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Black Hole Entropy & Counting

• For a class of black holes within string 
theory, we now have a satisfactory 
statistical understanding of black hole 
entropy in terms of microstate counting in 
accordance with Boltzmann Relation.
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Finite Size Effects

• This  agreement is checked mostly in the 
thermodynamic limit of large size of the 
horizon and under certain assumptions.

• Given such a remarkable but approximate 
agreement it is natural to ask what is this 
an approximation to? Is there an exact 
quantity that we can define on both sides 
which can be systematically expanded?  
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  Questions

• How to compute finite size effects?  

• What is the choice of the ensemble? 

• Can we define exact quantum entropy?

• Can we compute exact degeneracy? 

• Is Index the same as Degeneracy? Why?

• Can we compute the corrections in a 
systematic expansion including both 
perturbative and nonperturbative effects?
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• Even posing some of these questions 
correctly involves many important 
conceptual issues. Explicit computations 
involve new tools and new symmetries.

• Finite size effects depend on quantum 
corrections to two-derivative Einstein-
Hilbert-Maxwell actions and are thus very 
important probes of microstructure of 
quatum gravity. One would like to explore 
them in a systematic way.   
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Thermodynamics Statististical Mech

Black Hole (charge Q) Brane (charge Q)

Bekenstein-Hawking Strominger-Vafa

Wald + Nonlocal Exact Index

Macroscopic Microscopic
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Objective

• Various partial computations, arguments, 
and confusions exist in the literature. 

• Our objective will be to make reliable and 
explicit computations on microscopic and 
macroscopoic sides including finite size 
effects and compare them. We will obtain 
a number of exact results (for BPS black 
holes) on both sides in perfect  agreement 
with each other.  
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 (1) Which Ensemble?

• Various thermodynamic ensembles are 
equivalent only in the thermodynamic limit. 
Even to talk about finite size effects on 
both sides, we need to determine what 
ensemble to use. Microcanonical? Grand 
Canonical? Mixed? What quantities to 
compare?

• Use holographic partition function which is 
narturally in  microcanonical ensemble.
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(2) Why Index = Degeneracy?

•  Usually exact counting only possible for 
topolgical quantities such as indices. But  
Entropy equals logartithm of absolute 
degenearcy. In general,

• However, for black hole horizons it is true.
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(3) Can we compute?                
Microscopic side

• Can we compute exact quantum 
degeneracies microscopicallly? 

• For N=4 dyons this problem has 
essentially been solved. We now have the 
exact counting formula for dyons in all 
duality orbits at all points in moduli space.

• Partition functions are Siegel forms 
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(3) Can we compute? 
Macroscopic side

• Taking into account effects of all higher 
derivatives terms etc. may be possible in 
principle, but seems practically impossible. 
How do we proceed?

• We will use a nonrenormalization theorem 
that follows from a combination of 
anomaly inflow and supersymmetry to 
determine exact Wald entropy in a certain 
limit.Atish Dabholkar Exact Quantum Entropy 13



(4) Wall-crossing

• Often the index includes contributions 
from multi-centered black hole bound 
states which fall apart upon crossing walls 
in the moduli space: wall-crossing 
phenomenon.

• Degeneracy jumps upon crossing the 
walls. How to compute it everywhere?

• Degeneracy changes but partition function 
does not! 
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5) Poles and Walls 

• Degeneracies given by Fourier 
coefficients  of partition functions that are 
meromorphic Siegel modular forms.

• Fourier contour depend on moduli in a 
precise way are inequivalent because of 
the poles.

• Poles correspond to walls and residue 
gives the jump in the degeneracy.
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6) Modular Symmetry

• Given these exact answers, how to 
compute the large charge asymptotics 
systematically including all subleading 
corrections?

• Modular symmetry is very useful and can 
lead to Hardy-Ramanujan-Rademacher 
exapansion. Wall-crossing seems to lead 
to loss of modularity.

• Mock modular forms
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7) Borcherds Symmetry 

• The partition functions of these dyons 
show hints of a huge symmetry – 
Borcherds-Kac-Moody superalgebra.

• Satisfies Weyl-Kac denominator identity of 
in nontrivial ways. All root multiplicities can 
can be determined.  

• Physics interpretation partially understood 
-- Weyl group governs wall-crossings.  
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• In this talk, I will address questions 1 to 3 
for black holes that preseve eight or more 
supersymmetries presenting the results 
along with some details.

