + 1)-form field strengths, FD+1, and can therefore
be treated on the same footing as the other forms in a covariant
approach.

These (D + 1)-form field strengths do not vanish in superspace.

The use of field-strength forms leads directly to an algebraic structure.

It is also possible that there could be further forms beyond the
spacetime limit. These could be called “OTT” forms.

For example, there is a non-vanishing (D + 2)-form field strength in
IIA.
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General idea

The physical forms generate further forms through the determination
of all consistent Bianchi Identities (CBIs) of the form

I`+2 = (dF`+1 −
∑

m+n=`

Fm+1Fn+1) = 0

where consistency means

dI = 0 mod I

Clearly, the new Fs will transform under reps of the duality group.

In addition, each CBI must be soluble.

In fact, the whole set of forms can be generated from a subset of the
physical ones.
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General idea II

Using superspace cohomology it can be shown, rather easily, that the
set of CBIs are automatically satisfied if those for the generating set
are.

The only obstruction that arises is when there is non-trivial
cohomology; this leads to the supersymmetry constraint on the
representations that can arise for certain forms. This needs to be
imposed to ensure solubility.

When this has been implemented the only non-trivial components of
the CBIs determine the non-vanishing components of the
higher-degree field-strength forms in terms of the physical fields.

In particular, for MSG in 3 ≤ D ≤ 7 and 1/2 MSG in D = 3 the
generating forms are level one (1-form potentials) and the susy
constraint is at level 2.

9/26



General idea III

A set of consistent BIs determines a Lie (super) coalgebra whose dual
can be identified with (a positive part of) a Borcherds (super)algebra.

A Lie (super) coalgebra is a (super) vector space A with a linear map
dA → A∧A (antisymmetry) which extends to a graded derivation of
the exterior algebra of A and which is nilpotent d2 = 0 (Jacobi).
Generically∞-dimensional in SG context.

A = ⊕
`∈Z, `≥1A` = A

+ ⊕A−

where ` is the degree of the potential form and the even and odd parts
of A correspond to even and odd `.
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Borcherds algebras

The definition of a Borcherds (or GKM) (super)algebra starts with a
generalised symmetric Cartan matrix which generalises the KM case
in that the diagonal elements can be positive, negative or zero.

Borcherds;Ray

For the purposes of this talk we will only consider superalgebras that
are obtained from Lie algebras by the addition of a single odd node in
the Dynkin diagram. This means that we have a set of 3(r + 1)
generators {hI, eI, fI} where r is the rank of the Lie algebra g, and
where I = (0, i); i = 1, . . . r. The Cartan matrix has the form:

AIJ =

(
A00 A0i

Ai0 Aij

)
,

where Aij = aij is the Cartan matrix for g, symmetrised if necessary,
and where

A00 = 0 .

.
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Borcherds algebras

The relations satisfied by the generators are

[hI, hJ] = 0

[hI, eJ] = AIJeJ, [hI, fJ] = −AIJfJ, [eI, fJ] = δIJhI

(ad eI)
1− 2AIJ

AII eJ = 0, for AII > 0 and I 6= J

[eI, eJ] = 0 when AIJ = 0 ,

with the last two conditions remaining valid if eI, eJ are replaced by
fI, fJ . The generators hI are even, and the generator fI is even or odd if
eI is. If AII > 0 the integer 2AIJ

AII
is negative.
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Borcherds algebras

In a Borcherds algebra there is still a triangular decomposition of the
form B = N− ⊕H⊕N+, and it is still possible to define roots as in
the Kac-Moody case.

The Borcherds algebra can be decomposed into finite-dimensional
representations of the subalgebra g.

The sub-algebra generated by {f0, h0, e0} is isomorphic to the
Heisenberg super-algebra.
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Example: Half-MSG in D=3

N = 8 susy in D = 3. The models under consideration are sigma
models with the scalar fields in the cosets (SO(8)× SO(n))\SO(8, n).

Marcus,Schwarz; de Wit,Nicolai,Tollsten

The forms and algebraic structures (for all half-maximal theories)
were investigated by Bergshoeff,Gomis,Nutma,Roest

There is an induced (super)geometry, but the physical degrees of
freedom are just given by the scalars and spinors of the sigma model.
Strictly speaking there are no physical forms but we can start with the
vectors dual to the scalars. They can be taken to transform under the
adjoint of G = SO(8, n), and satisfy the BI

dF2 = 0 .
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Half-MSG in D=3 III

The level two BI is dF3 = F2 ∧ F2.

The possible 3-form field strengths are therefore in the following reps:

(
⊗

)
sym

= ⊕ ⊕ 1 ⊕ .

