Bottomonium masses and radiative transitions

Lattice NRQCD results for
- M1 transitions among S waves (a refinement of [1])
- masses of S, P, D and F waves (and a glimpse beyond)

This work is being done in collaboration with R. M. Woloshyn.

Radiative transitions in bottomonium

FIG. 2 Transitions among $b\bar{b}$ levels. There are also numerous electric dipole transitions $S \leftrightarrow P \leftrightarrow D$ (not shown). Red (dark) arrows denote objects of recent searches.

J_{PC} are shown at the bottom of each figure. States are often denoted by $2S + 1LJ$, with $L = S, P, D, \ldots$. Thus, $L = 0$ states can be $1S_0$ or $3S_1$; $L = 1$ states can be $1P_1$ or $3P_0, 1, 2$; $L = 2$ states can be $1D_2$ or $3D_1, 2, 3$, and so on. The radial quantum number is denoted by n.

III. THEORETICAL UNDERPINNINGS

A. Quarks and potential models

An approximate picture of quarkonium states may be obtained by describing them as bound by an interquark force whose short-distance behavior is approximately Coulombic (with an appropriate logarithmic modification of coupling strength to account for asymptotic freedom) and whose long-distance behavior is linear to account for quark confinement. An example of this approach is found in Eichten et al. (1975, 1976, 1978, 1980); early reviews may be found in Appelquist et al. (1978); Grosse and Martin (1980); Novikov et al. (1978); Quigg and Rosner (1979). Radford and Repko (2007) presents more recent results.

Eichten, Godfrey, Mahlke, Rosner, RMP80, 1161 (2008)
Pseudoscalar/vector M1 transitions in the nonrelativistic quark model require

\[\mathcal{M}(nS \rightarrow n'S) = \int_0^\infty R_{n'}(r)R_n(r)j_0(qr/2)r^2dr \]

Therefore hindered transitions are subtle: recoil, spin, relativistic, . . .
Qualitative success

Near unity; modest momentum dependence.

Small and negative.

(Improved since publication)
Qualitative success

\(\Upsilon (2S) \rightarrow \eta_b (1S) \)

\(\Upsilon (3S) \rightarrow \eta_b (1S) \)
Quantitative problem

BABAR, PRL 101, 071801 (2008) and BABAR, PRL 103, 161801 (2009)
The PACS-CS configurations

- Iwasaki+clover improved action. We use one ensemble of 192 configurations.
- \(m_u = m_d \gtrsim \) physical (\(m_\pi = 156 \text{ MeV} \)) and \(m_s \gtrsim \) physical (\(m_K = 553 \text{ MeV} \)).
- \(32^3 \times 64 \) lattices with \(\beta = 1.90 \Rightarrow a = 0.0907(14) \text{ fm} \) and \(L = 32a = 2.9 \text{ fm} \).
- Parameters are set using \(m_\pi, m_K \) and \(m_\Omega \) as input.
Tadpole-improved NRQCD action

\[H = \frac{-\Delta^{(2)}}{2M_0} - c_1 \frac{(\Delta^{(2)})^2}{8M_0^3} + \frac{c_2}{U_0^4 8M_0^2} ig (\Delta \cdot E - E \cdot \Delta) \]
\[- \frac{c_3}{U_0^4 8M_0^2} \sigma \cdot (\Delta \times E - E \times \Delta) - \frac{c_4}{U_0^4 2M_0} \sigma \cdot B \]
\[+ c_5 \frac{a^2 \Delta^{(4)}}{24M_0} - c_6 \frac{a(\Delta^{(2)})^2}{16nM_0^2} + O(v^6) \]

The stability parameter \(n \) is algorithmic not physical; we use \(n = 4 \).

Tadpole improvement via average link in Landau gauge: \(U_0 = 0.8463 \).

We use tadpole-improved leading order: \(c_i = 1 \) for all \(i \).

The bottom quark bare mass \(M_0 = 1.945 \) is set by fitting the experimental \(\eta_b \) mass. Specifically, the \(\eta_b \) kinetic energy is used:

\[E(p) - E(0) = \sqrt{p^2 + M_0^2} - M_0 \]

with the three smallest lattice momenta.
Bottomonium propagation

- 16 random U(1) wall sources per configuration.

