Brane Tilings, M2-Branes and Chern-Simons Theories

NOPPADOL MEKAREEYA

Theoretical Physics Group, Imperial College London

DAMTP, Cambridge March 2010

My Collaborators

Amihay Hanany, Giuseppe Torri, and John Davey

Special thanks to: Yang-Hui He, Alexander Shannon, and Alberto Zaffaroni

Part I: Introduction

What is an M2-brane?

- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A_{μ} .
- In supergravity, a p-brane is a (p+1) space-time dimensional object sourcing the (p+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form $A^{(3)}$. The corresponding field strength is a 4-form $F^{(4)}=dA^{(3)}$.
 - Maxwell eq. for an electric source: $\underbrace{d*F^{(4)}}_{8-\text{form}} = *\delta^{(3)}$
 - \Rightarrow Elec. charge is localised in 3 (= 2 + 1) spacetime dim. \Rightarrow M2-brane.
 - Maxwell eq. for a magnetic source: $dF^{(4)} = *\delta^{(6)}$
 - \Rightarrow Mag. charge is localised in 6 (= 5 + 1) spacetime dim. \Rightarrow M5-brane.

Motivation

- ullet How many conformal field theories (CFTs) do we know in (2+1) dimensions?
- ullet What are the worldvolume theories of a stack of N M2-branes in M-theory?
- Understand Chern-Simons (CS) theories better
- Algebraic Geometry and Quiver Gauge Theories

Motivation: AdS/CFT

- Well-known: String theory in $AdS_5 \times S^5 \quad \leftrightarrow \quad (3+1) d \mathcal{N} = 4 \text{ SYM}$
- Known: String theory in $AdS_5 \times SE^5 \quad \leftrightarrow \quad (3+1) d \ \mathcal{N} = 1 \ \mathsf{SCFT}$

Long standing problem:

- M-theory in $AdS_4 \times SE^7 \longleftrightarrow \text{ which field theories?}$
- Different SE7's leads to CFTs
- ullet Such field theories live on N M2-branes at the tip of the CY cone over SE^7
- (2+1)d SUSY CS-matter theories (Martelli-Sparks, Hanany-Zaffaroni, etc.)

Part II: $\mathcal{N} = 2$ CS-Matter Theories

- Theories with $\mathcal{N}=1$ SUSY in (2+1)d have no holomorphy properties \Rightarrow We cannot control their non-perturbative dynamics
- Start with $\mathcal{N}=2$ SUSY (4 supercharges) in (2+1)d. This may get enhanced to higher SUSY.

An $\mathcal{N}=2$ CS-Matter Theory

- ullet Gauge group: $\mathcal{G} = \prod_{a=1}^G U(N)_a$
- The 3d $\mathcal{N}=2$ vector multiplet V_a . Can be obtained from a dimensional reduction of 4d $\mathcal{N}=1$ vector multiplet.
 - A one-form gauge field A_a , a real scalar field σ_a (from the components of the vector field in the compactified direction) , a two-component Dirac spinor χ_a , a real auxiliary scalar fields D_a .
 - All fields transform in the adjoint representation of $U(N)_a$:
- The chiral multiplet. It consists of matter fields Φ_{ab} , charged in the gauge groups $U(N)_a$ and $U(N)_b$.
 - ullet Complex scalars X_{ab} , Fermions ψ_{ab} , Auxiliary scalars F_{ab} .

$\mathcal{N}=2$ CS-Matter Lagrangian

- ullet The action consists of 3 terms: $S = S_{\mathrm{CS}} + S_{\mathrm{matter}} + S_{\mathrm{potential}}$.
- CS terms in Wess-Zumino gauge:

$$S_{\rm CS} = \sum_{a=1}^{G} \frac{k_a}{4\pi} \int \text{Tr} \left(A_a \wedge dA_a + \frac{2}{3} A_a \wedge A_a \wedge A_a - \bar{\chi}_a \chi_a + 2D_a \sigma_a \right) ,$$

where k_a are called the CS levels. Gauge fields are non-dynamical.

