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Introduction

B Hamiltonian Formulation - Not Pursued in String Theory
B 3D (Super)particles, Closed (Super)strings Hamiltonian
Formulation Developed LM and Paul K. Townsend 10,11.

B Work in 3D even if many results valid in any dimension
D = 3 Exception Closed (Super)string in Light Cone Gauge
Dangerous Commutators [j _i, T ] zero by default
The States of the 3D Closed (Super)string are Anyons!

B  Hamiltonian formulation for (Super)strings with Boundaries
leads bc’s which must be obeyed and the conditions on the local

parameters of the gauge symmetries

B Gauges appropriate for quantization:
LC - Neumann bc’s, Arvis - Dirichlet bc’s




Hamiltonian form of closed string

LC-gauge & absence of Lorentz anomalies in 3D
D =3, N =2 Superstring

D=3, N =2Summary of Results
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Conclusions




Hamiltonian form of closed string

E Nambu-Goto action for the closed string of tension 1 in

Hamiltonian form

d 1
S|X,P; ¢, ul /dT a {X P, — 55 [IP’2 (TX')Q] = uX'“IP’#}

where ¢ and u ‘lapse and ‘shift’ Spirit of ADM

[] Noether Poincaré generators 7P, f P, e CQZ_Z X A P)*

The action invariant under diff transformatlons

06X = aP + BX', €:d+u'a—ua'+(€',8—€ﬂ')

0P = T*(aX') + (BP) U = ,B +u'B—uf + / b (al’ — La)
B Upon elimination of auxiliary P

1 27 .
S[Xa , U]=—§ /d7f;i—a \/— det g g7 0; X - 8]X
0 &7

World sheet metric conformally equivalent to

ds% g;;dEYdE= (u? — T*0*)dr* + 2u drdo + do?




LC-gauge & absence of Lorentz anomalies in 3D

B LC-gauge components: (X7, X, X), (PT,P™,P)

XtT=7r P =p_ (1), residual gauge invariance  p_ (7)

We separate the Average over String: a(7) = 7{ Z—ZA(J, T)
A=A-a A*=1/V2(A'+ A°)
: " | 1 e 1 /
L = zp+zx p_1 e do XP +p 27rfdauXP
P— o, A T 2]
wfda{xu E(P’L' 2p- -P+(TX)->}
Eliminate Lagrange multipliers: ¢ = P, = 211) [p2 (TX,)i]

X_-bu—() u-b( )z pIXP P+->€—p—




m  L- {ip-l—i_p_ + ifdaj‘cp} ~H- 2 fis X'P
2T 2T

1 do . o Level Matching
W= =g 74 o 7 TXD] U0t oo pgtrain

E Poincaré Generators in LC:
P=p, P-=p- Py=-H, J—a:_p_+'rH, I =P
J =—xp—xzH+A/p_, fda XP+—)—(_P: :
L] Casimirs: P*= . %da (T)_(')Q:, DT = N
] Quantization most transparent in normal modes:

X = Z [ N (ay, — @) —e M (aF — 5:,,)]

P = \/-Z :na(an+ )+e""“"(a +an)]




m To compute Poincaré generators we need:

) I AP e
X = — p—-{pX Z ;[ema(ﬁn - ﬂn) — € ma(ﬁ’:l o :Bn)]]
— n=I1I
_ L[ - & o
Po = ———{pP+T Y[ (B, + B) + e (8} + B}
— n=1
These last expressions are composite!
1 n—1
ﬁl’l — 2 ’ngl aman—m + mZnama:;’z—n’
and correspondingly for the star and tilde ones.
sl . o0
L = {:cp-i- P8 Y — ek 4 dn&;]} — H+up ) [aja— a,a,]
n=1 n - n=1
1 = —
B H=-P, = r (P + M?), M?=2TY [oha, + @}dn]
= n—1

A =V2T Y~ [(a;B, — Bya,) +(@B, — Brd,)]
n=1




= Quantlzatl()n Qp, O, | = N, |0, an — 7, otherwise commuting

B Ordering Ambiguities: only in M?* = 2T ( N o N a)

where N = Za: R i&,};&n

m  States:|ngng, - fi g, S= (@)™ e (@) pp_ >
B Level Matching Condition: (N — N)\nl,ng, -, M1, Ng, - > =0
] Poincaré Algebra Closes!

