dynamics of symmetry breaking

with Joe Bhaseen, Ben Simons, Jerome Gauntlett and Toby Wiseman

Julian Sonner Paul Fest @ Cambridge 3 July 2012

domain walls, janus solutions & cosmologies

• Paul and I worked on a number of projects which were unified by the use of dynamical systems analysis and fake supersymmetry

[J.S. & Paul. K. Townsend: Dilatonic Domain Walls and Dynamical Systems CQG 23 (2006) J.S & Paul. K. Townsend: Recurrent acceleration in dilaton-axion cosmology PRD 74 (2006) J.S. & Paul K. Townsend: Axion-dilaton Domain Walls and Fake Supergravity CQG 24 (2007]

• Like many other speakers have already commented, I was impressed by and learned from Paul's artist's (pad) approach to calculation.

domain walls, janus solutions & cosmologies

• Paul and I worked on a number of projects which were unified by the use of dynamical systems analysis and fake supersymmetry

[J.S. & Paul. K. Townsend: Dilatonic Domain Walls and Dynamical Systems CQG 23 (2006) J.S & Paul. K. Townsend: Recurrent acceleration in dilaton-axion cosmology PRD 74 (2006) J.S. & Paul K. Townsend: Axion-dilaton Domain Walls and Fake Supergravity CQG 24 (2007]

- Like many other speakers have already commented, I was impressed by and learned from Paul's artist's (pad) approach to calculation.
- What I never told Paul was that I was even more impressed by his powers of observation. Towards the end of my first year, he commented to me:

domain walls, janus solutions & cosmologies

 Paul and I worked on a number of projects which were unified by the use of dynamical systems analysis and fake supersymmetry

[J.S. & Paul. K. Townsend: Dilatonic Domain Walls and Dynamical Systems CQG 23 (2006) J.S & Paul. K. Townsend: Recurrent acceleration in dilaton-axion cosmology PRD 74 (2006) J.S. & Paul K. Townsend: Axion-dilaton Domain Walls and Fake Supergravity CQG 24 (2007]

- Like many other speakers have already commented, I was impressed by and learned from Paul's artist's (pad) approach to calculation.
- What I never told Paul was that I was even more impressed by his powers of observation. Towards the end of my first year, he commented to me:

If you're not having fun doing what you're doing, you're doing something wrong

heeding Paul's advice

Chris Pedder, Julian Sonner and David Tong

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

heeding Paul's advice

Chris Pedder, Julian Sonner and David Tong

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

1. Introduction

4 Feb 2008

Many years ago, Kugo and Townsend [1] pointed out a relationship between supersymmetric field theories with N = 2, 4, 8 and 16 supercharges and the four normed division algebras $\mathbb{K} \cong \mathbb{R}$, \mathbb{C} , \mathbb{H} and \mathbb{O} . The key observation is algebraic. Theories

j

heeding Paul's advice

February 4, 2008

The Berry Phase of D0-Branes

Chris Pedder, Julian Sonner and David Tong

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

1. Introduction

Many years ago, Kugo and Townsend [1] pointed out a relationship between supersymmetric field theories with N = 2, 4, 8 and 16 supercharges and the four normed division algebras $\mathbb{K} \cong \mathbb{R}$, \mathbb{C} , \mathbb{H} and \mathbb{O} . The key observation is algebraic. Theories

Paul, the cook

Paul, the cook

aubergine feta penne

serves: one PhD supervisor and student

ingredients:

1 fresh aubergine 250g fresh tomatoes 250g feta cheese (in brine)

Wednesday, 25 July 2012

happy birthday, paul!

• Many thanks for guiding my PhD and pointing me in the right direction for my subsequent research, Paul.

Happy 60th birthday, Paul !

happy birthday, paul!

• Many thanks for guiding my PhD and pointing me in the right direction for my subsequent research, Paul.

Happy 60th birthday, Paul !

weakly-coupled, type IIA description

[Hull & Townsend 1995]

strongly correlated matter at finite density

- strong correlations are hard to deal with. Lots of interest in strongly correlated systems: QCD, exotic materials (cuprates), SI transition
- Very hard to make any progress at all. Some control at **quantum-critical** points which have dynamical scaling

$$\xi \sim (g - g_c)^{-\nu}$$
$$\Delta \sim (g - g_c)^{z\nu}$$

- Two particularly hard areas
 - 1) Fermionic Quantum Critical Points (at finite density: sign problem) [Leiden group & MIT group - top down: J.S. (with Gauntlett and Waldram)]
 - 2) Out-of Equilibrium phenomena (few if any general principles known)

