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Dedicated to Paul Townsend

• Paul has been a friend and a mentor throughout my career. 

• Met at the beginning of my PhD in 1997 -- hard times!

• Paul was visiting Barcelona for a few months. 

• Gave lectures on M-theory and things fell into place.

• Wrote a paper  before he left Barcelona (with Gomis & Simon).
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• Beginning of my interest on applications of gauge/string 

duality to QCD.

• Today: Applications to out-of-equilibrium physics of QGP.



Last decade: Near equilibrium QGP

Black Hole
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Out of equilibrium

Out-of-equilibrium QFT    

Classical Dynamical GR in AdS



Remember

• Do not try to do precision QCD physics.

• Search for physical insights. 

•  QCD dual is beyond supergravity.



In the context of HIC

• Fast isotropization of the QGP (~ 1 fm/c) remains 
outstanding challenge. 

• Consider simplest possible set-up in AdS/CFT: 
Isotropization of homogeneous 4D CFT plasma  
(e.g. N=4 SYM plasma).
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
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2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these

3
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
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4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles that we considered, as well as the differ-
ences between the values of these times as determined by
the full EEQs and by the LA. We see that the LA works
with a 20% or better accuracy for most states, and also
that isotropization times are tiso ! 1/T , with T the final
temperature.
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.
Equivalently, perturbations around the dual horizon can

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
so-small perturbations by including non-linearities in the



Posing the problem: Causal Structure
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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the correspondence is a deep statement about the equivalence of two a priori completely

different theories. The CFT is just a somewhat exotic example of a system based on

rules we are familiar with, those of quantum field theory in four-dimensional Minkowski

spacetime. However, string theory is a quantum theory of gravity, so the correspondence

implies, for example, that the CFT knows about a sum over all possible geometries with

AdS boundary conditions. These may include geometries with non-equivalent topologies,

with or without black holes, etc. Finally, the AdS/CFT correspondence is perhaps our

most concrete implementation of the holographic principle [7], since a theory of quantum

gravity (in this case string theory) in a given spacetime is stated to be equivalent to a

theory residing on its boundary.

4 Finite temperature and RHIC physics

In this section we will modify the correspondence above by considering finite temperature

physics. One motivation for this is as follows. At zero temperature N = 4 SYM and QCD

are very different theories. QCD is a confining theory with a dynamically generated scale

ΛQCD ! 200 MeV, whereas N = 4 SYM is a conformal theory with no scales. Moreover,

N = 4 SYM is highly supersymmetric, whereas QCD is not. However, at a temperature

Tdec ! 170 MeV, QCD is believed to undergo a cross-over to a deconfined phase referred to

as the ‘quark-gluon plasma’ (QGP) phase. Since any finite temperature breaks both the

supersymmetry and the conformal invariance of the N = 4 SYM theory, one may hope

that some properties of the N = 4 plasma may be shared by the QCD plasma.

4.1 Finite-temperature AdS/CFT

The framework of the previous section is easily modified to introduce a finite temperature

T . We obtained the zero-temperature correspondence by taking a decoupling limit of

extremal D3-branes, which saturate the BPS bound M = |Q|. Adding temperature means

adding energy but no charge to the system, so it is natural to take a decoupling limit for

non-extremal D3-branes. It turns out that the net effect of this is solely to modify the

AdS part of the metric, replacing (10) by

ds2 =
r2

R2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2f
dr2 , (17)

where

f(r) = 1 − r4
0

r4
(18)

and r0 is a constant with dimensions of length related to the temperature.
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2

not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
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where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:
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B =
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As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
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Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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A = ρ2(1− ρ4h/ρ
4) , Σ = ρ , B = 0 , ρh = πT (1)
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• In equilibrium:

2

not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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• Generalized Eddington-Finkelstein coordinates:
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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• Near-boundary fall-off determines:

