Lessons from Holography: the Shear Viscosity Bound and UV/IR Decopling

#### Sera Cremonini

Centre for Theoretical Cosmology, DAMTP, Cambridge U. and Mitchell Institute for Fundamental Physics, Texas A&M U.

Cambridge, June 2011

## Talk based on:

- arXiv:0812.3572
- arXiv:0903.3244
- arXiv:0910.5159
- arXiv:1007.2963
- arXiv:1106.xxxx

In collaboration with:

A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior of many important physical phenomena is governed by the physics of interacting many-body systems, whose dynamics involves a very large number of constituents



Typically, one is interested in the macroscopic behavior (at large distances and long time scales)



In this regime, a system generically exhibits features which are universal (independent of the fine details of the underlying microscopic description) Holographic methods emerging from AdS/CFT have been applied to a variety of strongly coupled gauge theories

valuable tool for probing thermal and hydrodynamical properties of field theories at strong coupling

> few theoretical tools available for real-time processes



## Plan

Focus on a "universal" quantity that has played key role in studies of the QCD quark gluon plasma:



Conjectured to be bounded from below:

$$\frac{\eta}{s} \ge \frac{1}{4\pi}$$

QGP value measured at RHIC close to that predicted by gauge/gravity duality

## Outline:

• A bit of background on  $\eta/s$  : the QGP plasma and why so much attention from AdS/CFT

• What AdS/CFT has taught us about  $\eta$ /s  $\rightarrow$  focus on higher derivative corrections

- It's now well understood that the bound is violated
  - features in string theory-based models and models with decoupling of UV from IR physics



## The quark gluon plasma: the perfect fluid

#### Insight into the quark gluon plasma

RHIC → Au+Au, 200 GeV per nucleon (LHC ~ 2.7 TeV)
→ probe QGP behavior (transport properties)



#### Can we use CFTs to study properties of QCD?



Karsch, hep-lat/0106019

- N = 4 SYM at finite T is not QCD but:
- Some features *qualitatively* similar to QCD (for  $T \sim T_c 3T_c$ )
  - strongly coupled
  - nearly conformal (small bulk viscosity away from T<sub>c</sub>)
- Some properties may be *universal*

<u>generic</u> relations might provide INPUT into realistic simulations of sQGP

## Elliptic Flow at RHIC

#### Off-central heavy-ion collisions at RHIC:



Anisotropic Flow (large pressure gradient in horizontal direction) Large "Elliptic Flow"

Well described by hydrodynamical calculations with <u>very small shear viscosity/entropy density ratio</u> -- "perfect fluid"

RHIC data favors  $4\pi\eta/s < 2.5$  (e.g. Song et al. 1011.2783)

## Nearly Ideal, Strongly Coupled QGP

Weak coupling calculations in thermal gauge theories:

$$\frac{\eta}{s} \sim \frac{1}{\lambda^4 \log 1/\lambda^2} \gg 1$$



Strongly coupled system → natural setting for AdS/CFT applications

## Shear Viscosity from AdS/CFT Relativistic Hydrodynamics:

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} - \sigma^{\mu\nu}$$

$$\sigma_{ij} \neq \eta \left( \partial_i u_j + \partial_j u_i - \frac{2}{3} \delta_{ij} \partial_k u^k \right) + \zeta \delta_{ij} \partial_k u^k$$

 $\eta\, {\rm can}$  be extracted from certain correlators of the boundary  $T_{\mu\nu}$  (Kubo's formula)

$$G_{xy,xy}^{R}(\omega,\mathbf{0}) = \int dt \, d\mathbf{x} \, e^{i\omega t} \theta(t) \langle [T_{xy}(t,\mathbf{x}), \, T_{xy}(0,\mathbf{0})] \rangle = -i\eta\omega + O(\omega^{2})$$
$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_{xy,xy}^{R}(\omega,\mathbf{0})$$

effective description of dynamics of system at large wavelengths and long time scales



## The Viscosity Bound

## Universality of $\eta/s$

For  $\mathcal{N}=4$  SU(N) SYM plasma:

planar limit, infinite `t Hooft coupling
[Policastro,Son,Starinets hep-th/0104066]

$$\frac{\eta}{s} = \frac{1}{4\pi} \quad \longleftarrow \quad \begin{array}{c} \text{UNIVERSAL} \\ \lambda, \ N \to \infty \end{array}$$

Result is universal in all gauge theories whose gravity duals are dictated by <u>Einstein gravity</u> [Buchel & Liu th/0311175]

regardless of matter content, amount of SUSY, conformality

## Shear Viscosity Bound

Conjectured lower bound for finite T QFTs  $\rightarrow$  [Kovtun, Son, Starinets th-0309213]

Fundamental in nature?