• The matter term is

$$S_{\text{matter}} = \int d^3x \ d^4\theta \sum_{\Phi_{ab}} \text{Tr} \left(\Phi_{ab}^{\dagger} e^{-V_a} \Phi_{ab} e^{V_b} \right) \ .$$

• The superpotential term is

$$S_{\text{potential}} = \int d^3x \ d^2\theta W(\Phi_{ab}) + \text{c.c.} \ .$$

What Is Special in 2 + 1 dimensions?

- ullet The Yang-Mills coupling has mass dimension 1/2 in (2+1) dimensions
 - All theories are strongly coupled in the IR
- The CS levels k_a are integer valued (so that the path integral is invariant under large gauge transformation)
 - Non-renormalisable theorem (NRT): Each k_a is not renormalised beyond a possible finite 1-loop shift [Witten '99]
- The action are classically marginal (k_a have mass dimension 0)
- NRT ⇒ The action is also quantum mechanically exactly marginal
 (Any quantum correction is irrelevant in the IR or can be absorbed by field redef.) [Gaiotto-Yin '07]
- The theory is conformally invariant at the quantum level

The Mesonic Moduli Space

• The vacuum equations:

$$\begin{array}{ll} \bullet \ \ {\rm F-terms:} & \partial_{X_{ab}}W=0 \\ \bullet \ \ {\rm 1st\ D-terms:} & \sum_{b=1}^G X_{ab}X_{ab}^\dagger - \sum_{c=1}^G X_{ca}^\dagger X_{ca} + [X_{aa},X_{aa}^\dagger] = 4k_a\sigma_a \\ \bullet \ \ {\rm 2nd\ D-terms:} & \sigma_a X_{ab} - X_{ab}\sigma_b = 0 \ . \end{array}$$

- Note that the fields X_{ab} , σ_a are matrices, and no summation convention.
- ullet Space of solutions of these eqns are called the mesonic moduli space, $\mathcal{M}^{\mathrm{mes}}.$
- The F-terms and the LHS of the 1st D-terms are familiar in 3+1 dimensions
- The RHS of 1st D-terms and 2nd D-terms are new in 2+1 dimensions.

Quiver Gauge Theories

What is a quiver gauge theory?

- It is a gauge theory associated with a directed graph with nodes and arrows.
 - ullet Each node represents each factor in the gauge group ${\cal G}$.
 - Each arrow going from a node a to a different node b represents a field X_{ab} in the bifundamental rep. $(\mathbf{N}, \overline{\mathbf{N}})$ of $U(N)_a \times U(N)_b$.
 - ullet Each loop on a node a represents a field ϕ_a in the adjoint rep. of $U(N)_a$.
 - Drawback: A quiver diagram does NOT fix the superpotential

ullet For a (2+1)d CS quiver theory, need to assign the CS levels k_a to each node.

Abelian CS Quiver Theories

- Take N=1. Gauge group $\mathcal{G}=U(1)^G$.
- The fields X_{ab}, σ_a are just **complex numbers**.
- The vacuum equations do the following things:
 - Set all σ_a to a single field, say σ . It is a real field.
 - Impose the following condition on the CS levels: $\sum_a k_a = 0$.
- Define the CS coefficient: $k \equiv \gcd(\{k_a\})$.

Moduli Space of a CS Quiver Theory

Let's consider first the abelian case N=1.