• I will summarize only the results for topics 
4-7 in the context of for black holes in N=4 
compactifications. 
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Wald Entropy and beyond

• Wald entropy can incorporate the 
corrections to Bekenstein-Hawking 
entropy from all higher-derivative local 
terms in the effective action. But 1PI 
quantum effective actions include 
nonanalytic  and nonlocal terms. How to 
incorporate these effects systematically?

• These terms are in many cases essential 
for duality invariance of entropy.
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Quantum Entropy Function

• One can define the Euclidean string 
partition function using holography to 
generalize the notion of Bekenstein-
Hawking-Wald entropy including all local 
and nonlocal corrections.

• In the large charge limit, ignoring nonlocal 
terms it reduces to Wald entropy. SEN
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• A proper definition becomes possible in 
the context of Holography. For a black 
hole, we are led to

• In two dimensions Coulomb potential 
grows at the boundary instead of falling. 
This leads to a different boundary 
condition for the bulk gauge fields.

     



Choice of Ensemble

• Holography for 2d Euclidean AdS implies 
that the comparison is most natural in the 
microcanonical ensemble. 

• By contrast, in higher-dimensional AdS 
one normally fixes the constant mode of 
the gauge field at the boundary which 
corresponds to fixing chemical potential 
implyig  grand-canonical ensemble.   
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• When we have only local effective action 
one can show  (Sen)

• By definition, in microcanonical ensemble

• This gives the precise formulation of the 
comparison we want to make.  Can we 
compute both sides and compare them?

        



Index = Degeneracy?

• In many cases this assumption is true for 
the leading entropy but unclear at 
subleading order. No theoretical rationale.

• A number of puzzles at subleading order.  

• Five-dimensional examples where this is 
not true. One can sometimes define a 
modified Index, but when and why?

• No index for BPS black holes in AdS5.   
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Basic Argument

• If we have at least four unbroken 
supersymmetries then together with the 
SU(1, 1) symmetry of              ,  closure of 
algebra implies an SU(2) symmetry. 

• SU(1,1|2) superalgebra at the horizon.

• Microstates associated with this horizon 
are thus invariant under this SU(2) 
symmetry.                                      Sen  
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• One can use the Cartan generator of this 
SU(2) to define fermion number 

• Because the black hole horizon is 
invariant, all microstates take the same 
value for the fermion number.

• This argument does not work in situations 
such as the one-sixteenth BPS black 
holes in AdS5 because  less than four 
susys.
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Spacetime Index

• Thus Boltzman relation gives a way 
compute using this argument the index of 
the horizon degrees of freedom. 

• One can now put together the contribution 
from multiple horizons and hairs.

• `Hair’ degrees of freedom  are localized 
outside the horizon.

• Spacetime index counts all.
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Definition of the index

• Spacetime index is a helicity supertrace. 
In four dimensions if the black hole breaks 
4n supersymmetries, there is standard 
index for counting these dyons 

    where h is spin in rest frame. It is a 
natural index for an asymptotic observer. 
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Macroscopic Spacetime index 

•   
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• Putting together hair and horizon 
contributions we get

• If the only hair are from unbroken susy,

• Spacetime index thus equals degeneracy: 
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Explicit tests

• We would like to test these formal 
arguments in concrete examples where 
finite effects are visible and calculable. 

• We need to be able compute both macro 
and micro answers exactly. 

• We will consider systems that preserve at 
least eight supersymmetries in four and 
five dimensions with and without spin.
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Five Dimensions

• Consider Type-IIB on                  .

• We consider the Strominger-Vafa system 
with  Q1  D1-branes,  Q5 D5-branes 
wrapping the circle and n    units of 
momentum along the circle.

• But we will consider limits when only one 
charge becomes large, other remaining 
finite to explore finite charge effects.

Atish Dabholkar Exact Quantum Entropy 32



Cardy Limits and           

• If the charge that is becoming large can be 
viewed as momentum around a circle in 
some duality frame, then that circle 
becomes large in this limit. 

• We  have larger  geometric symmetries of  
           an              instead of           

• This corresponds to the Cardy limit in the 
dual CFT2.       
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Different limits in 5d

• Q1, Q5 fixed n large, 

    Type-II Cardy limit 

• Q5, n   fixed  Q1 large, 

    Heterotic Cardy limit.

