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domain walls, janus solutions & cosmologies

• Paul and I worked on a number of projects which were unified by the use of 
dynamical systems analysis and fake supersymmetry

[J.S. & Paul. K. Townsend: Dilatonic Domain Walls and Dynamical Systems CQG 23 (2006)
J.S & Paul. K. Townsend: Recurrent acceleration in dilaton-axion cosmology PRD 74 (2006)
J.S. & Paul K. Townsend: Axion-dilaton Domain Walls and Fake Supergravity CQG 24 (2007]
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• Like many other speakers have already commented, I was impressed by 
and learned from Paul’s artist’s (pad) approach to calculation.
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• Like many other speakers have already commented, I was impressed by 
and learned from Paul’s artist’s (pad) approach to calculation.

• What I never told Paul was that I was even more impressed by his powers 
of observation. Towards the end of my first year, he commented to me:

If you’re not having fun doing what you’re 
doing, you’re doing something wrong
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The Berry Phase of D0-Branes

Chris Pedder, Julian Sonner and David Tong

Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, UK

Abstract

We study SU(2) Yang-Mills quantum mechanics with N = 2, 4, 8 and 16
supercharges. This describes the non-relativistic dynamics of a pair of D0-branes
moving in d = 3, 4, 6 and 10 spacetime dimensions respectively. We show that
as the D0-branes orbit, states undergo a Berry holonomy described by the four
Hopf maps. For the N = 2 theory, the associated Hopf map is the Z2 Möbius
bundle and its effect is to turn the D0-branes into anyons with exchange statistics
eiπ/2. For the N = 4, 8 and 16 theories, the Hopf maps give rise to Berry
connections that are familiar to physicists: the U(1) Dirac monopole; the SU(2)
Yang monopole; and the SO(8) octonionic monopole.
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We study SU(2) Yang-Mills quantum mechanics with N = 2, 4, 8 and 16
supercharges. This describes the non-relativistic dynamics of a pair of D0-branes
moving in d = 3, 4, 6 and 10 spacetime dimensions respectively. We show that
as the D0-branes orbit, states undergo a Berry holonomy described by the four
Hopf maps. For the N = 2 theory, the associated Hopf map is the Z2 Möbius
bundle and its effect is to turn the D0-branes into anyons with exchange statistics
eiπ/2. For the N = 4, 8 and 16 theories, the Hopf maps give rise to Berry
connections that are familiar to physicists: the U(1) Dirac monopole; the SU(2)
Yang monopole; and the SO(8) octonionic monopole.

1. Introduction

Many years ago, Kugo and Townsend [1] pointed out a relationship between super-

symmetric field theories with N = 2, 4, 8 and 16 supercharges and the four normed

division algebras K ∼= R, C, H and O. The key observation is algebraic. Theories

with N = 2, 4, 8 and 16 supercharges naturally live in d = 3, 4, 6 and 10 spacetime

dimensions respectively. The Lorentz Lie algebra in these dimensions is isomorphic to

the algebra of 2 × 2 Hermitian matrices with vanishing trace and elements in K,

sl(2; K) ∼= so(d − 1, 1) (1)

This allows us to express a spinor in d dimensions as a 2-component K-vector, gen-

eralizing the well-known result for d = 4. This construction was elaborated upon in

[2].

For theories with N = 2, 4 and 8 supercharges, the relationship to the division algebra

K also manifests itself in more physical and dynamical matters. This includes familiar
features of supersymmetric theories, such as the holomorphy of the superpotential and

the hyperKähler/quaternionic structure of Calabi-Yau moduli spaces. However, so far

the tantalizing idea that an octonionic structure underlies theories with 16 supercharges

has not led to major insight about quantum dynamics.

The purpose of this short note is to point out that the isomorphism (1) has a simple,

physical consequence in the framework of supersymmetric quantum mechanics. We
focus on SU(2) gauged quantum mechanics. The theory with N supercharges can

be thought of as the dimensional reduction of the minimal super Yang-Mills theory

in d = 3, 4, 6 and 10 dimensions, and describes the non-relativistic dynamics of two

D0-branes moving in d−1 = N/2+1 spatial dimensions. We show that the states of a

pair of orbiting D0-branes undergo a holonomy described by the Hopf map associated

to the division algebra R, C, H and O.

The four Hopf maps take SN−1 → SN/2:

S1







"

S0∼=Z2

S1

S3







"

S1

S2

S7







"

S3

S4

S15







"

S7

S8

The case of N = 2 supercharges is special. The map Z2 ↪→ S1 → S1, sometimes known

as the zeroth Hopf map, describes the Möbius bundle. We will show in Section 3.1

1
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Paul, the cook

aubergine feta penne

serves: one PhD supervisor and student

ingredients:

1 fresh aubergine
250g fresh tomatoes
250g feta cheese (in brine)
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happy birthday, paul!