- Solving the vacuum equations in 2 steps:
 - **1** Solving F-terms. The space of solutions of F-terms is the Master space, \mathcal{F}^{\flat} .
 - **②** Further solving D-terms: Modding out \mathcal{F}^{\flat} by **the gauge symmetry**.
- Among the original gauge symmetry $U(1)^G$, one is a diagonal U(1); it does not couple to matter fields \to We are left with $U(1)^{G-1}$.
- \bullet Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing ${\rm CY}_3$

Moduli Space of a CS Quiver Theory

- 1st D-terms: $\sum_{b=1}^G X_{ab} X_{ab}^\dagger \sum_{c=1}^G X_{ca}^\dagger X_{ca} + [X_{aa}, X_{aa}^\dagger] = 4k_a \sigma$
 - The CS levels induce FI-like terms: $4k_a\sigma$.
 - ullet This gives a fibration of CY_3 over $\mathbb{R} \ \Rightarrow \ \mathsf{Total}$ space is CY_4
- The mesonic moduli space $\mathcal{M}^{\mathrm{mes}}$ is a CY_4 .
- Remaining D-terms gauge redundancy: $U(1)^{G-2}$ (baryonic directions)
- Therefore, the mesonic moduli space can be written as

$$\mathcal{M}_{N=1,k}^{\text{mes}} = \left(\mathcal{F}^{\flat} / / U(1)^{G-2}\right) / \mathbb{Z}_k$$

ullet For higher N, the moduli space is

$$\mathcal{M}_{N,k}^{\mathrm{mes}} = \operatorname{Sym}^{N}\left(\mathcal{M}_{N=1,k}^{\mathrm{mes}}\right)$$

Part III: Brane Tilings

What is known in 3+1 dimensions?

- SCFTs on D3-branes probing CY_3 are best described in terms of brane tilings [Hanany et al. from '05]
- ullet The gravity dual of each theory is on the ${
 m AdS}_5 imes Y_5$ background (Y_5 being a 5 dimensional Sasaki-Einstein manifold)
- Example: The $\mathcal{N}=4$ Super Yang-Mills (Y_5 is a 5-sphere S^5)

Tiling-Quiver Dictionary

ullet Example: The ${\cal N}=1$ conifold theory [Klebanov-Witten '98]

- 2n sided face =U(N) gauge group with nN flavours
- Edge = A chiral field charged under the two gauge group corresponding to the faces it separates
- *D* valent node = A *D*-th order interaction term in superpotential

Comments on Brane Tilings

- Graph is bipartite: Nodes alternate between clockwise (white) and anticlockwise (black) orientations of arrows.
- Black (white) nodes connected to white (black) only
- Odd sided faces are forbidden by anomaly cancellation condition
- White (black) nodes give + (-) sign in the superpotential Conifold theory: $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{12}^2 X_{21}^1)$

Brane Tilings for (2+1)d Theories

- Assign a CS level to each gauge group (node in quiver & face in the tiling).
 Rules above still work!
- Each brane tiling (with specified CS levels) defines a unique Lagrangian for an $\mathcal{N}=2$ CS theory (4 supercharges) in 2+1 dimensions.
- The tiling has an interpretation of a network of D4-branes and NS5-brane ending on the NS5-brane in Type IIA. (Imamura & Kimura '08)
- ullet Largest known family of SCFTs in (2+1) dimensions!

Example: The ABJM Theory [Aharony, Bergman, Jafferis, Maldacena '08]

- Gauge group: $U(N) \times U(N)$. CS levels: (k, -k).
- \bullet Superpotential: $W = {\rm Tr}(X_{12}^1X_{21}^1X_{12}^2X_{21}^2 X_{12}^1X_{21}^2X_{12}^2X_{21}^1) \ .$
- The case of N=1 and k=1: W=0
 - The F-terms admit any complex solutions of $X_{12}^i, X_{21}^i \ (i=1,2)$
 - ullet The Master space is $\mathcal{F}^{lat}=\mathbb{C}^4$
 - ullet The mesonic moduli space is $\mathcal{M}_{N=1}^{\mathrm{mes}}=\mathcal{F}^{\flat}//U(1)^{G-2}=\mathbb{C}^4$
 - ullet The moduli space generated by X_{12}^i, X_{21}^i (each has scaling dimension 1/2)
 - These are free scalar fields