• Lower than any observed fluid

RHIC value at most a few times

$$\frac{\eta}{s} = \frac{1}{4\pi} \sim .08$$



 $\frac{\eta}{s} \ge$ 

Simple dilute gas estimate seemed to suggest QM bound:

$$\frac{\eta}{s} \sim p \, l_{mfp} \quad \Rightarrow \quad \frac{\eta}{s} \gtrsim \mathcal{O}(\hbar)$$

Ratio 
$$\frac{\eta}{s}=\frac{1}{4\pi}$$
 is universal in Einstein GR:  $\mathcal{L}=R-\frac{1}{2n!}\,F_n^2+\dots$ 

How does it change with higher derivative corrections?

$$\mathcal{L} = R - \frac{1}{2n!} F_n^2 + \ldots + \alpha' R^2 + \alpha'^2 R^3 + \alpha'^3 R^4 + \ldots$$

CFT side: finite  $\lambda, N$ corrections

## Testing The Bound

Leading  $\alpha'$  correction on AdS<sub>5</sub> x S<sup>5</sup> (N = 4 SYM) increased the ratio [Buchel,Liu,Starinets th/0406264]

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[ 1 + 15\zeta(3)\lambda^{-3/2} + \dots \right]$$

Possible bound violations ? YES Gauss-Bonnet gravity DBrigante et al, arXiv:0712.0805]

$$I = \frac{1}{16\pi G_N} \int d^5 x \sqrt{-g} \left[ R - 2\Lambda + \frac{\lambda_{GB}}{2} L^2 (R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}) \right]$$

$$\frac{\eta}{s} = \frac{1}{4\pi} [1 - 4\lambda_{GB}] \leftarrow \begin{array}{c} \text{come back to} \\ \text{this later} \end{array}$$

## String Construction Violating Bound

- Kats & Petrov (arXiv:0712.0743)
- Type IIB on  $AdS_5 \times S^5/\mathbb{Z}_2$ (decoupling limit of N D3's sitting inside 8 D7's coincident on 07 plane)

$$S = \int d^D x \sqrt{-g} \left( \frac{R}{2\kappa} - \Lambda + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right)$$
$$\frac{\eta}{s} = \frac{1}{4\pi} \left[ 1 - 4(D-4)(D-1)\frac{c_3}{L^2/\kappa} \right]$$
$$\frac{\text{small violation}}{\text{for } \mathbf{c}_3 > \mathbf{0}}$$

Couplings  $\rightarrow$  determined by (fundamental) matter content of the theory Violation of the bound can be traced to inequality of central charges of dual CFT:

c-a > 0

generic in superconformal gauge theories
 with unequal central charges
 [Buchel et al. 0812.2521]

## Our interest in this story ...

[SC,K.Hanaki,J.Liu,P.Szepietowski,0812.3572, 0903.3244, 0910.5159]

#### Role of chemical potential (R-charge) on the bound?

- at two-derivative level, it has no effect (universality)
- with higher derivatives, is bound restored with sufficiently large chemical potential?

#### Role of SUSY/stringy constraints?

we were interested in consistent string theory reductions, and therefore corrections constrained by supersymmetry Corrections to  $\eta$ /s at finite chemical potential [arXiv:0903.3244, SC,K.Hanaki,J.Liu,P.Szepietowski]

The setup: D=5 N = 2 gauged SUGRA (electrically charged black holes) To leading order:

$$\mathcal{L}_{0} = -R - \frac{1}{4}F_{\mu\nu}^{2} + \frac{1}{12\sqrt{3}}\epsilon^{\mu\nu\rho\lambda\sigma}F_{\mu\nu}F_{\rho\lambda}A_{\sigma} + 12g^{2}$$

$$ds^{2} = H^{-2}fdt^{2} - H\left(f^{-1}dr^{2} + r^{2}d\Omega_{3,k}^{2}\right) \quad H(r) = 1 + \frac{Q}{r^{2}},$$

$$A = \sqrt{\frac{3(kQ + \mu)}{Q}}\left(1 - \frac{1}{H}\right)dt, \qquad f(r) = k - \frac{\mu}{r^{2}} + g^{2}r^{2}H^{3}$$

$$\Omega = E - TS - Q\Phi$$

 In this theory higher derivative corrections start at R<sup>2</sup> (sensitive to amount of SUSY)