  We will now compute both macroscopic 
and microscopic sides  using combination 
of anomaly, susy, scaling, and exact 
computations in the microscopic theory.
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Macroscopic computation

• In the limit when the circle is large, we 
have full SO(2, 2)  symmetries of  

• In this case, the exact wald entropy is 
completely captured by the left-moving 
central charge       of the boundary CFT2 
and the momentum 
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Anomaly Inflow

• The central charge is related to conformal 
anomaly in the boundary.

• An anomaly on the boundary CFT reflects 
lack of gauge invariance and lack of 
current conservation. The total theory is of 
course gauge invariant. So there must be 
an inflow of anomaly onto the boundary to 
account for this nonconservation.
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Chern-Simons terms

• Chern-Simons terms in the bulk are not 
gauge invariant in the presence of 
boundaries. Noninvariance of CS terms is 
precisely the amount of anomaly that 
`inflows’ onto the boundary so that there is 
net current conservation.  

• Together with (0, 4) supersymmetry this is 
enough to determine the central charges.
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Central Charges from CS terms

• Coefficient of Lorentz Chern-Simons 
determines

• Coefficient of gauge Chern-Simons term 
determines

• Supersymmetry determines

Harvey, Minasian, Moore; Kraus, Larsen 
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 Nonrenormalization

• Basically, all correlators of the stress-
tensor multiplet in the boundary are 
determined from the Virasoro and current 
algebra OPEs which depend on the 
various central charges

• Since stress-tensor correlators determine 
the S-matrix completely, it must be always 
possible to do field redefinitions to get rid 
of all terms except the CS terms. 
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Determination of the CS terms

• Our task is thus reduced to finding the 
coefficients of CS terms in             near 
horizon geometry but this typically can 
receive quantum corrections and can 
depend on details of compactification.

• We will first relate them to quantities at 
asymptotic infinities that are easier to 
determine using scaling and knowledge of 
10d action.            
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Horizon +Hair

• If we can determine the hair degrees of 
freedom, then the inflow of anomaly from 
the hair can be evaluated. Using current 
conservation we can relate the horizon CS 
terms to asymptotic CS terms.

• It is then sufficient to determine the CS 
terms relevant for the asymptotic observer 
responsible for the anomaly inflow onto 
the brane configuration.

Atish Dabholkar Exact Quantum Entropy 41



Scaling Argument
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• Here q and p are electric and magnetic 
NS-NS charges, and Q are the RR 
charges. Follows from scaling properties 
of effective action at l loops.

• This allows us to determine at what loop 
corrections can arise.



Example: Type-II Cardy limit

• Central charge is quantized so corrections 
can only be powers of charges and not 
inverse charges.

• Leading supergravity answer gives

• Only possibilities are corrections linear in   
        

           and         or a constant shift.
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• Linear terms will lead to corrections that 
scale as           or            .  Since these 
charges are from RR sector, by scaling 
such corrections can arise only at half-
loop which is not possible. 

• Constant term will give correction at one-
loop scaling as                . But cannot 
involve any 3-forms since it is independent 
of the charge. No such purely 
gravitiational CS type terms at one-loop. 
Hence, we have                             exactly.
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Example: Heterotic Cardy Limit

• Similar arugments in Heterotic frame, 
imply only corretion linear in           is 
allowed at one-loop in Type-IIA frame 
which comes from                         term.

• Exact central charge is then  
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Microscopic Computations

• In the heterotic duality frame, we have 
NS5-branes so we don’t know the 
microcopic CFT. We cannot  simply use 
the Strominger-Vafa CFT to read of the 
central charge because taking n finite and 
Q1 large is the anti-Cardy limit for this 
theory.  We need to be able work out the 
asymptotics in efficient ways.
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Finite Charges

• Fortunately we can use the knowledge of 
the exact partition function and a clever 
trick  Castro & Murthy; Banerjee  

• Use 4d-5d lift to relate 5d black holes at 
the center of Taub-NUT  to 4d black holes. 
 

• Use S-duality in 4d to convert electric to 
magnetic. Flips n and Q1 and converts 
anti-Cardy                to Cardy
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Four dimensions

• Type IIB on

• We can add an additional KK-monopole 
charge K to the system

• Now, if we take n large and other charges 
finite, the appropriate duality frame is the 
M-theory frame and n becomes the 
momentum along this circle. We have to 
study AdS3/Cardy limit of this system.
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MSW string

• In M-theory we have an M5-brane 
wrapping a               where      is a 4-cycle 
in                    giving an effective 
Maldacena-Strominger-Witten string 
wrapping the circle. 

