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Introduction

Preliminaries and Problems A

Preliminaries

Gauge/gravity duality at
(a) strong coupling
(b) large rank of the gauge group (N)
defines a “universal sector” of dynamics in gauge theories as dual of pure classical gravity in
five dimensions. This is so because the theory of classical gravity always admits a consistent
truncation to Einstein’s equation in five dimensions with a negative cosmological constant.
The embedding of the universal sector in the full theory depends on the details of the theory
but not the dynamics within the sector.
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Preliminaries

Gauge/gravity duality at
(a) strong coupling
(b) large rank of the gauge group (N)
defines a “universal sector” of dynamics in gauge theories as dual of pure classical gravity in
five dimensions. This is so because the theory of classical gravity always admits a consistent
truncation to Einstein’s equation in five dimensions with a negative cosmological constant.
The embedding of the universal sector in the full theory depends on the details of the theory
but not the dynamics within the sector.
In this sector, all observables can be determined by the energy-momentum tensor alone.
This is so because the metric which solves Einstein’s equation with negative cosmological
constant is uniquely determined by the boundary stress tensor [Henningson, Skenderis,
Balasubramanian, Krauss] which is identified with the energy-momentum tensor of the
gauge theory.
“Universal sector” is constituted by a range of phenomena such as decoherence, local
relaxation and hydrodynamics.
(a) State in the field theory ↔ Solution in gravity with a smooth final horizon
(b)Temperature of the final equilibrium ↔ Final temperature of the horizon
Regularity/irregularity in the five dimensional solution of Einstein’s solution implies
regularity/irregularity in the full solution of gravity as the lift to the full solution is trivial
(without involving any warping). The transport coefficients in hydrodynamics can be
systematically determined by the regularity of the future horizon.
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Introduction

Preliminaries and Problems B

Problems
A field-theoretic understanding of how all observables get determined by the
energy-momentum tensor alone.
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Introduction

Preliminaries and Problems B

Problems
A field-theoretic understanding of how all observables get determined by the
energy-momentum tensor alone.
To solve for the condition on the energy-momentum tensor which gives solutions
of Einstein’s equation with smooth future horizons.
A precise way to decode phenomena in the gauge theory from the metric.
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Introduction

Our Results

We show that the relativistic semiclassical Boltzmann equation has
“conservative solutions” which could be determined by the
energy-momentum tensor alone. We can justify our study of Boltzmann
equation at weak coupling because previous work of Arnold, Yaffe and others
have demonstrated that an effective Boltzmann equation is as good as
perturbative gauge theory to study, for example, transport phenomena in high
temperature QCD.
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Our Results

We show that the relativistic semiclassical Boltzmann equation has
“conservative solutions” which could be determined by the
energy-momentum tensor alone. We can justify our study of Boltzmann
equation at weak coupling because previous work of Arnold, Yaffe and others
have demonstrated that an effective Boltzmann equation is as good as
perturbative gauge theory to study, for example, transport phenomena in high
temperature QCD.

We argue that these conservative solutions exist also in the exact microscopic
theory.

We naturally identify the conservative solutions with the universal sector at
strong coupling and large N .

We find the right method of extrapolating the conservative condition at weak
coupling to regularity condition in gravity at strong coupling.
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Outline of the rest of the talk

(a) Recap of Boltzmann equation and how it includes hydrodynamics
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Outline of the rest of the talk

(a) Recap of Boltzmann equation and how it includes hydrodynamics
(b) Conservative Solutions of the Boltzmann Equation
(c) Phenomena beyond hydrodynamics like local relaxation as features of
conservative solutions

Beyond Kinetic Theory : The Israel-Stewart-Muller Formalism

(a) Proposal for the regularity condition for pure gravity in AdS5 : the right
way to extrapolate the conservative condition at weak coupling to the
regularity condition at strong coupling
(b) Predictions and Consistency Checks of our Proposal
(c) Our proposal and Quasinormal Modes

Discussion : Open Issues in how Irreversibility (decoherence/thermalization)
emerges at Long Time Scales
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