5 Ground state: M* = 2T (—a); A=0

i Level 1: M? = 2T(2 — a), A =0

& Level 2: M? =2T(4 —a), A- non diagonal

diagonalize and divide by the mass of the states s, = (0,0, . )
© Q1M1 179 179 179
Level 3: similar s = (0,0,0,\/ - (6a)7\/ Pt \/3(6a))




B For D = 3irreps of Poincaré group induced from irreps of the
universal cover SO(2) 2 R. All irreps are one-dimensional and

characterized by the helicity 3, which can be any real number

Binegar - 82.

B Manifest Lorentz covariance requires fields in irreps of the relevant
cover of the Lorentz group SO(1,2).Irrational helicity requires

infinite dimensional irrep of the universal cover SO(1,2).
Jackiw & Nair, 91

Because massive string states contain anyons this new 3D string theory
should not be accessible through standard covariant quantization
techniques, as irrational spin anyons seem to require infinite

dimensional component fields.




D =3, N =2 Superstring

B D=3 N =2 action for the closed string of tension T' in
semi-Hamiltonian form

D = 37 N = 2 SUSY 0 XH = iéaFu€a75e@a — an{@m@ =1,. ‘/V}
Cartan Forms  II* = dX* +i0,1%dO, 11, = d6,
B Green-Schwarz action for the closed string of tension

T 1in semil Hamiltonian form

d 1
SIX,P,0.;0,u] = /de{Q—U {H‘ﬂP’u — 56 [IP’2 + (T1L,)?| — uII4P,
s

pullback + iT (x n %@aw@a) (Or,61 ~€r,05) (1) & (1)) }

where n{=— dh‘{ e (dX“ + %@aF“d®a> (©:1,dO; — O,',dO,)

The action invariant under modified diff transformations




0X = « —IP —i£78,I (@a - U@Q) +0X", 60, = o’ <@a = u@;) + 5O;
0P = (T%all, + BP)' + 2ial™'T (616, — 6,16,
0, XH=—i0,T"5,0, 5.0,=I, (P* — TTI*) k; 5:0,=T, (P* + TTI*) ks

K~ symmetry §,P, = 2iT (01T ,0 <O1 — O51,0.02) S u=—T (05, 0—0x,0)
0l =—41R, @1+(€T—u) O] |—4iky | O+ (—4T — u) O,

m Noether Poincaré generators

P, j{ — {P, +iT [6,,0) — 6,',6,]} L g—Z{[XA(lP’HT(élF@&—@zF@’z))]“
+%@1@1(P — TX,)H—FE(:)Q@Q(P + TX/)M—{— (T/Q)(@QF“@;(:)l@l_C:)lrlu@ll(:)Z@z)}
22—/ j[
23—/ f

Ph_ T, )(THO, ) — QiT(él @1)@/1}

{
B SUSY 2T

J).U_|_ THU) (F'u’@g)a‘l— QiT(QQG)Q)@/?}

27T{




D=3, N=2Summary of Results

Follow talk Padua: Paul K. Townsend-11.

Quantize in the light-cone gauge =—> bosonic annihilation
operators (ty,, @y ), and fermionic annihilation operators

The tollowing ‘odd’ operator plays a crucial role:
n=>0

— squares to the even mass-squared operator M 2 (using level-

—

matching constraint), so it determines the spectrum.

—
—

 —

— commutes with super-Casimir P-J + 209, = spectrum is

—

super-Poincaré invariant —> No Super-Poincaré Anomalies




Spectrum

2 fermionic zero modes —> 4 massless ground states at level
N = O: 2 bosons and 2 fermions.

B All other states are massive. At level N = 1 we get 4 copies
of the scalar supermultiplet with helicities (—1/2, 0, 0, 1/2)

B At level N = 2 we get 8 copies of scalar supermultiplet plus
4 copies of spin-2 supermultiplet (1, 3/2, 3/2, 2)and its parity
conjugate (-2, —3/2, —3/2, —1)

m At level N = 3we get another 8 copies of the scalar super-
multiplet. Remaining 28 + 28 supermultiplets all have irrational
helicities —> Lorentz group is the infinite cover of SO(1, 2)




Hamiltonian Formulation- Open (Super)string

work in progress with Alisdair Routh and Paul K. Townsend - 12.
B Same Action as Closed String but it has Ends!