• The central charges of the effective CFT 
can be determined from index theory 
following MSW.
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Microscopic counting in MSW

• For                  , there are some subtleties 
because of the odd cycles which are not 
present in a general Calabi-Yau but one 
can determine the central charges.

• Naive application gives wrong results!

• The relevant quantity turns out to be not 
the central chage but an effective central 
charge that determines growth of an 
index.
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Degneracy = Index !

• Five-dimensional Black Holes with spin.

• Once again, when there is disagreement, 
macroscopic degeneracy agrees with  the 
micoscopic index and not with degeneracy 
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Degeneracy = Index !
• Four dimensional black holes

 

Macroscopics agrees with the microscopic 
index and not the degeneracy computed 
at weak coupling resolving puzzles raised 
by 

            Lambert; Cardoso, de Wit, Mohaupt 
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It is worth emphasizing the following points

• These results are exact in the limit when 
only one charge is large. We did not make 
any assumption about keeping only F-type 
terms etc. The choice of the ensemble 
was not a separate conjecture as in OSV.

• These arguments give a theoretical 
explanation of  why in earlier computations 
it was justified to compare a microscopic 
index with black hole degeneracy. It is in 
fact necessary for subleading corrections.
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Dyons in N=4

• Quarter-BPS dyons are specified by 
electric charge q and magnetric charge p, 
both vectors of the T-duality group. It is 
useful to classify the duality invariants. 
Classification of invariants of an arithmetic 
group is an interesting & subtle problem in 
number theory.  

•  A.D. Gaiotto, Namuri; Sen, Banerjee, 
Srivastava, Mandal; A.D. Gomes, Murthy
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Duality Invariants

• The partition functios are classified by a 
single integer duality invariant

• Degeneracies depend only on three          
T-duality invariant integers
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Exact Degeneracies

• Where                   is an explicitly known 
function called Igusa cusp form of wt 10
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Contour, Poles, Walls

• The contour depend in a precise way on 
the moduli. 

• The Igusa form has  double zeroes and 
hence the partition function has an 
intricate structure of  double poles  

• Poles correspond to walls in moduli space. 
 

• Degeneracies jumps when the contour 
hits a pole given by the residue at the 
pole.
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Single-centered black holes

• Choosing  the contour corresponding to 
the attractor moduli we can extract the 
degeneracies of single horizons.

• Note that the partition function has  a 
double pole. As a consequence, the 
degeneracies of single-centered black 
holes are not coefficients of a modular 
form. Modular symmetry is apparently lost.

Atish Dabholkar Exact Quantum Entropy 58



Modular Symmetry

• Modular symmetry is very important in 
these context because it relates high 
temperature to low temperature. 

• Without it, we would not know how to do 
asymptotic expansions such as the Cardy 
formula more exactly Hardy-Ramanujan-
Rademacher formula.
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Modularity and Holography

• Modular symmetry is also important for       
 

                          holography. The Euclidean   
   

                    has a               as a boundary. 

   The                      modular symmetry of the 
black hole partition function is a geometric 
symmetry that acts on the complex 
structure parameter of this torus.
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How to restore modularity?

• Lack of modularity is of a very special type 
and can be restored using some very 
recent developments in number theory 
from 2005 following the work of Zwegers. 

• The idea of mock modular forms goes 
back to Ramanjuan but a proper 
characterization of these forms was 
unclear until recently. 
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Mock modular form

• The lack of modularity of a mock modular 
form              is controlled by another 
modular form              called a `shadow’ 
such that one can define a real analytic 
completion                       which is modular 
but no longer holomorphic.
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Holomorphic Anomaly

• The shadow can be viewed also as a 
holomorphic anomaly in the completion.

• Mock modularity is closely related to 
meromorphy of the partition function. 
Which in turn is closely related to wall-
crossing and non-comapctness of the 
microscopic CFT. This idea therefore is 
expected to have wider applications.        
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Borcherds Symmetry

• The square root of the dyon partition 
function has a product representation and 
a sum representation. It is highly nontrivial 
mathematical fact that the product 
representation exists.

• Using these representation one can show 
that the partition function is a square of a 
character of a Verma module of a 
Borcherds-Kac-Moody superalgebra.
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Denominator Identity

• There are infinite imaginary simple roots.

• The Weyl-Kac denominator identity is 
satisfied and can be used to determine all 
root multiplicities.

• The Weyl group controls the wall-crossing. 
Weyl chambers correpond to chambers in 
the moduli space where the degeneracy is 
constant. 
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