- Smearing in Coulomb gauge: (l)ocal, (s)meared, (d)oubly-smeared.

\[O_{\eta b} = \sum_y \chi(x)\phi(x - y)\psi(y) \]

\[O_{\Upsilon} = \sum_y \chi(x)\sigma_3\phi(x - y)\psi(y) \]

\[\phi(r) = \left(1 - \frac{r}{2a_0}\right) \exp\left(\frac{-r}{2a_0}\right) \]

with \(a_0 = 1.4 \) (lattice units).

- Constrained multi-exponential fitting to all times except the source:

\[g_{oo'}(t) = \sum_{n=1}^{N} c_{o'}(n)c_o(n)e^{-E_n(t_f-t_i)} \]
Bottomonium propagation

• 16 random $U(1)$ wall sources per configuration.

• Smearing in Coulomb gauge: (l)ocal, (s)meared, (d)oubly-smeared.

\[
O_{\eta_b} = \sum_y \chi(x) \phi(x - y) \psi(y)
\]
\[
O_{\Upsilon} = \sum_y \chi(x) \sigma_3 \phi(x - y) \psi(y)
\]
\[
\phi(r) = \left(1 - \frac{r}{2a_0}\right) \exp\left(-\frac{r}{2a_0}\right)
\]
with $a_0 = 1.4$ (lattice units).

• Constrained multi-exponential fitting to all times except the source:

\[
g_{oo'}(t) = \sum_{n=1}^{N} c_{o'}(n) c_o(n) e^{-E_n(t_f - t_i)}
\]
Stability of η_b and Υ mass fits
We find $m_\Upsilon - m_{\eta_b} = 56 \pm 1$ MeV (statistical error only).
The PDG average is 69.8 ± 2.8 MeV; the recent Belle result is $59.3 \pm 1.9^{+2.4}_{-1.4}$ MeV.
Agreement with the variational method

The variational method solves the eigenvalue problem on each time step.

\[g(t)f_k(t) = \lambda_k(t)g(t_0)f_k(t) \]

where \(g(t) \) is the correlator matrix.

Black symbols are variational. Horizontal lines are 10-term multi-state fits.

Variational results would become more precise with more operators.
Leptonic decay of Υ

$$\Gamma[\Upsilon(nS) \rightarrow e^+ e^-] = \frac{16\pi\alpha |\Psi_n(0)|^2}{9 \frac{M^2_{\Upsilon(nS)}}{Z_{\text{match}}} \approx \frac{16\pi\alpha}{9} \frac{c_{\text{local}}^2}{6M^2_{\Upsilon(nS)}}$$

where $\Psi_n(0)$ denotes the wave function at the origin and Z_{match} relates the lattice vector current to the renormalized continuum current.
Three-point functions

\[\sum_{n} \sum_{n'} c_s^{(V)}(n) A_{nn'}^{(VP)} c_l^{(P)}(n') \exp \left(-E_n^{(V)}(t' - t^{(V)})\right) \exp \left(-E_{n'}^{(P)}(t^{(P)} - t')\right)\]

- \(A_{nn'}^{(VP)}\) is the matrix element of interest.
- Two-point \(c\) and \(E\) values are retained.
- Source is \(V\) or \(P\), and is \(l\) or \(s\) or \(d\).
 Likewise for sink.
 6 “source,sink” used: \(ll, ls, sl, ss, ld, dl\).
- \(P\) momentum is \((0,0,0), (1,0,0)\) or \((2,0,0)\).
 \(V\) momentum is always zero.
- Current insertion is just a Pauli matrix
 (i.e. leading nonrelativistic term).
Three-point functions

\[\sum_n \sum_{n'} c_s^{(V)}(n) A_{nn'}^{(VP)} c_l^{(P)}(n') \exp \left(-E_n^{(V)}(t' - t^{(V)}) \right) \exp \left(-E_{n'}^{(P)}(t^{(P)} - t') \right) \]

- Three source-sink time separations:
 \(\Delta t = 19 \) and 27 and 15 (since publication).

- 10-term fits not required.
 We use \(nn' = 11, 12, 21, 13, 31, 22 \).