The Boltzmann Equation : Brief Description 1/3

The Boltzmann equation gives a very successful description of non-equilibrium
phenomena in rarefied monoatomic gases.
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interact by a central force law.
It describes phenomena at length scales even less than the mean free path and at time
scales even less than the local relaxation time. However it fails at molecular length and
time scales.
Boltzmann’s H-theorem states that the phase space integral of f ln f monotonically
decreases with time and further the final state where the time derivative vanishes is
that of global equilibrium. We will call irreversibility of this type ”irreversibility at all
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The Boltzmann Equation : Brief Description 1/3

The Boltzmann equation gives a very successful description of non-equilibrium
phenomena in rarefied monoatomic gases.
It describes the evolution of one particle phase space distribution f when the molecules
interact by a central force law.
It describes phenomena at length scales even less than the mean free path and at time
scales even less than the local relaxation time. However it fails at molecular length and
time scales.
Boltzmann’s H-theorem states that the phase space integral of f ln f monotonically
decreases with time and further the final state where the time derivative vanishes is
that of global equilibrium. We will call irreversibility of this type ”irreversibility at all
time-scales."
The origin of irreversibility is chiefly due to the assumption made in the Boltzmann
equation that the two particle velocity distribution locally factorises. This is called the
ergodic hypothesis. There is a very rigorous modern understanding of how the ergodic
hypothesis emerges for “good” multiparticle phase space distributions which do not
distinguish between precollisional and postcollisional configurations [Lanford,
Cercignani, Spohn, etc] so that the Boltzmann equation can be rigorously derived
from reversible Hamiltonian mechanics in large classical systems.
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

The Boltzmann Equation : Brief Description 2/3

The Boltzmann equation for the one particle phase space distribution f (x, ξ) is

(
∂

∂t
+ ξ.

∂

∂x
)f (x, ξ) = J(f , f )(x, ξ) (1)

where,

J(f ,g) =

∫

(f (x, ξ
′

)g(x, ξ∗
′

)− f (x, ξ)g(x, ξ∗))B(θ,V )dξ∗dǫdθ (2)

is the change in phase space distribution due to binary collisions
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The Boltzmann equation for the one particle phase space distribution f (x, ξ) is

(
∂

∂t
+ ξ.

∂

∂x
)f (x, ξ) = J(f , f )(x, ξ) (1)

where,

J(f ,g) =

∫

(f (x, ξ
′

)g(x, ξ∗
′

)− f (x, ξ)g(x, ξ∗))B(θ,V )dξ∗dǫdθ (2)

is the change in phase space distribution due to binary collisions
The collison variables are explained in the figure below:

V’

V

r

r

εrdrd 

n

θ

Figure: The collision variables
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

The Boltzmann Equation : Brief Description 3/3

The collisional kernel B(θ,V ) is defined as below

B(θ,V ) = Vr
∂r(θ,V )

∂θ
(3)
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The Boltzmann Equation : Brief Description 3/3

The collisional kernel B(θ,V ) is defined as below

B(θ,V ) = Vr
∂r(θ,V )

∂θ
(3)

The velocities of the target and bullet molecule are related to the initial velocities of
the target and bullet molecule as below

ξ
′

i = ξi −ni (n.V) (4)

ξ
∗′

i = ξ
∗
i +ni (n.V)

so that V
′

.n = V.n.
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The Boltzmann Equation : Brief Description 3/3

The collisional kernel B(θ,V ) is defined as below

B(θ,V ) = Vr
∂r(θ,V )

∂θ
(3)

The velocities of the target and bullet molecule are related to the initial velocities of
the target and bullet molecule as below

ξ
′

i = ξi −ni (n.V) (4)

ξ
∗′

i = ξ
∗
i +ni (n.V)

so that V
′

.n = V.n.

Let φ(ξ) be a function of ξ. We will call it a collisional invariant if

φ(ξ)+φ(ξ∗)−φ(ξ
′

)−φ(ξ∗
′

) = 0. Clearly the collisional invariants are five in
number and they are 1, ξi , ξ

2. We will collectively denote them as ψα.
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Hydrodynamic Equations from the Boltzmann Equation

(1/2)

Using symmetry one can easily prove that:

∫

φ(ξ)(J(f ,g)+ J(g , f ))dξ = (5)

1

4

∫

(φ(ξ)+φ(ξ∗)−φ(ξ
′

)−φ(ξ∗
′

))(J(f ,g)+ J(g , f ))dξ

Therefore if φ(ξ) is a collisional invariant, i.e if φ(ξ) = ψα(ξ),

∫

ψα(ξ)J(f , f )dξ = 0 (6)
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∫
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So, the Boltzmann equation implies