Example: A Conifold $(C) \times \mathbb{C}$ Theory

- Gauge group: $U(1) \times U(1)$. CS levels: (1, -1).
- $\bullet \ \, \mathsf{Superpotential:} \quad W = \mathsf{Tr}\left(\phi_1(X_{12}^2X_{21}^1 X_{12}^1X_{21}^2) + \phi_2(X_{21}^2X_{12}^1 X_{21}^1X_{12}^2)\right)$
- The $\mathbb C$ is parametrised by $\phi_1=\phi_2$, and the $\mathcal C$ is generated by $X_{12}^i,X_{21}^i.$
- ullet Non-trivial scaling dimensions: 1/2 for ϕ 's and 3/4 for X's (by symmetry argument)
- \bullet These values agree with a computation on the gravity dual (volume minimisation of ${\rm SE}^7).$ This is a (weak) test of AdS/CFT.

Toric Structures

- The moduli space of N=1 theories admits a toric structure, due to the U(1) quotients in $\mathcal{M}_{N=1,k=1}^{\mathrm{mes}}=\mathcal{F}^{\flat}//U(1)^{G-2}$
- The toric data of the moduli space are collected in the toric diagram, which is unique up to a $GL(3,\mathbb{Z})$ transformation
- There is a prescription (called the forward algorithm) in going from brane tilings to toric diagrams

The toric diagram of \mathbb{C}^4

The toric diagram of $\mathcal{C} \times \mathbb{C}$

Part IV: Toric Phases

Toric Duality

- There are some models which have different brane tilings, but have the same mesonic moduli space in the IR.
- These models are said to be toric dual to each other. Each of these models is referred to as toric phase.
- ullet In $(3+1){
 m d}$, toric duality is understood to be Seiberg duality (Feng, Hanany, He, Uranga; Beasley, Plesser '01). This is however not clear in $(2+1){
 m d}$.
- The following quantities are matched between toric phases:
 - Mesonic moduli spaces & toric diagrams
 - Chiral operators & partition functions (Hilbert series)
 - Global symmetries
 - Scaling dimensions (R-charges) of chiral operators

Phases of The \mathbb{C}^4 Theory

• Phase I: The ABJM model $(k_1 = -k_2 = 1)$

Note: In (3+1)d, these two pictures correspond to the conifold theory.

• Phase II: The Hanany-Vegh-Zaffaroni (HVZ) model $(k_1 = -k_2 = 1)$

The toric diagram of \mathbb{C}^4

The toric diagram of \mathbb{C}^4

The lift of a point in toric diagram due to CS levels (1,-1)

The (3+1)d conifold theory

The (2+1)d ABJM model

Phases of The Conifold $(\mathcal{C}) \times \mathbb{C}$ Theory

• Phase I: $k_1 = -k_2 = 1, k_3 = 0$

8				
1 2	3 1	2	3 1	2
3	2	^3	2	3
1 2	[3]	2	3	2
3	2	√ ₃ •—	2	3 1

• Phase II: $k_1 = -k_2 = 1$

Note: In (3+1)d, these two pictures correspond to the $\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C}$ theory.

• Phase III: $k_1 = 0, k_2 = -k_3 = 1$

The toric diagram of $\mathcal{C} \times \mathbb{C}$

The toric diagram of $\mathcal{C}\times\mathbb{C}$

The lift of points in toric diagram due to CS levels (1,-1)

The (3+1)d $\mathbb{C}^2/\mathbb{Z}_2 \times \mathbb{C}$ theory

The (2+1)d $\mathcal{C} \times \mathbb{C}$ theory

Phases of The D_3 Theory

• Phase I: $k_1 = k_2 = -k_3 = -k_4 = 1$

• Phase II: $k_1=-k_2=1, k_3=0$ Note: In $(3+1){\rm d}$, these are of the SPP theory.