- Excluding \(nn' = 22 \) causes \(\Delta t = 19 \) and 27 to disagree.

- The time fit range is
 \(t_{src} + 2 < t' < t_{snk} - 2 \).
Three-point functions

with $\Delta t = 19$

$V \rightarrow P$

$P \rightarrow V$
Three-point functions

with $\Delta t = 27$

$V \rightarrow P$

$P \rightarrow V$
Stability of $A^{(VP)}_{nn'}$ fits

<table>
<thead>
<tr>
<th>recoil momentum</th>
<th>Δt</th>
<th>N_{cf}</th>
<th>$A^{(VP)}_{11}$</th>
<th>$A^{(VP)}_{12}$</th>
<th>$A^{(VP)}_{13}$</th>
<th>$A^{(VP)}_{21}$</th>
<th>$A^{(VP)}_{31}$</th>
<th>$A^{(VP)}_{22}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>19</td>
<td>10</td>
<td>0.916(2)</td>
<td>-0.043(7)</td>
<td>-0.069(6)</td>
<td>0.090(7)</td>
<td>0.052(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.915(2)</td>
<td>-0.068(2)</td>
<td>-0.050(4)</td>
<td>0.072(4)</td>
<td>0.065(3)</td>
<td>1.11(31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.915(2)</td>
<td>-0.068(3)</td>
<td>-0.050(4)</td>
<td>0.071(4)</td>
<td>0.065(3)</td>
<td>1.11(23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>10</td>
<td>0.916(2)</td>
<td>-0.062(7)</td>
<td>-0.056(7)</td>
<td>0.075(7)</td>
<td>0.059(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.916(2)</td>
<td>-0.068(3)</td>
<td>-0.050(6)</td>
<td>0.071(3)</td>
<td>0.062(4)</td>
<td>2.1(2.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.916(2)</td>
<td>-0.068(3)</td>
<td>-0.051(6)</td>
<td>0.071(4)</td>
<td>0.062(4)</td>
<td>1.9(1.8)</td>
<td></td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>19</td>
<td>10</td>
<td>0.908(1)</td>
<td>-0.042(8)</td>
<td>-0.060(8)</td>
<td>0.095(7)</td>
<td>0.057(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.907(1)</td>
<td>-0.062(6)</td>
<td>-0.047(7)</td>
<td>0.079(4)</td>
<td>0.068(5)</td>
<td>0.92(27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.907(1)</td>
<td>-0.062(6)</td>
<td>-0.047(7)</td>
<td>0.079(5)</td>
<td>0.067(5)</td>
<td>0.95(21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>10</td>
<td>0.908(2)</td>
<td>0.057(8)</td>
<td>-0.052(9)</td>
<td>0.082(6)</td>
<td>0.063(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.907(2)</td>
<td>0.061(5)</td>
<td>-0.048(8)</td>
<td>0.079(4)</td>
<td>0.066(6)</td>
<td>1.6(1.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.907(2)</td>
<td>0.061(5)</td>
<td>-0.048(8)</td>
<td>0.079(5)</td>
<td>0.066(6)</td>
<td>1.6(1.5)</td>
<td></td>
</tr>
<tr>
<td>(2,0,0)</td>
<td>19</td>
<td>10</td>
<td>0.878(1)</td>
<td>-0.010(6)</td>
<td>-0.055(6)</td>
<td>0.116(7)</td>
<td>0.066(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.877(1)</td>
<td>-0.030(4)</td>
<td>-0.041(6)</td>
<td>0.101(5)</td>
<td>0.078(6)</td>
<td>1.01(25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.877(1)</td>
<td>-0.031(4)</td>
<td>-0.041(6)</td>
<td>0.102(5)</td>
<td>0.078(6)</td>
<td>1.02(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>10</td>
<td>0.878(1)</td>
<td>-0.026(6)</td>
<td>-0.041(8)</td>
<td>0.104(6)</td>
<td>0.066(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.878(2)</td>
<td>-0.031(4)</td>
<td>-0.037(8)</td>
<td>0.101(5)</td>
<td>0.070(6)</td>
<td>1.9(1.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.878(2)</td>
<td>-0.029(5)</td>
<td>-0.039(7)</td>
<td>0.100(5)</td>
<td>0.068(6)</td>
<td>1.0(1.6)</td>
<td></td>
</tr>
</tbody>
</table>
Qualitative success, quantitative problem
Possible improvements

- matching of the vector current: lattice to renormalized continuum.
- relativistic corrections to the transition operator.
- $O(v^6)$ terms.
- radiative corrections to coefficients in the NRQCD Hamiltonian.
- multiple lattice spacings and a continuum limit.

