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Motivation

» Massive charged high-spin particles do exist in nature in the
form of hadronic resonances. The dynamics of these composite
particles should be described by local actions at least in the
quasi-collinear regime, when the exchanged momenta are small
compared to the particle mass.

* Naive attempts of coupling such a particle to EM generally
give rise to pathologies, e.g. propagation of unphysical modes
& loss of (causal) propagation (the Velo-Zwanziger problem).

 String theory is a valuable laboratory to investigate these
type of EM interactions. Does string theory provide a consistent
description at all? If so, how does it achieve this feat?



A Few Comments and Caveats

* The Velo-Zwanziger problem is generic to any spin s > 1.

o |t persists for a wide class of non-minimal extensions, so that
constructing consistent EM interactions for massive high-spin
fields i1s quite challenging from a field-theoretic vantage point.

* We will consider constant EM backgrounds. This is nontrivial
as the Velo-Zwanziger problem arises for such backgrounds.

e We will consider EM field invariants much smaller than m?/e.
For large values of the invariants instabilities appear in the form

of Schwinger

pair production or Nielsen-Olesen instability, so

that the concept of long-lived propagating particle makes little

sense. The Ve

o-Zwanziger problem appears for small invariants.

* We set the Regge slope, a' = 14.



Methodology & Some Basics of SFT

* \We consider the Sigma Model for open bosonic string in a
constant EM background. This is exactly solvable, and a careful
definition of the mode expansion gives smooth limits for neutral
and free strings (contrary to existing claims in the literature).

 |n parallel with the free string case, there is an infinite set of
creation and annihilation operators, which are well-defined in
physically interesting situations, away from instabilities.

* We have commuting center-of-mass coordinates, which obey
canonical commutation relations with the covariant momenta.
The latter are, of course, non-commuting in an EM background.



* The mode «,* Is covariant momentum up to a rotation:
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 Virasoro algebra is that of the free theory. But L, has a shift.
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e A generic string state Is a certain number of creation operators
applied on the string ground state:
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e Given (m,, m,,..., m,), the coefficient «y.s. . = IS @ rank-s
Lorentz tensor, interpreted as a string field, and as such is a
function of the string center-of-mass coordinates.

e The Virasoro constraints result in physical state conditions:
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e \We are interested in what these conditions translate into in the
of language of string fields.



« Explicit expressions for L,, L, and L, are needed. They are:
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e Number operator, n;/ = ijl.@n,has Integer eigenvalues.
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Level N =2 : The Massive Spin 2

* A generic state at this level is given by:
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* We do a couple of field redefinitions:

Huw = (m I m)w’ B = (\/T%C:.B)pﬂ

* The physical state conditions then give rise to
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* The most general on-shell gauge transformation is
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e J, K, Land M are functions of G.
* The gauge transformation is a symmetry only ind = 26, and if

K = —(%) [1+%(d—6)G2} ?
L = 2-1+3(59) iG,

M = (d+4) [1+_ZG} '



e The vector field B can be gauged away only in d = 26, In
contrast with the case with no background. Gauge fixing gives

(D" —2-L1TvG°) Hy —2i (GH—HG) = 0,
s =0, HY, =10

e The above system is algebraically consistent, and gives the
correct DoF count for a massive spin 2 particle, with

1
(mass)? = o (14 1 TrG?)
* The above describes a hyperbolic system that admits causal
propagation only, in physically interesting situations. We will
present the proof of causal propagation a bit later.



Level N = 3 : The Massive Spin 3

« This level has two physical fields: a symmetric rank 3 in the
15t Regge trajectory and an antisymmetric rank 2 in the 2" Regge
trajectory. Consistency requires an auxiliary scalar from the 2
Regge trajectory. For the free theory, the latter vanishes on shell,
and the two physical fields are independently consistent.

* In the presence of a background, the resulting equations with
all three fields are algebraically consistent.

* The antisymmetric rank 2 cannot be consistently described if
any of the other two fields Is set to zero (unwarranted constraint):

G" A +O(G7) = 0

e The Lagrangian is bound to mix the two Regge trajectories.



 Setting the antisymmetric rank 2 to zero is OK for algebraic
consistency. In this case, the auxiliary scalar vanishes on shell,
and one is left with the Fierz-Pauli system for a massive spin 3,
I.e. Klein-Gordon-like equation, divergence and trace constraints

(D? —4 - sTvG?) D,y + 201G Py = 0,
DD, = 0,
§e.. =il
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* The 15 Regge trajectory field is consistent in isolation, while
the subleading Regge trajectory field is not.

e The spin-3 Fierz-Pauli system gives the correct DoF count
and ensures causal propagation.



Causal Propagation for
Any Integer Spin s at Level N =s

o Atany arbitrary level, the 15t Regge trajectory field, which is a
symmetric rank-s tensor, can by itself be consistently described.

* \We have a Fierz-Pauli system for a massive spin s field:
D2—2(s—1)—3TrG?| Dy, + 20 G* (1 Py piya = 0,
Dr®pyy.ps = 0,
PpH = .

B3 ...
o [t gives the correct DoF count for a massive spin s particle.

» Causal propagation of the physical modes can be proved by
using the characteristic determinant method (Argyres-Nappi).