(General Variation: a Bulk term zero on shell, and a Boundary term:

5Son—shell — 1 /dT [(TQKX, UI[D) . 5X] (2)7T

27T
which must vanish due to the bc’s. For fixed endpoints: §X = 0

We do not fix XY . so we must have:
T°0XG + ulPy) )

0
I[ts « wvariation is: [QXB + o (uX, + £ DO)’] ;W — 0

Then we demand that ¢ , PY, and v are free variables, parameters

X()‘ends — O (é DO)/ |ends — O ulpndq — O

o0

then: Xo(T,0) ZZCOS (no/2) Xén, Zsm (no/2) ugm)(T)

n=0




177

It follows that X;|emss =0, and  u”|¢gnqs = 0 . There remains
to check the 3 gauge invariance of all the bc’s and the o gauge
invariance of the new set of bc’s. Then with the assumption

/!

that o' , X, and @ are also free (unrestricted!) variables,
parameters, we end up with the following system ot gauge
invariant bc’s under the restricted diff transformations:

Xz)‘ends = 0, Df) ends — 07 u|ends — O’E,‘ends =0, mends = U,

O/|ends = 0.
So far we discussed only the implications of the fact that
X" is not fixed, taking this into account in the variation
of the action

T2 = =1 275
5Son—shell — /dT [KX, - 0X :

27T 10




With * denoting a generic coordinate we are going to consider:

Free end: Xﬂend — 0 - Neumann,
Fixed end: X*lend = R, ~ Dirichlet.

Demand Now Gauge Invariance of the Constraints end up with:

Free end: X; end — 0 ”Neumaﬂn, ]P)fk|end =0 ,
Fixed end: X,|ena =, ~ Dirichlet, Pylena = O

& Hamiltonian Formulation permits Systems
of Gauge Invariant bc’s.

= D =3, N =2 Open Superstring action will have a
corresponding boundary term in 0.S,,, _«hen. 1 Will
present two systems of gauge invariant (modified
diff @ and 3 transformation, k transformation)




Common bc’s

Xglends =0, Dé) ends — 07 u|ends — 0’€/|ends =0, mends = U,

O/lends = 0.
Free endSZ Xllends — Oa BI‘QDdS — Oa
(@1 _ @2) |ends — Oa (@,1 T @,2) |ends — Oa

(k1 = K2) lopnds = 05 (K1 + K2) lopgs =0
Fixed ends: X|o—0=0, X|p—2r = B(0,R), P|opae= 0.
(01 —T°0,) =0, (0] +1'60%) = 0,
(k1 — [Vk2) =0, (k) +I&))

| ends | ends

=0

‘ends | ends




Arvis & LC Gauges

(Quantisation of the bosonic String
Dirichlet bc’s - New Gauge

J. F. Arvis- 83.

Heuristics: In order to reduce the the # of degrees
of freedom one demands cancellations in the Fourier

expansions of the corresponding entities. Ling-Yan Hung - 08.

B Closed bosonic string: all fields are periodic,
one demands that

>0 + TX, =po(7), Py —I—TX6 = p1 (7).

These conditions, good gauge conditions because if we are
infinitesimally close that is:

po(7) = po(7) +€(o,7),  p1(7) = p1(7) +n(0,7)




One can determine corresponding gauge transformations
provided we can determine & and 3 from:

T'pi (7)o + po(7)B" = €(7,0)

T'po(7)a’ + pi(7)B" = n(7,0)

residual gauge invariance: solutions when € =7 =10
o =03 =0=a=a(r), B =0(7)

Now we use the gauge conditions to eliminate Py, [Py

in the action:

X i
SIX,P: ¢, u] = /dT 2‘7 {x P, — ¢ P2 4+ (TX')? —uX'”’..u}
m

where we make, decompositions of the perlodlc functions:
X.P:A=a+A, u=up+u, L="~0+¢

where @ , ug , and £, are corresponding zero modes

that is: Pg # pj




| do- - 1
S:/d’f{ﬁlﬁﬂp’u—l— %Xg ))2 9

d / = / / WV / /-
+jl£—0 (—uX2 Co X" (T'p1 0" + pou’) +X (Tpol’ + pru’) )}

27T

/

do T
5 5_—p3+p% T

P2H(TXG)

T'he variables (XO, Xl, ¢,u) , are auxiliary and can be eliminated

(X0, X)) =0 =u=0,=u=mug, {=1"0y,=

|
S:/dT{i"pu—l— d—OXQ J>2 2£0

Do) g

i

27T

5/

&,

D)

2}

B 2
Where /%= d_a[ D; —|—(TX2> ], and ¢, , corresponds to residual

27T

time-reparametrization, while ug generates the level matching
constraint. One can fix the light-cone gauge forx“(T) and the action
reduces to the standard light-cone action.