Other issues

- Light quarks are close to their physical values.
- The lattice volume is large compared to the physical system.
Masses of higher angular momentum states of bottomonium

- Which J^{PC} states appear as “ground states” on a lattice?
- Which of those states are accessible with present-day methods and existing configurations?
Creation operators for “ground states”

<table>
<thead>
<tr>
<th>Λ^{PC}</th>
<th>J^{PC}</th>
<th>$2S+1L_J$</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1^{++}</td>
<td>0$^-$</td>
<td>1S_0</td>
<td>1</td>
</tr>
<tr>
<td>T_1^{--}</td>
<td>1$^--$</td>
<td>3S_1</td>
<td>${\sigma_1, \sigma_2, \sigma_3}$</td>
</tr>
<tr>
<td>T_1^{--}</td>
<td>1$^--$</td>
<td>1P_1</td>
<td>${\Delta_1, \Delta_2, \Delta_3}$</td>
</tr>
<tr>
<td>A_1^{++}</td>
<td>0$^+$</td>
<td>3P_0</td>
<td>$\Delta_1\sigma_1 + \Delta_2\sigma_2 + \Delta_3\sigma_3$</td>
</tr>
<tr>
<td>T_1^{++}</td>
<td>1$^+$</td>
<td>3P_1</td>
<td>${\Delta_2\sigma_3 - \Delta_3\sigma_2, \Delta_3\sigma_1 - \Delta_1\sigma_3, \Delta_1\sigma_2 - \Delta_2\sigma_1}$</td>
</tr>
<tr>
<td>E^{++}</td>
<td>2$^+$</td>
<td>3P_2</td>
<td>$((\Delta_1\sigma_1 - \Delta_2\sigma_2)/\sqrt{2}, (\Delta_1\sigma_1 + \Delta_2\sigma_2 - 2\Delta_3\sigma_3)/\sqrt{6})$</td>
</tr>
<tr>
<td>T_2^{++}</td>
<td>2$^+$</td>
<td>3P_2</td>
<td>${\Delta_2\sigma_3 + \Delta_3\sigma_1, \Delta_3\sigma_1 + \Delta_1\sigma_3, \Delta_1\sigma_2 + \Delta_2\sigma_1}$</td>
</tr>
<tr>
<td>E^{--}</td>
<td>2$^-$</td>
<td>1D_2</td>
<td>$((D_{11} - D_{22})/\sqrt{2}, (D_{11} + D_{22} - 2D_{33})/\sqrt{6})$</td>
</tr>
<tr>
<td>T_2^{--}</td>
<td>2$^-$</td>
<td>1D_2</td>
<td>${D_{23}, D_{31}, D_{12}}$</td>
</tr>
<tr>
<td>E^{--}</td>
<td>2$^-$</td>
<td>3D_2</td>
<td>$((D_{23}\sigma_1 - D_{13}\sigma_2)/\sqrt{2}, (D_{23}\sigma_1 + D_{31}\sigma_2 - 2D_{12}\sigma_3)/\sqrt{6})$</td>
</tr>
<tr>
<td>T_2^{--}</td>
<td>2$^-$</td>
<td>3D_2</td>
<td>${(D_{22} - D_{33})\sigma_1 + D_{13}\sigma_3 - D_{12}\sigma_2, (D_{33} - D_{11})\sigma_2 + D_{21}\sigma_1 - D_{23}\sigma_3, (D_{11} - D_{22})\sigma_3 + D_{32}\sigma_2 - D_{31}\sigma_1}$</td>
</tr>
<tr>
<td>A_2^{--}</td>
<td>3$^--$</td>
<td>3D_3</td>
<td>$D_{12}\sigma_3 + D_{23}\sigma_1 + D_{31}\sigma_2$</td>
</tr>
<tr>
<td>A_2^{--}</td>
<td>3$^--$</td>
<td>1F_3</td>
<td>D_{123}</td>
</tr>
<tr>
<td>T_2^{++}</td>
<td>3$^+$</td>
<td>1F_3</td>
<td>${D_{122} - D_{133}, D_{233} - D_{211}, D_{311} - D_{322}}$</td>
</tr>
<tr>
<td>A_2^{++}</td>
<td>3$^+$</td>
<td>3F_3</td>
<td>$(D_{221} - D_{331})\sigma_1 + (D_{332} - D_{112})\sigma_2 + (D_{113} - D_{223})\sigma_3$</td>
</tr>
<tr>
<td>T_1^{--}</td>
<td>4$^-$</td>
<td>1G_4</td>
<td>${D_{2223} - D_{3332}, D_{3331} - D_{1113}, D_{1112} - D_{2221}}$</td>
</tr>
<tr>
<td>A_1^{--}</td>
<td>4$^--$</td>
<td>3G_4</td>
<td>$(D_{2223} - D_{3332})\sigma_1 + (D_{3331} - D_{1113})\sigma_2 + (D_{1112} - D_{2221})\sigma_3$</td>
</tr>
<tr>
<td>E^{++}</td>
<td>5$^--$</td>
<td>1H_5</td>
<td>$((D_{23111} - D_{13222})/\sqrt{2}, (D_{23111} + D_{13222} - 2D_{12333})/\sqrt{6})$</td>
</tr>
<tr>
<td>A_2^{++}</td>
<td>6$^-$</td>
<td>1I_6</td>
<td>$D_{112222} + D_{223333} + D_{331111} - D_{221111} - D_{332222} - D_{113333}$</td>
</tr>
<tr>
<td>A_1^{--}</td>
<td>9$^--$</td>
<td>1L_9</td>
<td>$D_{12233333} + D_{23331111} + D_{31112222} - D_{13322222} - D_{21113333} - D_{32221111}$</td>
</tr>
</tbody>
</table>
Simulation details