[Chesler & Yaffe, Mateos et al.;, ... J.S. & Andrew Green]

strong correlations in condensed matter

- We will endeavour to model QCPs using holography. **Scaling** symmetries encoded as **isometries** of `dual' spacetime
- Continuum theory near QCP is encoded in dynamics of dual string theory

1. introduction to ads/cmt

"quantum criticality encoded in dual spacetime"

2. model and background

"holographic superconductors, time-dependent BCS"

3. a holographic setup for dynamical symmetry breaking "Numerical relativity, structure of quasi-normal modes"

4. conclusions and outlook

"generic dynamical consequences of symmetry breaking"

1. introduction to ads/cmt

"quantum criticality encoded in dual spacetime"

2. model and background

"holographic superconductors, time-dependent BCS"

- 3. a holographic setup for dynamical symmetry breaking "Numerical relativity, structure of quasi-normal modes"
- 4. conclusions and outlook

"generic dynamical consequences of symmetry breaking"

a holographic model of superconductivity

- Superconductivity is a manifestation of symmetry breaking. New results here in a dynamical context are **very general** and extend beyond holography
- Specific example: minimal model of holographic superconductor

$$S = \int d^4x \sqrt{-g} \left[R + \frac{6}{\ell^2} - \frac{1}{4} F^2 - |D\psi|^2 - m^2 |\psi|^2 \right]$$

- Complex scalar Ψ is dual to symmetry-breaking order parameter
 1) RN: un-condensed normal phase, new hairy BH: s.c. phase
 [Gubser; Hartnoll, Herzog, Horowitz]
 - 2) leading near-boundary term of Ψ = source; subleading term = vev
 - 3) M-theory superconducts!

[Gaunlett, Sonner, Wiseman]

an old dog and a new trick

 BCS theory is the celebrated microscopic explanation of conventional superconductivity. An old story!

BCS hamiltonian:
$$\mathcal{H} = \sum_{p,\sigma} \epsilon_p a_{p,\sigma}^{\dagger} a_{p\sigma} - \frac{\lambda(t)}{2} \sum_{q,p} a_{p\uparrow}^{\dagger} a_{-p\downarrow}^{\dagger} a_{-q\downarrow} a_{q\uparrow}$$

BCS groundstate:
$$|\Psi(t)\rangle = \prod_{p} \left[u_{p}(t) + v_{p}(t)a_{p\uparrow}^{\dagger}a_{-p\downarrow}^{\dagger} \right] |0\rangle$$

pairing gap function:

$$\Delta(t) = \lambda \sum_{p} u_{p}(t) v_{p}^{*}(t)$$

 Recent (2004 -) new developments: the resulting (non-adiabatic) dynamics can be mapped onto a non-linear integrable system! [Barankov, Levitov & Spivak;

Yuzbashyan, Altshuler, Kuznetsov & Enolskii]

an old dog and a new trick

• BCS theory is the celebrated microscopic explanation of conventional superconductivity. An old story!

BCS hamiltonian:
$$\mathcal{H} = \sum_{p,\sigma} \epsilon_p a_{p,\sigma}^{\dagger} a_{p\sigma} - \frac{\lambda(t)}{2} \sum_{q,p} a_{p\uparrow}^{\dagger} a_{-p\downarrow}^{\dagger} a_{-q\downarrow} a_{q\uparrow}$$

time-dependent BCS pairing problem
BCS groundstate:
$$|\Psi(t)\rangle \neq \prod_p \left[u_p(t) + v_p(t) a_{p\uparrow}^{\dagger} a_{-p\downarrow}^{\dagger} \right] |0\rangle$$

pairing gap function:
$$\Delta(t) = \lambda \sum_p u_p(t) v_p^*(t)$$

 Recent (2004 -) new developments: the resulting (non-adiabatic) dynamics can be mapped onto a non-linear integrable system! [Barankov, Levitov & Spivak;

Yuzbashyan, Altshuler, Kuznetsov & Enolskii]

an old dog and a new trick

 BCS theory is the celebrated microscopic explanation of conventional superconductivity. An old story!

BCS hamiltonian:
$$\mathcal{H} = \sum_{p,\sigma} \epsilon_p a_{p,\sigma}^{\dagger} a_{p\sigma} - \frac{\lambda(t)}{2} \sum_{q,p} a_{p\uparrow}^{\dagger} a_{-p\downarrow}^{\dagger} a_{-q\downarrow} a_{q\uparrow}$$

BCS groundstate:
$$|\Psi(t)\rangle = \prod_{p} \left[u_{p}(t) + v_{p}(t)a_{p\uparrow}^{\dagger}a_{-p\downarrow}^{\dagger} \right] |0\rangle$$

pairing gap function:

$$\Delta(t) = \lambda \sum_{p} u_{p}(t) v_{p}^{*}(t)$$

 Recent (2004 -) new developments: the resulting (non-adiabatic) dynamics can be mapped onto a non-linear integrable system! [Barankov, Levitov & Spivak;