» The vanishing of the characteristic determinant requires

(G/eF)" n,n" = 0
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 The EM field strength F can be rendered block skew-diagonal,
Fv =diag (F,,F,, F;, ... ... ), by a Lorentz transformation:

0 1 0 1
Fi = a ; Fizy1 = b
1 0 -1 0

 aand b;’s are real-valued functions of the EM field invariants.
They are much smaller than unity in physically interesting cases.

* The same transformation also makes G block skew-diagonal,
GH =diag (G, G,, G,, ... ... ) , because

G = (1/7)[tanh ™ (meoF) + tanh ™ (e, F) ]
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» With small EM field invariants, f(a) and g(b,) are well-defined
with absolute values much smaller than unity.

e Thus G/eF becomes a diagonal matrix:
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* But we have the following identities:

f(a) g(b:)

— > 1. (] =
e eb;

* This implies that any solution n  of the characteristic equation
must be space-like:

n’> > 0

e This is a Lorentz invariant statement. Therefore, propagation
will be causal in any Lorentz frame.

« This is true for any single charged massive particle of arbitrary
Integer spin coupled to a constant EM background. String theory
cures the Velo-Zwanziger problem through non-minimal terms.



Lagrangian Formulation
e Requires extending the Fock space by including world-sheet
(anti)ghosts, and thereby using the BRST technique.

 BRST invariance helps remove the pure gauge modes. This is
possible only in d = 26, in which the BRST charge is nilpotent.

« Writing down a Lagrangian is extremely cumbersome, and Is
not particularly illuminating.

o String theory guarantees a Lagrangian in d = 26.
e The spin-2 Lagrangian was written down by Argyres-Nappi.

e The spin-3 Lagrangian was given by Klishevich.



Critical Dimension & Gyromagnetic Ratio

* The string-theoretic Lagrangian, even after a complete gauge
fixing gives a Fierz-Pauli system only in d = 26. Otherwise the
trace constraint is lost.

 This is In contrast with the case when there is no background.
The backgrounds “knows” about space-time dimensionality.

o Consider the Argyres-Nappi spin-2 Lagrangian:
Liv = #,(D°-2-3DG") b - 25, (Gh - bG)" - H* (D* - 2 - §ThG*)
— 1!, {D'D[(14iG)h] ) — 3D'D"H + (p < v)} + HD'D'H,,

Hu = (14+1G) M1+ iG) P b



* Manipulate with the trace, divergence and double-divergence
of the resulting EoMs to obtain the would-be trace condition.
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|t gives a non-dynamical trace only in d=26.

« Spacetime dimensionality enters only at O(F2).

* There are kinetic deformations at O(F).

OLin = —ile/m®)(Fh* —b*F),, [D*0* — (DD, + DD’ ) + 5D D"
—i(e/m*)D*(Fb* — §*F),,(D,b" — D"h) + h.c. .



o O(F)-kinetic deformations are removed by field redefinitions.
But it gives a dipole contribution:

0Lwin = —4ieTr(h-F-§*) + O(F?)
so that the gyromagnetic ratio, g = 2.

e g =2Isthe unique value a consistent Lagrangian must have
In any number of spacetime dimensions.

 While g =% iIs implied with minimal Kinetic terms, already at
O(F?) non-minimal kinetic terms are indispensible.

e For any (integer) spin, g = 2, as also seen from the EoMs. This
IS In accordance with results using tree-level unitarity argument.



No-Ghost Theorem

* As consistency calls for non-standard kinetic terms, one may
wonder whether the Hilbert space contains negative norm states.

 However, standard arguments (Polchinski) continue to hold
with minor modifications, in the presence of a generic constant
EM background in the regime of physical interest.

* The Kinetic deformations present are judicious ones as there
are no negative norm states.

e Again this is guaranteed only in the critical dimension.



Consistent Dimensional Reduction

o Take the Argyres-Nappi Lagrangian, consistent in D = 26, to
reduce It to spacetime dimensions d < D, keeping only singlets
of the (D-d) internal coordinates.
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* The d-dimensional model obtained thereby is:
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« Minimal kinetic mixing can be removed by field redefinition
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e Manipulations with the EoMs give for any dimension d :
AD-1)+ TG (D+14+2T6%) - §(D - 26) (555) " DuDa | (D' -2 3ThGF) 6 = 0

e The scalar has Klein-Gordon-like EoM, since D = 26.



e \We obtain a consistent set of EoMSs In d < 26.

(D2 = S TS %TIGQ) hmn 3 QZ(G § h = h i G)mn = (
Dmhfrnn = 0 h — _Cb
(D*-2-1TvG*) ¢ = 0

 For higher spins, the 26-dimensional Lagrangian exists in
principle. We have the explicit EoMs, that can be dimensionally
reduced to have consistent description of a system of spin s and
spin (s-2) coupled in the presence of an EM background.

e The d-dimensional model is guaranteed to exist.



Conclusion & Future Perspectives

 String theory cures the Velo-Zwanziger problem for massive
charged particles with integer spin, at least in d = 26.

* Only the 15t Regge trajectory fields are consistent in isolation.

e Non-constant backgrounds are very difficult (non-linear string
Sigma Model). It may inevitably involve non-locality.

* An analysis for fermionic fields requires superstring theory
(much harder), and is currently being done.

* Dimensional reduction (from d = 26) of the string-theoretic
Lagrangian, keeping only the singlets of the internal coordinates,
can give in d < 26 consistent EM interactions of fields with spin
s and (s-2). The (im)possibility of decoupling the fields by field
redefinitions is under investigation.