They include the mixed gauge-gravitational CS term:

 $\mathbf{A} \wedge \mathbf{Tr}(\mathbf{R} \wedge \mathbf{R})$ 

#### SUSY $R^2$ terms in 5D

Recall that we are interested in R<sup>2</sup> terms constrained by SUSY

Instead of brute-force compactification (on Sasaki-Einstein), make use of SUSY [Hanaki,Ohashi,Tachikawa, th/0611329]

SUSY completion of mixed CS term  $\mathbf{A}\wedge \mathbf{Tr}(\mathbf{R}\wedge \mathbf{R})$  coupled to arbitrary # of vector multiplets

Off-shell formulation of N=2, D=5 gauged SUGRA (superconformal formalism). End Result

off shell action, lots of auxiliary fields, supersymmetric curvature-squared term in 5D

## On-shell Lagrangian (minimal SUGRA) [arXiv:0812.3572, SC,K.Hanaki,J.Liu,P.Szepietowski]

$$\mathcal{L} = -R - \frac{1}{4}F^{2} + \frac{1}{12\sqrt{3}}\left(1 - \frac{1}{6}c_{2}g^{2}\right)\epsilon^{\mu\nu\rho\lambda\sigma}A_{\mu}F_{\nu\rho}F_{\lambda\sigma} + 12g^{2}$$

$$\left(\frac{c_{2}}{24}\right)\frac{1}{48}RF^{2} + \frac{1}{576}(F^{2})^{2}\right] + \mathcal{L}_{1}^{\text{ungauged}},$$

$$\mathcal{L}_{1}^{\text{ungauged}} = \left(\frac{c_{2}}{24}\right)\frac{1}{16\sqrt{3}}\epsilon_{\mu\nu\rho\lambda\sigma}A^{\mu}R^{\nu\rho\delta\gamma}R^{\lambda\sigma}_{\delta\gamma} + \frac{1}{8}C_{\mu\nu\rho\sigma}^{2}\right) + \frac{1}{16}C_{\mu\nu\rho\lambda}F^{\mu\nu}F^{\rho\lambda} - \frac{1}{3}F^{\mu\rho}F_{\rho\nu}R_{\mu}^{\nu}$$

$$-\frac{1}{24}RF^{2} + \frac{1}{2}F_{\mu\nu}\nabla^{\nu}\nabla_{\rho}F^{\mu\rho} + \frac{1}{4}\nabla^{\mu}F^{\nu\rho}\nabla_{\mu}F_{\nu\rho} + \frac{1}{4}\nabla^{\mu}F^{\nu\rho}\nabla_{\nu}F_{\rho\mu}$$

$$+\frac{1}{32\sqrt{3}}\epsilon_{\mu\nu\rho\lambda\sigma}F^{\mu\nu}(3F^{\rho\lambda}\nabla_{\delta}F^{\sigma\delta} + 4F^{\rho\delta}\nabla_{\delta}F^{\lambda\sigma} + 6F^{\rho}\delta\nabla^{\lambda}F^{\sigma\delta})$$

$$+\frac{5}{64}F_{\mu\nu}F^{\nu\rho}F_{\rho\lambda}F^{\lambda\mu} - \frac{5}{256}(F^{2})^{2}\right].$$
Controls strength of higher derivative terms
$$C_{2} \text{ can be related to the central charges of dual UV CT via: Holograme for an analys$$

#### The Link to the Central Charges

#### For us: 4D CFT with N=1 SUSY

4D CFT central charges a,c defined in terms of trace anomaly: (CFT coupled to external metric)

$$\langle T^{\mu}_{\mu} \rangle = \frac{c}{16\pi^2} C - \frac{a}{16\pi^2} E$$

Prescription for extracting trace anomaly for higher derivative GR:

$$\langle T^{\mu}_{\mu} \rangle = \frac{1}{16\pi^2} \Big[ \Big( \frac{c}{3} - a \Big) R^2 + (4a - 2c) R^2_{\mu\nu} + (c - a) R^2_{\mu\nu\rho\sigma} \Big]$$

$$\mathcal{L} = R + \alpha_1 R^2 + \alpha_2 R_{\mu\nu}^2 + \alpha_3 R_{\mu\nu\rho\sigma}^2 + \dots$$