Yuzbashyan, Altshuler, Kuznetsov & Enolskii]

BL phase diagram

• The dynamics of this quench give rise to three distinct regimes

our achievement is twofold: 1) we exhibit analogous phenomena in a strongly-coupled system, with thermal and collisional damping
 2) we identify a new and completely generic mechanism within dynamical symmetry breaking leading to this behaviour

1. introduction to ads/cmt

"quantum criticality encoded in dual spacetime"

2. model and background

"holographic superconductors, time-dependent BCS"

3. a holographic setup for dynamical symmetry breaking "Numerical relativity, structure of quasi-normal modes"

4. conclusions and outlook

"generic dynamical consequences of symmetry breaking"

ads/cmt dynamics: numerical relativity

 We wish to model a quench holographically: prescribe a sudden change in some physical parameter of the theory on the boundary and then evolve the non-linear PDEs numerically to 'fill in the bulk'

more details of the setup [related work: Murata, Kinoshita & Tanahashi, 2010]

• for simplicity: take **homogeneous** quench

$$ds^{2} = \frac{1}{z^{2}} \left(-T(v,z) \, dv^{2} - 2 \, dv dz + S(v,z)^{2} dx_{i}^{2} \right)$$

• then the complex scalar can be expressed as

$$\psi(v,z) = z\left(\psi_1(v) + \hat{\psi}(v,z)\right)$$

- and $\Psi_1(t)$ is the **source** at the boundary. Use a spike in the source to quench the system (can think of different systems and different quenches)
- solve system of (1+1) non-linear PDE by a pseudo-spectral method in spatial directions and 'Crank-Nicholson' finite differences in time direction

the resulting dynamics I

• The dynamics of this quench give rise to **three** distinct regimes

the resulting dynamics II

• we can dress the results up as a dynamical phase diagram

• BL-type analysis extended to include strong correlations, thermal damping,... we find similar behaviour: great! but why? and how?

clues from quasinormal mode structure

• let us study the structure of quasi-normal modes about the final state

$$\psi(v, z) = \psi_0(z) + \delta \psi(v, z)$$

$$g_{ab}(v, z) = g_{ab,0}(z) + \delta g_{ab}(v, z)$$

$$A(v, z) = A_0(z) + \delta A(v, z)$$

 deal with diffeo and U(1) gauge symmetry by defining gauge-invariant variables (c.f. cosmological perturbation theory)

$$\delta \Phi_I(v,z) = e^{-i\omega v} \Phi_I^{\omega}(z)$$

 The analytic structure of the Φ tells us about a) late-time behaviour of observables b) poles in two-point functions of dual operators

quasi-normal mode structure

$$|\langle \mathcal{O}(t) \rangle| = |\langle \mathcal{O}_f \rangle + c e^{-i\omega_L t}$$

- Off-axis poles lead to oscillations in broken phase
- Dynamics very well approximated by leading QNM
- Very good quantitative agreement with non-linear PDE code

quasi-normal pole dance

quasi-normal pole dance

1. introduction to ads/cmt

"quantum criticality encoded in dual spacetime"

2. model and background

"holographic superconductors, time-dependent BCS"

3. a holographic setup for dynamical symmetry breaking "Numerical relativity, structure of quasi-normal modes"

4. conclusions and outlook "generic dynamical consequences of symmetry breaking"

dynamics of symmetry breaking

• T-reversal invariance means collective mode spectrum (manifested in our example as QNMs) must be **symmetric** under

$$\omega \to -\omega^*$$

- Poles in spectral function (and other observables) come in two varieties:
 a) pairs of poles off imaginary axis
 b) single poles on imaginary axis
- 1. S.c. phase transition: coalescence of two poles at TC at $\omega = 0$
- 2. Broken U(1) \Rightarrow Single pole (i.e. mode) at $\omega = 0$ (Goldstone mode)
- 3. At T=0 no source of dissipation \Rightarrow leading poles are oscillatory in nature

1 + 2 + 3 = BL dynamical phase diagram!

conclusions

- very interesting far-from-equilibrium problems are accessible at the intersection of numerical relativity and AdS/CFT.
 speculative comment: exact non-linear PDE methods may well be brought to bear on non-equilibrium field theory!
- simulated a quantum quench in ads/cmt: persistence of BL phenomena to strong coupling and in systems that thermalise makes it more likely to be observed in actual experiments
- in fact: our analysis shows that BL-type behaviour is completely **generic** for dynamical breaking of a local symmetry. This makes the **experimental point** even more emphatically.
- Are there different contexts? Higgs mechanism, early universe, you name it...