∂ρα

∂t
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∂

∂xi

(

∫

ξiψαfdξ) = 0 (7)

where ρα =
∫

ψαfdξ are the locally conserved quantities.
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(1/2)

Using symmetry one can easily prove that:

∫

φ(ξ)(J(f ,g)+ J(g , f ))dξ = (5)

1

4

∫

(φ(ξ)+φ(ξ∗)−φ(ξ
′

)−φ(ξ∗
′

))(J(f ,g)+ J(g , f ))dξ

Therefore if φ(ξ) is a collisional invariant, i.e if φ(ξ) = ψα(ξ),

∫

ψα(ξ)J(f , f )dξ = 0 (6)

So, the Boltzmann equation implies

∂ρα

∂t
+

∂

∂xi

(

∫

ξiψαfdξ) = 0 (7)

where ρα =
∫

ψαfdξ are the locally conserved quantities. Instead of using ρα, we
will use the hydrodynamic variables:

ρ=

∫

fdξ, ui =
1

ρ

∫

ξi fdξ, p =
1

3

∫

ξ2fdξ (8)
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Hydrodynamic Equations from the Boltzmann Equation

(2/2)

Now, our hydrodynamic equations are as below:

∂ρ

∂t
+

∂

∂xr

(ρur ) = 0 (9)

∂ui

∂t
+ur

∂ui

∂xr

+
1

ρ

∂(pδir +pir )

∂xr

= 0

∂p

∂t
+

∂

∂xr

(ur p)+
2

3
(pδir +pir )

∂ui

∂xr

+
1

3

∂Sr

∂xr

= 0
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3
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We can also define a local temperature T using the ideal gas equation of state
p/ρ= RT locally (R is Boltzmann constant/ mass of molecule).
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∂ui
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+
1
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∂Sr
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= 0

We can also define a local temperature T using the ideal gas equation of state
p/ρ= RT locally (R is Boltzmann constant/ mass of molecule).
The shear stress tensor, pĳ , is defined as follows

pĳ =

∫

(cicj −RT δĳ)fdξ (10)

where ci = ξi −ui . One can easily see that, from definition, pĳδĳ = 0.
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∂ρ
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+
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3

∂Sr

∂xr

= 0

We can also define a local temperature T using the ideal gas equation of state
p/ρ= RT locally (R is Boltzmann constant/ mass of molecule).
The shear stress tensor, pĳ , is defined as follows

pĳ =

∫

(cicj −RT δĳ)fdξ (10)

where ci = ξi −ui . One can easily see that, from definition, pĳδĳ = 0.
Also we define, Sĳk as below:

Sĳk =

∫

cicjck fdξ (11)

and the heat flow vector Si through Si = Sĳkδĳ .
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

The Moment Equations

Let us now define the n-th moment of f to be

f (n) =

∫

cnfdξ (12)

We note that f
(2)

ĳ = pδĳ +pĳ , f
(3)

ĳk = Sĳk , etc
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The Moment Equations

Let us now define the n-th moment of f to be

f (n) =

∫

cnfdξ (12)

We note that f
(2)

ĳ = pδĳ +pĳ , f
(3)

ĳk = Sĳk , etc

The equation satisfied by the moments f (n)’s for n≥ 2 are as follows:

∂f (n)

∂t
+

∂

∂xi

(ui f
(n) + f

(n+1)
i )+

∂u

∂xi

f
(n)

i −
1

ρ
f (n−1)∂f

(2)
i

∂xi

= J (n) (13)

where

J (n) =

∫

cnB(f
′

f
′

1 −ff1)dθdǫdξdξ1 (14)
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(n+1)
i )+

∂u

∂xi

f
(n)

i −
1

ρ
f (n−1)∂f

(2)
i

∂xi

= J (n) (13)

where

J (n) =

∫

cnB(f
′

f
′

1 −ff1)dθdǫdξdξ1 (14)

It can be shown that

J (n)
µ =

∞
∑

p,q=0,p≥q

B(n,p,q)
µνρ (ρ,T )f (p)