2

not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
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and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
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The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
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• In equilibrium:
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not necessarily an apparent horizon) is already present
on the ITS for each of the states we consider. By com-
paring on the gravity side the full numerical evolution
with the LA, we will see that the latter predicts with
surprising accuracy the time evolution of the CFT stress
tensor (see [7] for related observations), in analogy with
the prediction of the gravitational radiation at infinity
by the CLA. We emphasize that the applicability of the
LA is not guaranteed a priori, since in general our initial
states are not near-equilibrium states.
2. Holographic model. For a conformal SU(Nc)
gauge theory, conservation and tracelessness of the stress
tensor, together with homogeneity and rotational invari-
ance in one plane (assumed for simplicity) imply that the
stress tensor can be written as

〈Tµν〉 =
N2

c

2π2
diag

[
E , PL(t), PT(t), PT(t)

]
, (1)

PL(t) =
1
3
E − 2

3
∆P(t) , PT(t) =

1
3
E +

1
3
∆P(t) , (2)

in terms of a single function ∆P = PT−PL that measures
the degree of anisotropy. Accordingly, the dual metric
can be written as [3]

ds2 = 2dtdr −Adt2 + Σ2e−2Bdx2
L + Σ2eBdx2

T , (3)

where A, Σ and B are all functions of time t and of the
radial coordinate r. In the absence of CFT sources these
are subject to the following boundary conditions near the
AdS5 boundary at r →∞:

A = r2 +
a4

r2
− 2b4(t)2

7r6
+ · · · ,

B =
b4(t)
r4

+
b′4(t)
r5

+ · · · , Σ = r − b4(t)2

7r7
+ · · · . (4)

As usual, the normalizable modes a4 and b4(t) are not de-
termined by the boundary conditions but must be read
off from a full bulk solution that is regular in the inte-
rior. These modes are dual to the expectation value of
the stress tensor. For the specific case of SU(Nc) N = 4
super Yang-Mills this relation is E = −3a4/4,∆P(t) =
3b4(t). Although E is constant in time, a physical tem-
perature can only be assigned to the system once (near)
equilibrium is reached. In this regime E = 3π4T 4/4.

In the generalized Eddington-Finkelstein coordinates
(3) EEQs take the nested form

0 = Σ (Σ̇)′ + 2Σ′ Σ̇− 2Σ2 , (5a)
0 = Σ (Ḃ)′ + 3

2

(
Σ′Ḃ + B′ Σ̇

)
, (5b)

0 = A′′ + 3B′Ḃ − 12Σ′ Σ̇/Σ2 + 4 , (5c)
0 = Σ̈ + 1

2

(
Ḃ2 Σ−A′ Σ̇

)
, (5d)

0 = Σ′′ + 1
2B′2 Σ , (5e)

where h′ ≡ ∂rh and ḣ ≡ ∂th + 1
2A ∂rh are derivatives

along ingoing and outgoing null geodesics, respectively.

Eqs. (5a)-(5c) are dynamical equations, whereas eqs. (5d)
and (5e) are constraints. If the former hold, then (5d)
and (5e) are satisfied everywhere provided they are sat-
isfied near the AdS boundary and on the ITS, respec-
tively. As is clear from the causal structure in Fig. 1, the
dynamical equations together with the constraints deter-
mine the solution in the region labeled ‘dynamics’. We
find this solution by numerically evolving the full EEQs
following the procedure outlined in [3].

Eqn. (5e) is a constraint on the possible initial states
because it relates two of the metric functions on the ITS.
We choose B as the independent variable because it is
directly related to the CFT anisotropy. Thus each initial
state is specified by a constant a4 and a function of the
radial cordinate B(t = 0, r). Note that for positive Σ
the constraint (5e) implies Σ′′ ≤ 0, which in combina-
tion with the asymptotic behavior Σ ( r means that Σ
will vanish at some r ≥ 0 on the ITS. Preliminary explo-
rations indicate that this is a curvature singularity, and
we will come back to this issue in [11]. In any case, for
all the initial states which our numerical code was able
to evolve in a stable manner, the region where Σ = 0
was hidden behind an event horizon and hence it had no
effect on the physics.