 $c_2 = \frac{24}{g^2} \frac{c-a}{a}$ 

sensitive to higher derivative corrections

## Finite N effect

For 
$$\mathcal{N} = 4$$
 SYM  $a = c$  (no  $\mathbb{R}^2$  corrections)  
In general  $a = c = \mathcal{O}(\mathbb{N}^2)$  only, and  $\frac{c-a}{a} \sim \frac{1}{\mathbb{N}}$ 

**R<sup>2</sup>** Correction will correspond to a 1/N correction

#### • Contrast to IIB on $AdS_5 \times S^5$

Note: these are <u>not</u> 1-loop corrections in the bulk (open string effects instead) Thermodynamics and Hydrodynamics of R-charged black-holes

Putting all ingredients together ...

electrically charged black holes

$$s = \frac{2a(1+Q)^{3/2}}{\pi L^6} \left( 1 + \frac{c-a}{a} \frac{3Q^2 - 14Q - 21}{8(Q-2)} \right)$$
$$\eta \sim \frac{(1+Q)^{3/2}}{16\pi} \left[ 1 - \frac{c-a}{a} \frac{5Q^2 + 6Q + 5}{8(Q-2)} \right]$$

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[ 1 - \frac{c-a}{a} \left( 1 + Q \right) \right]$$

Suprisingly simple dependence on R-charge: some form of universality?

## Bound Violation

#### [See also Myers et al, 0903.2834]

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[ 1 - \frac{c-a}{a} (1+Q) \right]$$

Bound violated for c-a > 0

R-charge makes violation worse

Correction is 1/N effect

Only terms with explicit Riemann tensor matter:

$$\mathcal{L} = -R - \frac{1}{4}F^2 + \ldots + \frac{c_2}{g^2} \Big[ \alpha_1 R_{\mu\nu\rho\sigma}^2 + \alpha_2 R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \alpha_3 \nabla^\mu F^{\nu\rho} \nabla_\mu F_{\nu\rho} + \alpha_4 \nabla^\mu F^{\nu\rho} \nabla_\nu F_{\rho\mu} + \cdots \Big]$$

reminiscent of Wald's entropy formula



# Microcausality violation and the link to $\eta/s$

In holographic models realized in string theory, the violation of the bound is necessarily <u>perturbative</u>, and therefore always small (curvature corrections must be small)

Although the original KSS bound was clearly violated, the question of whether a bound on eta/s existed was still open. Gauss-Bonnet as a toy model [Brigante et al, 0712.0805, 0802.3318]

Black brane solutions known for finite GB coupling

$$I = \frac{1}{16\pi G_N} \int d^5 x \sqrt{-g} \left[ R - 2\Lambda + \frac{\lambda_{GB}}{2} L^2 (R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}) \right]$$

Finite  $\lambda_{GB}$  leads to natural question: arbitrary violation of the bound?

$$\frac{\eta}{s} = \frac{1}{4\pi} [1 - 4\lambda_{GB}],$$

No! Must look at the consistency of the dual QFT:

 once the coupling becomes too large, one finds modes that propagate faster than light

same bound by requiring positivity
 of energy measured by a detector
 in the plasma (Hofman 0907.1625)

Causality Violation and the Link to  $\eta/s$ 

Consistency of the GB plasma as a relativistic QFT ensures small violation of the bound

GB example suggests link between violation of viscosity bound and violation of microcausality/positivity of energy

Such a link cannot be of fundamental nature [S.C., A.Buchel arXiv:1007.2963]

We considered a <u>slight modification of the GB model</u>, realized in a theory with a superfluid phase transition Idea is generic:

While transport properties are determined by the IR features of the theory, causality is determined by the propagation of UV modes (whose dynamics is not that of hydro)

#### IR vs. UV Physics



Features of our Toy Model [S.C., A. Buchel arXiv:1007.2963]