- same PACS-CS ensemble (198 configurations)
- 64 random-U(1) wall sources per configuration
- gauge-invariant smearing: \(\psi(x) \rightarrow (1 + 0.15\Delta^2)^{8s} \psi(x) \) with \(s = 0, 1, 2 \)
- stout links (Morningstar & Peardon, 2004) for F-wave operators
- a generalized multi-exponential fit:

\[
g(t - t_0) = \sum_{n=1}^{N'} \sum_{s=0}^{2} \sum_{s'=0}^{2} f_s(n) f_{s'}(n) e^{-E_n(t-t_0)} + \sum_{n=N'+1}^{N} \sum_{s=0}^{2} \sum_{s'=0}^{2} f_{s,s'}(n) e^{-E_n(t-t_0)}
\]
Sample $E^{-\cdots}$ correlation functions.
(The lightest meson is $^{3}D_{2}$.)

![Graph showing $E^{-\cdots}$ correlation functions for different values of s and s'. The graph includes data points for $s = s' = 0$, $s = s' = 1$, and $s = s' = 2$. The horizontal axis represents Euclidean time, and the vertical axis represents the magnitude of the correlation functions on a logarithmic scale.)
Sample T_2^{+-} correlation functions.
(The lightest meson is 1F_3.)
“ground state” bottomonium spectrum
Lattice (with statistical errors) and experiment.

preliminary G wave result: mass($T_{1^{-+}}$) = 10.75±0.07 GeV/c^2
quark model expectation: mass(G wave) = 10.52 GeV/c^2

(Quarkonium Working Group, hep-ph/0412158, figure 4.10.)
Conclusions

masses:
• A set of quark-antiquark operators for all lattice irreps, Λ^PC, has been constructed. These correspond to the 16 bottomonium “ground states” for a lattice simulation, so they are a natural starting point for numerical studies.
• S, P, D and F waves are observed. A first look at a G wave suggests it is also within reach with present-day methods and existing gauge configurations.

M1 transitions:
• These decays are sensitive to a variety of small effects and are thus a valuable challenge for lattice simulations.
• The observed qualitative success is encouraging.
• The observed quantitative discrepancies (relative to experiment) provide the opportunity for future progress.