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There are many ways to construct N=1 D=4 string
vacua.  

The large degeneracy of type IIB and heterotic

I  I  Some BackgroundSome Background
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The large degeneracy of type IIB and heterotic
vacua has led to the idea of a landscape of 
metastable vacua in string theory. 

Little, including the existence, phenomenology and 
cosmology is understood about this landscape.



Heterotic (E8 × E8, Spin(32)/Z2) Type I

IIA Orientifolds

N=1 D=4 Vacua

H3 Fluxes
F3 Fluxes
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F-theory (IIB
orientifolds)

M-theory

N=1 D=4 Vacua

G3 Fluxes



In addition to geometric compactifications, there is a potentially vast 
space of non-geometric compactifications.

The arena where we will be most likely to understand quantum 
aspects of string compactifications is the heterotic string. 

In this talk, I want to focus on two issues: 
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(1) The first is a puzzle about turning on fluxes in M-theory and type 
IIA string backgrounds. 

(2) The second involves the construction of non-geometric heterotic
compactifications. 

These compactifications will be SUSY. The issues one meets in 
non-SUSY backgrounds are much more challenging. 



Are there flux compactifications of M-theory to D=4 with N=1? 

The answer is clearly yes since AdS4 ×××× S7 Freund-Rubin type

compactifications exist. 

What we would really like are backgrounds without cosmological 
constants of order the compactification scale i.e. actual 
compactifications. 

So we should ask: are N=1 compactifications to Minkowski space
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So we should ask: are N=1 compactifications to Minkowski space
possible?

In the absence of flux, the gravitino variation under SUSY:

implies a 7-dimensional space with G2 holonomy.



How about with flux?

In this case, there is a familiar no-go theorem which is essentially 
the same for all flux compactifications. 
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Einstein equations give:



Now in other cases like the type IIB string or heterotic string, 
higher derivative corrections to SUGRA allow us to evade similar 
no-go results. 

There are sources like orientifold planes and D-branes that 
support couplings that modify this constraint.  

In the heterotic string:
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In the heterotic string:

This modified Bianchi identity means there is a gravitational 
source for NS5-brane charge.



In type IIB string theory, 7-branes support a coupling 

which induces a background D3-brane charge. 

Typically the size of this induced background charge controls
the degeneracy of solutions which correspond to the number 
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the degeneracy of solutions which correspond to the number 
of ways of satisfying the tadpole condition.

Without these additional beyond SUGRA ingredients, no compact flux 
backgrounds are possible.



One might think that orientifold 6-planes and D6-branes in type IIA
string theory might be sufficient. 

Yet D6-branes and “most” O6-planes lift to smooth metric in M-theory.

For example, a D6-brane lifts to M-theory compactified on a 
Taub-NUT space which is a smooth 4-dimensional hyperkahler metric:
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There are 4 possible flavors of O6-plane in IIA string theory:

O6- SO(2N)           → Atiyah-Hitchin manifold (even c.c.)

O6-’       SO(2N+1)       → Massive IIA (odd c.c.)

O6+ Sp(N)             → “Frozen D4” singularity

O6+’      Sp(N)             → Massive IIA (odd c.c.)
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O6 ’      Sp(N)             → Massive IIA (odd c.c.)

D6                             → Taub-NUT space

The correlation of even/odd cosmological constant was nicely 
discussed by Hyakutake, Imamura & Sugimoto.

Let’s stick to vanilla ingredients that can be understood in 
conventional string theory/supergravity.



Vanilla D6/O6 branes/planes in a pure metric background cannot be 
the resolution of this puzzle unlike the case of type IIB or the 
heterotic/type I strings. 

That concludes the background.
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II  MII  M--theory/IIA Flux theory/IIA Flux VacuaVacua

To understand the origin of the needed tadpole, let’s return to
type IIB where on D7-branes: 
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Suppose we wrap the D7-brane on a Taub-NUT space. This is a space
with a good circle isometry and

so there is an induced (negative) D3-brane charge.

This charge cannot disappear under T-duality!



There is also a source for D3-brane charge from the coupling:

This is a 2-derivative coupling that will be responsible for brane
creation when branes cross after T-duality. 