Based on: holographic model of superfluidity proposed by GHPT 0907.3510 (consistent truncation of Type IIB)

$$\mathcal{L} = R - \frac{L^2}{3} F_{\mu\nu} F^{\mu\nu} + \left(\frac{2L}{3}\right)^3 \frac{1}{4} \epsilon^{\lambda\mu\nu\sigma\rho} F_{\lambda\mu} F_{\nu\sigma} A_{\rho} + \mathcal{L}_{scalar}$$

$$\mathcal{L}_{scalar} = -\frac{1}{2} \left[ \left( \partial_{\mu} \phi \right)^2 + 4\phi^2 A_{\mu} A^{\mu} \right] + \frac{12}{L^2} + \frac{3}{2L^2} \phi^2$$
$$\mathcal{L}_{GB} = \beta \phi^4 L^2 \left( R^2 - 4R_{\mu\nu} R^{\mu\nu} + R_{\mu\nu\rho\lambda} R^{\mu\nu\rho\lambda} \right)$$

dual operator develops a VEV below T

$$\langle \mathcal{O}_c \rangle \begin{cases} = 0, \quad T > T_c \\ \neq 0, \quad T < T_c \end{cases}$$

$$\left| \begin{array}{c} \lambda_{GB} \right|^{effective} \begin{cases} = 0, & \text{UV} \\ \neq 0, & \text{IR}. \end{cases}$$



- broken symmetry phase
- Gauss-Bonnet higherderivative corrections

$$\lambda_{GB} \neq 0$$

 Black hole develops scalar hair

- unbroken phase
- no higher derivatives (Einstein GR with U(1) gauge field)

 $\lambda_{GB} = 0$ 

electrically charged
 AdS black hole

#### The shear viscosity bound [arXiv:1007.2963]



#### "UV/IR Decoupling"



hydrodynamics is described by IR theory -- in general this is not connected in a trivial way to the UV CFT

#### Link to the Central Charges?

Even perturbatively, here there is no link between eta/s and the UV central charges of the dual theory:

$$\eta/s = \frac{1}{4\pi}(1 + \frac{c-a}{a})$$

$$\eta/s \leftrightarrow \to causality$$

of UV fixed point

#### Holographic Wilsonian RG Flow

Over the past year, several attempts at refining and developing the Wilsonian approach to gauge/gravity duality

| 1006.1902 | (Bredberg,Keeler,Lysov,Strominger |
|-----------|-----------------------------------|
| 1009.3094 | (Nickel and Son)                  |
| 1010.1264 | (Heemskerk and Polchinski)        |
| 1010.4036 | (Faulkner, Liu, Rangamani)        |

Eta/s doesn't run in any Wilsonian sense:

$$\partial_r \Pi = 0 + \mathcal{O}(\omega^2)$$

but still has non-trivial behavior as a function of temperature Non-trivial Eta/s "flow"



Can we understand jump in eta/s, in Wilsonian approach?
 (relevant double trace deformations of CFT, triggering RG-flow)

Any other ways to get
 interesting behavior
(or "UV/IR decoupling") for η/s ?

#### Non-Trivial Scalar Profile?

Charged dilatonic branes with Lifshitz solutions:

$$S = \frac{1}{16\pi G_{d+2}} \int d^{d+2}x \sqrt{-g} \left( R - 2\Lambda - 2(\nabla\phi)^2 - e^{2\alpha\phi}\mathcal{G}^2 \right)$$
$$ds^2 = L^2 \left( r^{2z} dt^2 + r^2 dx^i dx^j \delta_{ij} + \frac{dr^2}{r^2} \right)$$

Geometries exhibiting Lifshitz scaling

$$t \to \lambda^z t, \quad x_i \to \lambda x_i$$

have played a key role in probing quantum critical systems (dilatonic b.h.  $\rightarrow$  zero entropy at zero temperature)



IR behavior (Lifshitz) is different enough from UV behavior (AdS) that we expect interesting eta/s behavior without need for phase transition

## In Conclusion ...

Original KSS bound is violated, and with higher derivatives universality of eta/s is seemingly lost

Idea behind GB superfluid is generic: transport coefficients are IR features of the theory, while

causality/central charges are a property of the UV.

Microscopic constraints - while important for the general consistency of the plasma as a relativistic field theory - are NOT responsible for setting the lower bound on  $\eta/s$ 

The question of a bound on  $\eta/s$  - whether it exists and what is the physics that determines it - remains open.

Although eta/s does not flow in any Wilsonian sense, it still has a different behavior in the UV than in the IR

Can we better understand non-trivial eta/s (hydro more generally) within new Wilsonian approach? Relevant deformations, etc?

How much more mileage can we can get from gravity setups to <u>model</u> interesting field theory systems (and any constraints arising from consistency of the theory)?

Development of universal relations particularly important (they provide useful inputs into realistic simulations of strongly coupled systems)



## The End