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Motivation

• Massive charged high-spin particles do exist in nature in the

form of hadronic resonances. The dynamics of these composite

particles should be described by local actions at least in the

quasi-collinear regime, when the exchanged momenta are small

compared to the particle mass.

• Naïve attempts of coupling such a particle to EM generally

give rise to pathologies, e.g. propagation of unphysical modes

& loss of (causal) propagation (the Velo-Zwanziger problem).

• String theory is a valuable laboratory to investigate these

type of EM interactions. Does string theory provide a consistent

description at all? If so, how does it achieve this feat?



A Few Comments and Caveats

• The Velo-Zwanziger problem is generic to any spin s > 1. 

• It persists for a wide class of non-minimal extensions, so that
constructing consistent EM interactions for massive high-spin
fields is quite challenging from a field-theoretic vantage point.   

• We will consider constant EM backgrounds. This is nontrivial
as the Velo-Zwanziger problem arises for such backgrounds.

• We will consider EM field invariants much smaller than m2/e.
For large values of the invariants instabilities appear in the form
of Schwinger pair production or Nielsen-Olesen instability, so
that the concept of long-lived propagating particle makes little
sense. The Velo-Zwanziger problem appears for small invariants.

• We set the Regge slope, α' = ½.



Methodology & Some Basics of SFT

• We consider the Sigma Model for open bosonic string in a

constant EM background. This is exactly solvable, and a careful

definition of the mode expansion gives smooth limits for neutral

and free strings (contrary to existing claims in the literature).

• In parallel with the free string case, there is an infinite set of

creation and annihilation operators, which are well-defined in

physically interesting situations, away from instabilities. 

• We have commuting center-of-mass coordinates, which obey

canonical commutation relations with the covariant momenta.

The latter are, of course, non-commuting in an EM background.



• The mode α0 
µ is covariant momentum up to a rotation:

• Virasoro algebra is that of the free theory. But L0 has a shift.



• A generic string state is a certain number of creation operators
applied on the string ground state:

• Given (m1 , m2 ,..., ms ), the coefficient                     is a rank-s
Lorentz tensor, interpreted as a string field, and as such is a
function of the string center-of-mass coordinates.

• The Virasoro constraints result in physical state conditions:

• We are interested in what these conditions translate into in the
of language of string fields.



• Explicit expressions for L0 , L1 , and L2 are needed. They are:

• Number operator,                              , has integer eigenvalues.

• And 



Level N = 2 : The Massive Spin 2

• A generic state at this level is given by:

• We do a couple of field redefinitions:

• The physical state conditions then give rise to



• The most general on-shell gauge transformation is 

• J, K, L and M are functions of G. 

• The gauge transformation is a symmetry only in d = 26, and if



• The vector field        can be gauged away only in d = 26, in
contrast with the case with no background. Gauge fixing gives

• The above system is algebraically consistent, and gives the
correct DoF count for a massive spin 2 particle, with 

• The above describes a hyperbolic system that admits causal
propagation only, in physically interesting situations. We will
present the proof of causal propagation a bit later. 



Level N = 3 : The Massive Spin 3
• This level has two physical fields: a symmetric rank 3 in the
1st Regge trajectory and an antisymmetric rank 2 in the 2nd Regge
trajectory. Consistency requires an auxiliary scalar from the 2nd

Regge trajectory. For the free theory, the latter vanishes on shell,
and the two physical fields are independently consistent.  

• In the presence of a background, the resulting equations with
all three fields are algebraically consistent. 

• The antisymmetric rank 2 cannot be consistently described if
any of the other two fields is set to zero (unwarranted constraint):

• The Lagrangian is bound to mix the two Regge trajectories.



• Setting the antisymmetric rank 2 to zero is OK for algebraic
consistency. In this case, the auxiliary scalar vanishes on shell,
and one is left with the Fierz-Pauli system for a massive spin 3, 
i.e. Klein-Gordon-like equation, divergence and trace constraints

• The 1st Regge trajectory field is consistent in isolation, while
the subleading Regge trajectory field is not.  

• The spin-3 Fierz-Pauli system gives the correct DoF count
and ensures causal propagation.



Causal Propagation for 
Any Integer Spin s at Level N = s

• At any arbitrary level, the 1st Regge trajectory field, which is a

symmetric rank-s tensor, can by itself be consistently described.

• We have a Fierz-Pauli system for a massive spin s field:

• It gives the correct DoF count for a massive spin s particle.