— | 2
(Zﬂ) — (3_%)): : (pl po) %_P%L(TX,Q)_
’ X, —pg +pi \ Po D1 X' P,

[ Fixed ends Gauge Fixing.
Xblenas = 0,Pglends = 0, ©lends = 0,€]ends = U Blends = 0,
0 |ends = 0,X],-0=0, Xlo=2r = E(O,R), _ﬁ|endsz 0.
Arvis Gauge: Py+TX| =py, P+ 717X =0.
Good Gauge provided py # 0, residual gauge invariance aq(7)

eliminating the auxiliary stufl one gets:

“Tdo 1 0
SZ/de'O + —X,P z/_“_Z :
{po | op Sk QOOQW[QDO—I—%]

dO'- 2 = 2 ) ]
M= 5|2 (TXz) | poXy = XoPy  2TpoX) = pg — |P3 + (TX'Q)Q_ -




Free ends gauge fixing - No Arvis Gauge LC - good Gauge

One free end, one fixed end No gauge known!

B D=3, N =2 Open Superstring Fixed ends:
3D D0O-brane, its bc’s:

/
X()|ends =0 ;

D/

0 |ends

= () ,X‘UZOZG, X‘a:%r — E(O,R),

—
3

ends — 0.

ulends = 0 7mends =0, (@1 - FO@Q) ‘ends = 0, (@/1 T FO@IQ) ‘ends = 0,

("51 - FO"LQ) ends = 05 ("5,1 T FO"LIQ) ends = 0, E|ends — () ,O/Iends = (],

Incidentally the 3D D0 -brane, preserves half of the supersymmetry.

If the ends are fixed at the same point then rotational invariance in the
plane is preserved and this becomes a standard SUSY Quantum Mechanics
with two supercharges. It these strings allow an interaction, it is natural
to interpret the end points as () -branes, which would be described by
centrally charged AN = 2 super particle with a mass M saturating

the Bogomolnyl bound  Af > ‘ 7 ‘ which follows from




{Qg, Q%} — 5ab(I’“C)a5 >, M,eabe(w

Next we will compute the spins of the corresponding superparticle
action.

I should also mention that 1 am skipping over lots of details:
Arvis Gauge:
Po + 11144 = Po, Iq + T'1l,¢ = 0, F+(")1 = 0, [0, =0.

Show it is a good gauge, study residual gauge invariance eliminate momenta
from the action ..




Massive D = 3, N = 2 Superparticle -Hamiltonian Form

Bl Brink Schwarz Action S[X,P| = /dTHﬂDu — £ (P* +m?) +2im©' 67

where: II* = X! +i0T*0% SUSY dXH = —ie®THE 0% = ¢
5. XM — iR THO 5.0 =20 Kk

K~ symmetry 5 Ol . Prl _ e 5.0% =T - Px? + mr!

Reparametrization Invariant §X = a(P —i©°T'0%) §O% = 0O, 6§ = %c’v

P, =P, J"=[XAP}+imO'T+O? + %@a@aﬂw
Q' =v2(-PO'+m®O?), Q° =V2(I'-PO* — mO")

Noether Charges

a 1
LC F_I_@a:(), Q?+:7', O¢ = ! (% >7P+:—H=§(p2+m2)
7; \/2\/51?— )
L=x"p_+xp- 2190“190’ — H Normal Canonical System
1
Quantization: z,pl =[xz, p_] =1, (V)= (%) ==

2




B SUSY: Central Charge (Qg,, Q55 = 0" (I'"C)aplPy + meeqp

C = ( 0, 1 ) P2 — _m? Helicity Operator P.J = @‘%ﬁlﬁQ
1 1 P-J 1

191_50'3@7'1, 192:%03@)7_3 - 4(1@)7-2)

Quantization of Brink Schwarz Superparticle leads to Anyons!

helicity: 1/4 , that is semions!
Now if the effective action for a pair of such () -branes is in the
non-relativistic limit, a supersymmetric matrix mechanics with two
SUSYs, as it is suggested by critical superstring theory, then the
spin-1/4 nature of the D( -branes should also be apparent from
their statistical phase exp(i27s), under their interchange.
The model of supersymmetric matrix mechanics was considered by

C. Pedder, J. Sonner, and D. Tong -~ 08.
who computed the statistical phase as a Berry phase and the spin is 1/4




Conclusions

B Presented the Hamiltonian form of the Closed String. Showed
absence of Lorentz anomalies in LC in D =3 . Outlined the

spectrum and helicity content -irrational anyons

B Oulined the Hamiltonian form of D =3, N = 2. Superstring
and persistence ot irrational helicities.

B Hamiltonian Form of the Open String leads
systems of gauge invariant bc’c.

m For Superstrings we also manufactured systems of bc’s
invariant under kappa-transtormations.

B Emphasized the use of Arvis Gauge for closed and fixed
ends cases. Comments regarding the D =3, N = 2 super-
strings with fixed ends.