The static black brane solution of (5) dual to a plasma
in perfect equilibrium takes the form

A = r2(1− r4
h/r4) , Σ = r , B = 0 , (6)

with the horizon located at rh = πT . Considering lin-
ear fluctuations around these equilibrium values one finds
that A and Σ are unmodified, whereas the B-fluctuation
obeys eqn. (5b) with Σ and A as in (6).
3. Results. We report on around 1000 initial states (for
all of which our numerics converged nicely), most of them
generated by a random procedure (to be explained in
[11]). For some profiles an apparent horizon was present
on the ITS, for some others it was not. On the one hand
we determined the time evolution of each state by means
of the full, non-linear EEQs. On the other hand we solved
the linear equation for B. In each case we read off the
∆P by extracting b4(t) from the near-boundary behav-
ior (4). Fig. 2a shows the result from the full EEQs for a
representative initial state. Fig. 2b shows the difference
between the full solution and the LA for this state. The
ratio in the overall scales of the plots, 2/10, gives a rough
estimate of the accuracy of the LA, namely 20%, which
is remarkable given that the evolution is definitely far-
from-equilibrium. This follows from the thick blue curve
in Fig. 2a, which shows that the pressure anisotropy is
almost an order of magnitude larger than the energy den-
sity at some points during the evolution.

Although there is no precise definition of entropy den-
sity far from equilibrium, it is interesting to examine the
time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
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Time evolution

• Evolve initial state according to: 

‣ Full, non-linear EEQs.
‣ EEQs linearized around final equilibrium state.
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• Wave-form at infinity accurately reproduced (but perhaps 
non-asymptotic properties would not be).

• Analog in AdS: Boundary stress-tensor. 

• BH collision in asymptotically flat 4D general relativity:
Price & Pullin ‘94
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
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equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.
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Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-

• May or may not have AH at t=0.

• Ratio of scales gives accuracy: 2/10 ~ 20%

•                 ~ 10 implies far from equilibrium.
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4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-

• Over 2000 initial profiles.
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-

• “Entropy” increases during isotropization. 
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FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles, as well as the differences between the val-
ues of these times as determined by the full EEQs and
by the LA. We see that the LA works with a 20% or bet-
ter accuracy for most states, and also that isotropization
times are tiso ! 1/T , with T the final temperature.

A quantitative analysis of the correlation between
∆P/E and the produced entropy will be presented in
[11]. Suffice it to state here the qualitative trend: the
larger the former, the larger the latter. In particular, if
∆P/E ! 1 the entropy increase is fairly small (! 10%).
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

Equivalently, perturbations around the dual horizon can
be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
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FIG. 2: (a) Solution B(t, z) (with z ≡ 1/r) obtained from the full Einstein’s equations. The initial profile B(t = 0, z) =
4
5 (z/zh)

4 sin(8z/zh) is shown as a thick red curve. The thick blue curve shows ∆P(t)/E as obtained from the full Einstein’s
equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles that we considered, as well as the differ-
ences between the values of these times as determined by
the full EEQs and by the LA. We see that the LA works
with a 20% or better accuracy for most states, and also
that isotropization times are tiso ! 1/T , with T the final
temperature.
4. Discussion. Small perturbations around an equili-
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Equivalently, perturbations around the dual horizon can

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
so-small perturbations by including non-linearities in the
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Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.
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2A ∂rh are derivatives along ingoing and outgoing null

geodesics, respectively.

A = ρ2 +
a4
ρ2

− 2b4(t)2

7ρ6
+ · · · ,

B =
b4(t)

ρ4
+

b′4(t)

ρ5
+ · · · ,

Σ = ρ− b4(t)2

7ρ7
+ · · · , (2)

Λ > 0
η

s
% 1

4π
(3)
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Discussion

• Gauge: Small perturbations around equilibrium plasma
→ Linear response theory

• Gravity: Small perturbations around equilibrium black hole

→ Linearized Einstein’s equations

• In both cases expect linear approx. if                         .
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equations. The thin magenta curve shows the value of ∆P(t)/E as obtained from the linear approximation. (b) Difference
between the full solution and the linear approximation.