• Causal propagation of the physical modes can be proved by 
using the characteristic determinant method (Argyres-Nappi).



• The vanishing of the characteristic determinant requires 

• The EM field strength F can be rendered block skew-diagonal, 

F µ
ν = diag (F1 , F2 , F3 , … …) , by a Lorentz transformation: 

• ɑ and bi’s are real-valued functions of the EM field invariants.

They are much smaller than unity in physically interesting cases. 

• The same transformation also makes G block skew-diagonal,

G µ
ν = diag (G1 , G2 , G3 , … …) , because 



• With small EM field invariants, f(ɑ) and g(bi) are well-defined

with absolute values much smaller than unity.

• Thus G/eF becomes a diagonal matrix:



• But we have the following identities:

• This implies that any solution nµ of the characteristic equation

must be space-like:

• This is a Lorentz invariant statement. Therefore, propagation

will be causal in any Lorentz frame.

• This is true for any single charged massive particle of arbitrary

integer spin coupled to a constant EM background. String theory

cures the Velo-Zwanziger problem through non-minimal terms.



Lagrangian Formulation

• Requires extending the Fock space by including world-sheet

(anti)ghosts, and thereby using the BRST technique.

• BRST invariance helps remove the pure gauge modes. This is

possible only in d = 26, in which the BRST charge is nilpotent.

• Writing down a Lagrangian is extremely cumbersome, and is

not particularly illuminating.

• String theory guarantees a Lagrangian in d = 26.

• The spin-2 Lagrangian was written down by Argyres-Nappi.

• The spin-3 Lagrangian was given by Klishevich.



Critical Dimension & Gyromagnetic Ratio

• The string-theoretic Lagrangian, even after a complete gauge

fixing gives a Fierz-Pauli system only in d = 26. Otherwise the

trace constraint is lost. 

• This is in contrast with the case when there is no background.

The backgrounds “knows” about space-time dimensionality.

• Consider the Argyres-Nappi spin-2 Lagrangian:



• Manipulate with the trace, divergence and double-divergence

of the resulting EoMs to obtain the would-be trace condition.

• It gives a non-dynamical trace only in d=26. 

• Spacetime dimensionality enters only at O(F2).

• There are kinetic deformations at O(F).



• O(F)-kinetic deformations are removed by field redefinitions.

But it gives a dipole contribution:

so that the gyromagnetic ratio, g = 2.

• g = 2 is the unique value a consistent Lagrangian must have 

in any number of spacetime dimensions.

• While g = ½ is implied with minimal kinetic terms, already at

O(F2) non-minimal kinetic terms are indispensible.

• For any (integer) spin, g = 2, as also seen from the EoMs. This

is in accordance with results using tree-level unitarity argument.



No-Ghost Theorem

• As consistency calls for non-standard kinetic terms, one may

wonder whether the Hilbert space contains negative norm states.

• However, standard arguments (Polchinski) continue to hold

with minor modifications, in the presence of a generic constant

EM background in the regime of physical interest.

• The kinetic deformations present are judicious ones as there

are no negative norm states.

• Again this is guaranteed only in the critical dimension.



Consistent Dimensional Reduction

• Take the Argyres-Nappi Lagrangian, consistent in D = 26, to

reduce it to spacetime dimensions d < D, keeping only singlets

of the (D-d) internal coordinates.



• The d-dimensional model obtained thereby is:

• Minimal kinetic mixing can be removed by field redefinition

• Manipulations with the EoMs give for any dimension d :

• The scalar has Klein-Gordon-like EoM, since D = 26.



• We obtain a consistent set of EoMs in d < 26.

• For higher spins, the 26-dimensional Lagrangian exists in

principle. We have the explicit EoMs, that can be dimensionally

reduced to have consistent description of a system of spin s and

spin (s-2) coupled in the presence of an EM background.

• The d-dimensional model is guaranteed to exist.



Conclusion & Future Perspectives

• String theory cures the Velo-Zwanziger problem for massive
charged particles with integer spin, at least in d = 26.

• Only the 1st Regge trajectory fields are consistent in isolation.

• Non-constant backgrounds are very difficult (non-linear string
Sigma Model). It may inevitably involve non-locality. 

• An analysis for fermionic fields requires superstring theory
(much harder), and is currently being done.

• Dimensional reduction (from d = 26) of the string-theoretic
Lagrangian, keeping only the singlets of the internal coordinates,
can give in d < 26 consistent EM interactions of fields with spin
s and (s-2). The (im)possibility of decoupling the fields by field
redefinitions is under investigation.