• Phase III: $k_1 = -k_2 = k_3 = -k_4 = 1$

The toric diagram of D_3

The toric diagram of D_3

The lift of points in toric diagram due to CS levels (1,-1,0)

The (3+1)d SPP theory

The (2+1)d D_3 theory

Part V: Fano 3-folds

What are Fano surfaces?

- ullet Fano n-folds are n dim complex manifolds admitting positive curvatures
- Fano 2-folds are $\mathbb{P}^1 \times \mathbb{P}^1$ and the del Pezzo surfaces dP_n (which are \mathbb{P}^2 blown-up at $0 \le n \le 8$ points). Only $\mathbb{P}^1 \times \mathbb{P}^1$ and $dP_{n=0,1,2,3}$ are toric.
- There are precisely 18 different smooth toric Fano 3-folds (Batyrev '82).

 Their toric diagrams are known (http://malham.kent.ac.uk/grdb/FanoForm.php).
- Study theories on M2-branes probing a cone over Fano 3-folds
- Problem: Translate toric data to brane tilings

The $M^{1,1,1}$ theory

- \bullet Gauge group: $U(1)\times U(1)\times U(1).$ The CS levels: $\vec{k}=(1,1,-2)$
- ullet The mesonic global symmetry is $\mathfrak{G}=SU(3) imes SU(2) imes U(1)_R$
- \bullet The scaling dimensions of quiver fields $X^i_{12}, X^i_{23}, X^i_{31}$ are 7/9, 7/9, 4/9.
- The operators are in the rep $(3n, 0; 2n)_{2n}$ of \mathfrak{G} . This can be computed directly from the field theory side (using Hilbert series) and confirms the known KK spectrum.

The $M^{1,1,1}$ theory from a cone over $\mathbb{P}^2 \times \mathbb{P}^1$

The toric diagram of the $M^{1,1,1}$ theory $(\mathbb{P}^2 \times \mathbb{P}^1)$

- ullet The 4 blue points form the toric diagram of \mathbb{P}^2
- \bullet The 2 black points together with the blue internal point form the toric diagram of \mathbb{P}^1

The $Q^{1,1,1}/\mathbb{Z}_2$ theory

• Phase I: $k_1 = -k_2 = -k_3 = k_4 = 1$

φ				•
4	1	4	1	4
3	2	3	2	3
4	1	4	1	4
3	2	3	2	3

• Phase II: $k_1 = k_2 = -k_3 = -k_{3'} = 1$

The $Q^{1,1,1}/\mathbb{Z}_2$ theory from a cone over $\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$

The toric diagram of the $Q^{1,1,1}/\mathbb{Z}_2$ theory $(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)$.

- \bullet The mesonic global symmetry is $SU(2)^3\times U(1)_R$
- The mesonic operators are in the rep $(2n; 2n; 2n)_{2n}$ of $SU(2)^3 \times U(1)_R$.

The $dP_n \times \mathbb{P}^1$ theories

 \bullet The $dP_1\times \mathbb{P}^1$ theory, $\vec{k}=(1,1,-1,-1)$

ullet The $dP_2 imes \mathbb{P}^1$ theory, $ec{k} = (1,1,-1,0,-1)$

	3	2	3	2	3
5	4	1 (5) 4	1 (4
Į	3	2	3	2	3
5	4	1 (5 4	1 (5 4

The $dP_n \times \mathbb{P}^1$ theories (continued)

ullet The $dP_3 imes \mathbb{P}^1$ theory, $ec{k} = (0,0,0,0,-1,1)$

• The toric diagrams of (i) $dP_1 \times \mathbb{P}^1$, (ii) $dP_2 \times \mathbb{P}^1$, (iii) $dP_3 \times \mathbb{P}^1$

Conclusions

- ullet All theories described are conjectured to live on the worldvolume of M2-branes probing the ${\rm CY_4}$, which is also the mesonic moduli space
- Infinite families of SCFTs
- A variety of scaling dimensions
- Toric duality