7

• Many thanks for guiding my PhD and pointing me in the right direction for my 
subsequent research, Paul.

Happy 60th birthday, Paul !
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• Many thanks for guiding my PhD and pointing me in the right direction for my 
subsequent research, Paul.

Happy 60th birthday, Paul !

weakly-coupled, type IIA description
[Hull & Townsend 1995]
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strongly correlated matter at finite density

• strong correlations are hard to deal with. Lots of interest in strongly 
correlated systems: QCD, exotic materials (cuprates), SI transition

• Very hard to make any progress at all. Some control at quantum-critical 
points which have dynamical scaling

• Two particularly hard areas
1) Fermionic Quantum Critical Points (at finite density: sign problem)
       [Leiden group & MIT group - top down: J.S. (with Gauntlett and Waldram)]

2) Out-of Equilibrium phenomena (few if any general principles known)
       [Chesler & Yaffe, Mateos et al.;, ... J.S. & Andrew Green]

ξ ∼ (g − gc)
−ν

∆ ∼ (g − gc)
zν

8
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strong correlations in condensed matter

• We will endeavour to model QCPs using holography. Scaling symmetries 
encoded as isometries of `dual’ spacetime

• Continuum theory near QCP is encoded in dynamics of dual string theory

cuprate superconductor

SI transition
Figure 1: Typical temperature and coupling phase diagram near a quantum critical point.

The two low temperature phases are separated by a region described by a scale-invariant

theory at finite temperature. The solid line denotes a possible Kosterlitz-Thouless transi-

tion. Figure taken from reference [6].

examples of systems that display quantum criticality. These will include both lattice models

and experimental setups. Our discussion will be little more than an overview – the reader

is encouraged to follow up the references for details. We shall focus on 2+1 dimensions,

as we often will throughout these lectures. In several cases we will explicitly write down

an action for the quantum critical theory. Typically the critical theory is strongly coupled

and so the action is not directly useful for the analytic computation of many quantities

of interest. Even in a large N or (for instance) d = 4 − � expansion, which effectively

make the fixed point perturbatively accessible, time dependent processes, such as charge

transport, are not easy to compute. This will be one important motivation for turning

to the AdS/CFT correspondence. The correspondence will give model theories that share

feature of the quantum critical theories of physical interest, but which are amenable to

analytic computations while remaining strongly coupled.

1.2.1 Example: The Wilson-Fisher fixed point

Let Φ be an N dimensional vector. The theory described by the action

S[Φ] =

�
d3x

�
(∂Φ)2 + rΦ2

+ u
�
Φ2

�2�
, (1)

becomes quantum critical as r → rc (in mean field theory rc = 0 but the value gets

renormalised) and is known as the Wilson-Fisher fixed point. At finite N the relevant

4

realised in cold atoms 9
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outline

1. introduction to ads/cmt
“quantum criticality encoded in dual spacetime ”

2.model and background
“holographic superconductors, time-dependent BCS”

3. a holographic setup for dynamical symmetry breaking
“Numerical relativity, structure of quasi-normal modes”

4. conclusions and outlook
“generic dynamical consequences of symmetry breaking”
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a holographic model of superconductivity

• Superconductivity is a manifestation of symmetry breaking. New results here 
in a dynamical context are very general and extend beyond holography

• Specific example: minimal model of holographic superconductor

• Complex scalar Ψ is dual to symmetry-breaking order parameter
1) RN: un-condensed normal phase, new hairy BH: s.c. phase
       [Gubser; Hartnoll, Herzog, Horowitz]

2) leading near-boundary term of Ψ = source; subleading term = vev
3) M-theory superconducts!
       [Gaunlett, Sonner, Wiseman] 

12

S =

�
d4x

√
−g

�
R+

6

�2
− 1

4
F 2 − |Dψ|2 −m2|ψ|2

�
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an old dog and a new trick

• BCS theory is the celebrated microscopic explanation of conventional 
superconductivity. An old story!