FIG. 3: Time evolution of the areas of the event (top, blue)
and apparent (bottom, red) horizons for the initial state of
Fig. 2a. The red dot at the origin signifies that there is no
apparent horizon for this state at the initial time. From that
time until the start of the red curve there is no apparent
horizon within the range of the radial coordinate covered by
our grid, but there could be one at a deeper position.

time evolution of the area densities of the event and ap-
parent horizons, since these coincide with the entropy
density in equilibrium. Fig. 3 shows that both of these
quantities are larger at the end of the evolution than at
the beginning, suggesting that entropy is indeed gener-
ated. Incidentally, note that no entropy is produced in
the LA, since A and Σ are unmodified.

We define the isotropization time tiso as the time be-
yond which ∆P(t)/E ≤ 0.1. Fig. 4 shows the isotropiza-
tion times obtained from the full evolution of the 1000
initial profiles that we considered, as well as the differ-
ences between the values of these times as determined by
the full EEQs and by the LA. We see that the LA works
with a 20% or better accuracy for most states, and also
that isotropization times are tiso ! 1/T , with T the final
temperature.
4. Discussion. Small perturbations around an equili-
brated plasma can be described in linear-response theory.
Equivalently, perturbations around the dual horizon can

FIG. 4: Results for the isotropization times obtained from
the full evolution of 1000 initial states, and for the differences
between the full and the linearized evolution (normalized by
the full isotropization time). The height of each bar indicates
the number of states in each bin.

be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
so-small perturbations by including non-linearities in the

• LA in Fourier space:

‣ HDMs: 
‣ QNMs: 
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be described by linearizing EEQs around the equilibrium
black hole solution. For a homogeneous but anisotropic
perturbation one may expect the LA to be applicable
whenever ∆P/E " 1. It is remarkable that, in a strongly
coupled CFT with a gravity dual, the LA actually works
relatively accurately well beyond this limit.

In Fourier space, one may distinguish between hydro-
dynamic modes (HDMs), with dispersion relations ω(q)
such that ω → 0 as q → 0, and quasinormal modes
(QNMs), for which ω(0) $= 0. If the perturbation is
anisotropic but homogeneous then the relaxation back
to equilibrium involves exclusively the QNMs. In this
sense the dynamics we have studied can be thought of as
the far-from-equilibrium dynamics of the QNMs. If the
perturbation is small then these modes evolve towards
equilibrium linearly, independently of each other and on
a time scale set by the imaginary parts of their frequen-
cies. One could imagine extending the description to not-
so-small perturbations by including non-linearities in the

• We have studied far-from-equilibrium dynamics of QNMs.



Discussion
• For small perturbations:

• Extend to not-so-small perturbations by adding interactions.
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QNMs relax linearly and independently, with                             .           

• Relaxation still characterized by few frequencies.
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• Linear approx. valid for stress tensor 1-point function; 
other observables probably not well captured. 



Discussion

• Next step: Include hydrodynamics (boost-invariant case).

• Preliminary results indicate it works. 
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Initial state Hydro becomes applicable

Map?



Potential implication

E(x⊥)

cos θc =
vlim

vq
! 700 (1)

q θc (2)

Mmes ∝ T ∝ (3)

s =
Ahor

4G
(4)

η =
Ahor

16πG
(5)

(6)

η

s
<

1

4π
(7)

0 ≤ ηQGP

s
! 3

4π
(8)

λ = g2
YMNc →∞

M ∼ ΛQCD (9)

R4

%4
s

= λ = g2
YMNc (10)

%s ∼
1

λ1/4
(11)

gs ∼
1

Nc

(12)

χ = a dθ

Nc = 3
dE

dx
≈ 2− 8 GeV/fm (13)

δS = −a

∫
dx3 ∧ Tr

(
A ∧ F +

2

3
A3

)
. (14)

δS =

∫
θ(x) TrF ∧ F , θ(x) = ax3 . (15)

Tµν (16)

Jµ (17)

tchar ) texpan (18)

1



Potential implication



Potential implication

Common horizon

Full non-linearity of gravity encoded in the initial horizon.
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• Hope it’s clear how much respect I have for Paul both as a 
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• Perhaps only one fault...
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• .... you are too serious.



Thank you Paul, and Happy Birthday!