(Hanany-Witten)

We will want to separate these two quite different effects. 
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Taub-NUT metric:
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In a T-dual picture, we will find a D6-brane transverse to the y-circle
while the Taub-NUT space turns into a smeared NS5-brane described
by the background:

1717y circle

D6-brane NS5-brane (really smeared)



On a space with a U(1) isometry, we can integrate out the circle
direction:

This is a 3-form charged under the Spin(3)R symmetry of the D6-
brane. 
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This leads to a coupling on the D6-brane:



Let’s take a general metric with a U(1) isometry. The topology of 
the twist encoded in A will turn into flux. 
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The 1-forms α and β take the form:



These couplings don’t look particularly elegant but they do modify the 
physical charge! 

They should fit into a framework that describes D-brane charge in the 
presence of H-flux consistent with T-duality. 

They can be massaged into a nicer form and that’s a current 
undertaking. 
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The upshot is that D-branes in the presence of transverse H-fluxes 
and curvatures can lead to induced charges.

This is the missing ingredient. 

Very similar couplings on branes have been found by scattering and 
duality arguments (Garousi; Becker, Guo & Robbins). 

To recap: in IIA, we see that D6-branes and O6-planes in 
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To recap: in IIA, we see that D6-branes and O6-planes in 
transverse H-fluxes can give rise to negative D4-brane charge.



We started our discussion in M-theory and it’s easy to see that
these 6-brane flux couplings will lift to M-theory. 

For example, let’s recall how the D6-brane coupling which induces
D2-brane charge
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arises from M-theory. 

In the M-theory effective action, there is a coupling central to 
flux compactifications:



The D6-brane is just a gravitational background for which: 

2424

So we can see that a coupling like the one we found lifts

where X5 is constructed from G4, connections and 
curvatures.



The lift of the 4-derivative couplings to M-theory therefore leads to 8-
derivative couplings which are quadratic, quartic etc. in the fluxes. 

These couplings appear in the SUSY completion of:
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Some of these terms have been studied by Hyakutake.



These 8-derivative flux couplings give an induced M5-brane charge. 

These charge tadpoles control the degeneracy of IIA and M-theory 
flux backgrounds. 
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There is also a beautiful classical contribution to the charge which 
involves “geometric flux”.

This will force the spaces in type IIA to be non-CY and, in fact, non-
Kahler. Something that can be confirmed from studying local SUSY 
constraints in type IIA. 

We can again understand how the desired structure comes about 
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We can again understand how the desired structure comes about 
by starting in type IIB where fluxes generate D3-brane charge via: 

We need only consider T6 ∼ T3 × T3 to see what is happening. 

(Dasgupta, Rajesh, S.S.) 



The NS flux H3 threads the space. Imagine the first T3 factor 
supporting this flux:

N units of flux H3 = dB2 = N dx1 Æ dx2 Æ dx3
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Pick a trivialization B2 = N x1 dx2 Æ dx3 and T-dualize

along x3:



The topology of the space has changed in an interesting way. The 
interesting Betti numbers of the torus:

b1=3 , b2=3 ⇒  b1=2, b2=2.

In particular: 

ω = dx3 – N x1 dx2 is globally defined so dω = dx1 Æ dx2 is trivial.
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III  NonIII  Non--GeometriesGeometries
So far we’ve discussed how to turn on fluxes and avoid classic no-go 
theorems. 

Now let’s turn our attention to intrinsically quantum string 
compactifications and see what we can learn from duality. 

String theory on T2 has two moduli: τ and ρ = B+iV.
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String theory on T has two moduli: τ and ρ = B+iV.

In principle, we should consider fibrations of both moduli allowing 
monodromies valued in PSL(2,Z).

Since this includes V → 1/V, the compactifications are 

intrinsically quantum. 

These are sometimes called “T-folds.”        

(Hellerman, McGreevy, Williams; Hull; Shelton, Taylor, Wecht, ….)
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From an 8-dimensional perspective, these models have two families
of (p,q) 5-branes where τ and ρ degenerate.



So we would like to be able to describe the fibration data for such
a compactification that will satisfy all anomaly cancelation constraints. 

We would also like to understand how to present a world-sheet
description. 

We are going to use the duality between the F-theory and the 
heterotic string to extract defining data for non-geometric heterotic
compactifications satisfying a generalized Bianchi condition.

3232

compactifications satisfying a generalized Bianchi condition.

The basic equivalence: 

F-theory on K3                    =                  Heterotic on T2

We would like to extract τ and ρ from the K3 geometry and 

fiber this picture. 