13

H =
�

p,σ

�pa
†
p,σapσ −

λ(t)

2

�

q,p

a†p↑a
†
−p↓a−q↓aq↑

|Ψ(t)� =
�

p

�
up(t) + vp(t)a

†
p↑a

†
−p↓

�
|0�

BCS hamiltonian:

BCS groundstate:

∆(t) = λ
�

p

up(t)v
∗
p(t)

• Recent (2004 -  ) new developments: the resulting (non-adiabatic) dynamics 
can be mapped onto a non-linear integrable system! [Barankov, Levitov & Spivak; 

Yuzbashyan, Altshuler, Kuznetsov & Enolskii]

pairing gap function:
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time-dependent BCS pairing problem

• Recent (2004 -  ) new developments: the resulting (non-adiabatic) dynamics 
can be mapped onto a non-linear integrable system! [Barankov, Levitov & Spivak; 
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BL phase diagram

• The dynamics of this quench give rise to three distinct regimes

14

Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon

R. A. Barankov1 and L. S. Levitov2

1Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St, Urbana, Illinois 61801, USA
2Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA

(Received 12 March 2006; published 16 June 2006)

Fermi gas with time-dependent pairing interaction hosts several different dynamical states. Coupling
between the collective BCS pairing mode and individual Cooper pair states can make the latter either
synchronize or dephase. We describe transition from phase-locked undamped oscillations to Landau-
damped dephased oscillations in the collisionless, dissipationless regime as a function of coupling
strength. In the dephased regime, we find a second transition at which the long-time asymptotic pairing
amplitude vanishes. Using a combination of numerical and analytical methods we establish a continuous
(type II) character of both transitions.

DOI: 10.1103/PhysRevLett.96.230403 PACS numbers: 05.30.Fk, 03.75.Kk, 03.75.Lm, 03.75.Ss

Recent discovery of BCS pairing in fermionic vapors
[1], made possible by control of interactions in trapped
cold gases [2], has renewed interest in quantum collective
phenomena [3]. Advanced detection techniques and long
coherence times in vapors enable time-resolved studies of
new collective modes, such as spin waves [4] and the BCS
pairing mode [5].

Interaction between a collective mode and constituting
particles is key for our understanding of dynamics in
various systems, from plasma to quantum gases. One of
the most surprising of these phenomena is Landau damp-
ing, which occurs in a collisionless regime via direct dis-
sipationless energy transfer from the collective mode to
single particles. Its nondissipative and thus reversible char-
acter [6] leads to a variety of regimes, notably to quenching
of the damping, first explored in plasma physics [7].
Remarkably, a linearly damped mode can regrow and
transform to a stationary oscillatory Bernstein-Greene-
Kruskal mode. This fascinating prediction was confirmed
experimentally only recently [8].

Naturally, the richness of these nonlinear phenomena
makes it tempting to look for their analogs in cold gases.
Collisionless damping in cold gases was considered, in the
linear regime, for optical excitations [9], spin waves
[10,11], and excitations in optical lattices [12]. Motivated
by the work on fermion superfluidity [1,5], here we focus
on the pairing dynamics of fermions [13–17] induced by a
sudden change of interaction. The collisionless regime
becomes practical in this case due to long relaxation times
!" ! !! " @=! [13], where ! is the BCS gap, and !" ’
@EF=!2 is the two-fermion collision time estimated at the
energy ’ ! near the Fermi level. The pairing mode of a
small amplitude oscillates at a frequency 2!=@ and exhib-
its collisionless dephasing [18]. These conclusions were
extended recently to the nonlinear regime [19].

This behavior changes drastically as the perturbation
increases. The main result of this work, as summarized in
Fig. 1, is prediction of a dynamical transition resulting
from competition between synchronization and collision-
less dephasing, taking place as a function of the initial

pairing gap, !s. We found three qualitatively different
regimes (A, B, and C) with the critical points at !AB "
e##=2!0 and !BC " e#=2!0, where !0 is the equilibrium
pairing amplitude in the final BCS state. Below the A-B
transition, !s <!AB, individual Cooper pair states syn-
chronize and the pairing amplitude oscillates between !$
and !# without damping. In contrast, in the interval
!AB % !s < !BC the pairing amplitude is Landau damped
and exhibits decaying oscillation, saturating at an asymp-
totic value, !a, with nonmonotonic dependence on !s. A
second transition occurs at !s " !BC. The dynamics be-
comes overdamped at !s >!BC, and !&t' decreases to
zero without oscillations. The oscillation amplitude and the
asymptotic value !a vanish continuously at the critical
points A-B and B-C, as in a type II transition. We demon-

10
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FIG. 1 (color online). Three regimes of the pairing dynamics
vs the initial gap value !s: numerical (open circles) and
analytical (line). In synchronized phase (A), !s <!AB, the
pairing amplitude oscillates between !# and !$. In the de-
phased regime (B;C), the pairing amplitude saturates to a
constant value, !a, when !AB % !s <!BC, and decreases to
zero at !s ( !BC. Dashed line: The stationary gap value !&T)'
reached in a closed system after equilibration.