It is not difficult to show that the dimension-zero cpt of this BI cannot
be solved for the Weyl representation.
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Half-MSG in D=3 IV

For all higher degree forms there are no obstructions to solving the
CBIs for cohomological reasons. As a result we find that the level
three representations (top forms) are

+ + + +

Bergshoeff,Gomis,Nutma,Roest

while at level four (OTT) they are

4· + 2· + 2· + + 4· + 2· + + 2· + + + +

with the indicated multiplicities.
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Half-MSG in D=3 V

We have included level four here as 5-form field strengths can be
non-zero in D = 3. This is because they have dimension-zero cpts
F3,2:

FX
abc,αIβJ ∼ εabcεαβFX

IJ

This will be non-zero if the SO(8, n) representation X contains the
adjoint representation of SO(8) times the singlet of SO(n).

These 5-forms appear in the covariant approach to the hierarchy of
forms in gauged supergravity (i.e. using field strengths and BIs).

de Wit,Herger,Samtleben| Nicolai, Samtleben; de Wit,Samtleben| Bergshoeff,Hohm,Nutma

17/26



Half-MSG in D=3: Borcherds algebra

We can now construct the Borcherds algebra for 1/2MSG in D = 3.
The algebra of forms is graded according to the degrees of the
potential forms ` and at each level the forms transform under
representationsR` of the duality Lie algebra g withR`+1 ⊂ R`⊗R1.

Since we can create representations of g by acting on a lowest weight
state with the raising operators {ei}, it is natural to assume that there
is a fermionic element e0 (because the lowest forms are one-forms).
For e0 to be a lowest-weight state we must have [fi, e0] = 0.

Since e0 is a lowest-weight state for the adjoint representation we
must have [hi, e0] = −pie0, where pi are the corresponding Dynkin
labels, pi = (0, 1, 0, . . .).
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Half-MSG in D=3: Borcherds algebra II

To construct the full algebra we include g and a negative odd
generator f0 which is taken to be a highest weight state for the adjoint
representation, [ei, f0] = 0 [hi, f0] = pif0. We then define h0 = [eo, f0].

The Cartan matrix AIJ will have the form

AIJ =

(
A00 A0i

Ai0 Aij

)
where we can take A0i = Ai0 = −(0, 1, 0, . . .) and Aij = aij, the latter
being the Cartan matrix for g.
It remains to determine A00. At level two it is easy to show that
[e0, e0] is the lowest weight state for the Weyl representation and so
must vanish. This is turn leads to A00 = 0.

It is then straightforward to check that all the Borcherds superalgebra
conditions are satisfied.
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Borcherds to Kac-Moody

We have seen that the set of soluble CBIs in D = 3 1/2MSG
determines a Borcherds super-algebra with one set of odd generators.
From this one can then show that the form representations agree with
those predicted by some very extended version of the duality group.

Palmkvist

In the maximal case it was shown that the representations agree level
by level, up to dimension D, with the forms predicted by E11, for
3 ≤ D ≤ 7, and it was subsequently shown that this result can be
extended to other groups.

We shall illustrate this diagrammatically for the case of MSG in
D = 3 for which G = E8.
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Borcherds to Kac-Moody

E8
bb b b b b b b
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Borcherds to Kac-Moody

E8
bb b b b b b b

Borcherds: fermionic node, A00 = 0 bs b b b b b b b
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Borcherds to Kac-Moody

E8
bb b b b b b b

Borcherds: fermionic node, A00 = 0 bs b b b b b b b
Intermediate: bosonic node, A00 = 2 b

* b b b b b b b
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Borcherds to Kac-Moody

E8
bb b b b b b b

Borcherds: fermionic node, A00 = 0 bs b b b b b b b
Intermediate: bosonic node, A00 = 2 b

* b b b b b b b
E11 bb b * b b b b b b b
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Summary I

The superspace approach to supergravity forms is based on
consistent, soluble sets of Bianchi identities.

It is manifestly supersymmetric and gauge invariant.

The CBIs determine a Lie (super)coalgebra which is dual to (a
positive sector of) a Borcherds (super)algebra.

There is no limit to the degrees of the forms, so that the algebra
does not need to be truncated.

The form representations determined by the Borcherds algebra
can be shown to be equivalent to those predicted by a related KM
algebra.

Gauged supergravity can be studied by deforming the CBIs
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Summary II

There can also be OTT forms.

In supergravity the field-strength forms can be non-zero up to
degree D + 2, and even the (D + 4)-form BIs are not completely
trivial. (Because (F ∧ F)D,4 has dimension zero.)

In the covariant approach to gauged supergravity OTT forms are
needed at the end of the hierarchy.

In addition, there is some indication that some of these OTT
forms could be non-zero when α′ corrections are turned on.

If one were to take the OTT forms seriously then one would need
to go beyond E11 on the KM side in MSG.

e.g. (D + 1)-forms in MSG would require E12.
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