Consider an elliptic space with section Z → S with a Weierstrass

model:

y2 = x3 + f(s) x + g(s)

where (f,g) are sections of O(4L) and O(6L) respectively. 

We choose O(L) = O(-KS) to ensure Z is CY.
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The fibers degenerate at the zeroes of the discriminant

∆(s) = 4 f(s)3 + 27 g(s)2.

Lastly, the j-function which is the SL(2,Z) invariant characterization 
of τ is given by:



We will want to freeze all Wilson line moduli to isolate ρ and τ.

To do so, we need Weierstrass models for maximal unbroken gauge
symmetry. 

Let’s consider a model for G=E8 × E8:

Y2 = X3 + a σ X + b σ + c σ + d σ
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where σ is a coordinate on P1 and (a,b,c,d) are constants. 

This has the right singularity structure with type II* fibers at 
σ=0, ∞.



There is a similar model for Spin(32)/Z2 with the form

y2 = x3 + (p0 s
3 + p1 s

2 + p2 s + p3) x
2 + ǫ x

and discriminant:

∆ = - ǫ 2 (p(s) 2 – 4 ǫ)

where p(s) = p0 s
3 + p1 s

2 + p2 s + p3.
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where p(s) = p0 s + p1 s + p2 s + p3.

Again there is a fiber of type I12
* at s=∞. This ensures the right 

gauge symmetry.



For both models, one can extract data about the heterotic τ and 
ρ. 

For example, for the E8 × E8 case, one finds:
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(Cardoso, Curio, Lust & Mohaupt)



We require more data to specify the heterotic fibration. 

What we ideally want are the f’s and g’s associated to the heterotic τ

and ρ parameters. 

The geometry we’ll employ are K3 surfaces Z which admit a Shioda-
Inose structure.

This implies the existence of an automorphism, I,  of order 2 
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This implies the existence of an automorphism, I,  of order 2 
preserving the holomorphic 2-form such that: 

Z/I  ~ Kummer surface (E × F) /Z2

Clingher & Doran ‘06 worked out the structure for the Spin(32)/Z2
case. 



K3 surfaceτ curve E ρ curve F

3838

B B



It’s convenient to state the map as follows: suppose we have two
curves E and F with Weierstrass equations:

v2 = u3 + λ u + λ3

w2 = z3 + µ2 z + µ3

These encode the heterotic (τ, ρ) fibration data in the parameters
(λ, λ) and ( µ2, µ).
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(λ, λ) and ( µ2, µ).

For the Spin(32)/Z2 case, we find the F-theory dual fibration given by
the Weierstrass form:



We can then check the conditions for which this is a good F-theory
model. 

There is a similar map for the E8 × E8 case.
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That’s the strategy and the components of the moduli space including
ρ variations can be now be studied. 

For example, there appear to be no components among the D=6 
compactifications that have purely non-geometric moduli spaces. 

On the other hand, once one considers D=4, there do appear to be
purely non-geometric components. 
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purely non-geometric components. 

Further fluxes in F-theory will typically freeze us at loci for which the 
heterotic string is non-geometric.  



This clearly enlarges the class of heterotic vacua that we should 
consider and it strongly suggests that notions of quantum bundles
and quantum compactifications are critical for understanding the 
landscape of heterotic compactifications. 

It also suggests that Kahler, non-Kahler and non-geometric heterotic
compactifications are on the same footing and should be treated 
uniformly. 
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There is much to develop along these lines but let’s end with the 
question of how we should define world-sheet theories for non-
geometries.



K3 surface

The heterotic string is an M5-brane
wrapping the K3 surface of the fibration.

We have heard a number of talks about
M5-branes wrapping M4 × C2 but duality 
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Base

M5-branes wrapping M4 × C2 but duality 

suggests this fibered case (with flux) is 
going to be interesting.



A single M5-brane supports: 

h3 = db2 h3 = * h3     φi i=1, … 5.

The symmetry group is Spin(5,1)×Spin(5)R      

Wrapping on the fibered K3 surface means that the world-volume 
theory is topologically twisted.
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In the presence of background G4 flux, 

h → db2 +C3

The moduli space of this compactified tensor theory captures
non-geometry! 

This provides an interesting natural way of defining the worldsheet
theory.                                        