PRL 96, 230403 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
16 JUNE 2006

0031-9007=06=96(23)=230403(4) 230403-1  2006 The American Physical Society

I. Oscillation

II.Decay to finite gap

III.Decay to zero gap

‣ our achievement is twofold: 1) we exhibit analogous phenomena in a 
strongly-coupled system, with thermal and collisional damping 
2) we identify a new and completely generic mechanism within dynamical 
symmetry breaking leading to this behaviour

`strength’ of quench

fin
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g 
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p
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ads/cmt dynamics: numerical relativity

• We wish to model a quench holographically: prescribe a sudden change in 
some physical parameter of the theory on the boundary and then evolve the 
non-linear PDEs numerically to ‘fill in the bulk’

16
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more details of the setup [related work: Murata, Kinoshita & Tanahashi, 2010]

• for simplicity: take homogeneous quench

• then the complex scalar can be expressed as

• and Ψ1(t) is the source at the boundary. Use a spike in the source to quench 
the system (can think of different systems and different quenches)

• solve system of  (1+1) non-linear PDE by a pseudo-spectral method in 
spatial directions and ‘Crank-Nicholson’ finite differences in time direction

17

ψ(v, z) = z
�
ψ1(v) + ψ̂(v, z)

�

ds2 =
1

z2
�
−T (v, z) dv2 − 2 dvdz + S(v, z)2dx2

i

�
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the resulting dynamics I

18

• The dynamics of this quench give rise to three distinct regimes

I. Oscillation

II.Decay to finite gap

III.Decay to zero gap

0 0.1 0.2 0.3 0.40

0.2

0.4

|<
O

f>|
/µ
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/µf

I II III
 a)

0.3

0.35
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 c)
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0.5

µf t

III Tf>Tc /µf=0.47

 d)
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the resulting dynamics II

19

• we can dress the results up as a dynamical phase diagram

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

|<
O
f>
|/µ

f2

/µf

I II III

*/µf c/µf

ψ1(t) = δe−10(t−t0)
2

• BL-type analysis extended to include strong correlations, thermal damping,... 
we find similar behaviour: great! but why? and how?
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clues from quasinormal mode structure

20

• let us study the structure of quasi-normal modes about the final state

ψ(v, z) = ψ0(z) + δψ(v, z)

gab(v, z) = gab,0(z) + δgab(v, z)

A(v, z) = A0(z) + δA(v, z)

• deal with diffeo and U(1) gauge symmetry by defining gauge-invariant 
variables (c.f. cosmological perturbation theory)

δΦI(v, z) = e−iωvΦω
I (z)

• The analytic structure of the Φ tells us about a) late-time behaviour of 
observables b) poles in two-point functions of dual operators
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quasi-normal mode structure

21

• Off-axis poles lead to 
oscillations in broken phase

•  Dynamics very well 
approximated by leading QNM

•  Very good quantitative 
agreement with non-linear PDE 
code

|�O(t)�| = |�Of �+ ce−iωLt
|

1 0 1

1

0.5

0 /µ

 a)  b)  c)

0

0.2

0.4

Im
/µ

 d)

0.5 1 1.50
0.2
0.4
0.6

R
e
/µ

T/Tc

I II III

 e)
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quasi-normal pole dance

22
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quasi-normal pole dance
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dynamics of symmetry breaking

24

• T-reversal invariance means collective mode spectrum (manifested in our 
example as QNMs) must be symmetric under

ω → −ω∗

• Poles in spectral function (and other observables) come in two varieties:
a) pairs of poles off imaginary axis
b) single poles on imaginary axis

1. S.c. phase transition: coalescence of two poles at TC at ω = 0

2. Broken U(1) ⇒ Single pole (i.e. mode) at ω = 0 (Goldstone mode)

3. At T=0 no source of dissipation ⇒ leading poles are oscillatory in nature

1 + 2 + 3 = BL dynamical phase diagram!
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conclusions

• very interesting far-from-equilibrium problems are accessible at the 
intersection of numerical relativity and AdS/CFT.
speculative comment: exact non-linear PDE methods may well be brought to 
bear on non-equilibrium field theory!

• simulated a quantum quench in ads/cmt: persistence of BL phenomena to 
strong coupling and in systems that thermalise makes it more likely to be 
observed in actual experiments

• in fact: our analysis shows that BL-type behaviour is completely generic for 
dynamical breaking of a local symmetry. This makes the experimental point 
even more emphatically.

• Are there different contexts? Higgs mechanism, early universe, you name it...
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