ν f (q)
ρ (15)
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It can be shown that B
(2,2,0)
ĳkl (ρ,T ) = B(2)(ρ,T )δikδjl .
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Conservative Solutions (1/4)

We will first describe the conservative solutions of the Boltzmann equation for nonrelativistic

monoatomic gases.
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Conservative Solutions (1/4)

We will first describe the conservative solutions of the Boltzmann equation for nonrelativistic

monoatomic gases.
The energy momentum tensor can always be parametrised by (a) the five hydrodynamic variables (ρ, ui ,
p) and (b) the shear stress tensor (pĳ ) in a comoving locally inertial frame. We have seen how these can
be defined through the first ten velocity moments of f .
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The energy momentum tensor can always be parametrised by (a) the five hydrodynamic variables (ρ, ui ,
p) and (b) the shear stress tensor (pĳ ) in a comoving locally inertial frame. We have seen how these can
be defined through the first ten velocity moments of f .
Let f (n), a tensor of rank n be the n-th velocity moment of f (x, ξ) so that f (n) =

∫

cnfdξ, where
ci = ξi −ui . At equilibrium all these f (n)’s vanish. However in conservative solutions these do not vanish
and in fact can be very large. These f (n) ’s are determined functionally in terms of the ten independent
variables of the energy-momentum tensor.
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be defined through the first ten velocity moments of f .
Let f (n), a tensor of rank n be the n-th velocity moment of f (x, ξ) so that f (n) =

∫

cnfdξ, where
ci = ξi −ui . At equilibrium all these f (n)’s vanish. However in conservative solutions these do not vanish
and in fact can be very large. These f (n) ’s are determined functionally in terms of the ten independent
variables of the energy-momentum tensor. For instance, the heat-flow vector Si is given in terms of the
ten variables as below:

Si =
15pR

2B(2)

∂T

∂xi

+
3

2B(2)
(2RT

∂pir

∂xr

+7Rpir
∂T

∂xr

−
2pir

ρ

∂p

∂xr

)+ ... (16)

where B(2) is a specific function of the molecular mass, radius, local density and temperature and can be
determined from the Boltzmann equation.
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(2RT
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+7Rpir
∂T
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−
2pir
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∂p
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)+ ... (16)

where B(2) is a specific function of the molecular mass, radius, local density and temperature and can be
determined from the Boltzmann equation.

All the higher moments similarly can be systematically determined for such solutions in unique functional
forms of the ten independent variables. These functional forms have systematic expansions in two
parameters, the derivative expansion parameter which is (typical scale of variation/ mean free path) and
amplitude expansion parameter (typical value of non-hydrodynamic shear stress/ hydrostatic pressure).
Only spatial derivatives and no time derivative appear in the functional forms of f (n).
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Conservative Solutions (2/4)

Since all the velocity moments of f are unique local functions of the ten variables and their spatial derivatives, it
follows that f is also uniquely determined by the ten variables. Once f is determined, any observable can also be
determined through f .
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Conservative Solutions (2/4)

Since all the velocity moments of f are unique local functions of the ten variables and their spatial derivatives, it
follows that f is also uniquely determined by the ten variables. Once f is determined, any observable can also be
determined through f .
The ten variables satisfy the following equations of motion closed amongst themselves

∂ρ

∂t
+

∂

∂xr

(ρur ) = 0 (17)

∂ui

∂t
+ur

∂ui

∂xr

+
1

ρ

∂(pδir +pir )

∂xr

= 0

∂p

∂t
+

∂

∂xr

(ur p)+
2

3
(pδir +pir )

∂ui

∂xr

+
1

3

∂Sr

∂xr

= 0

∂pĳ

∂t
+

∂

∂xr

(ur pĳ)+
∂Sĳr

∂xr

−
1

3
δĳ

∂Sr

∂xr

+
∂uj

∂xr

pir +
∂ui

∂xr

pjr −
2

3
δĳprs

∂ur

∂xs

+p(
∂ui

∂xj

+
∂uj

∂xi

−
2

3
δĳ

∂ur

∂xr

) = B(2)(ρ,T )pĳ

+
∞
∑

p,q=0; p≥q; (p,q),(2,0)

B
(2,p,q)
ĳνρ (ρ,T )f (p)

ν f (q)
ρ

Above all the higher moments, including Si , has been determined in terms of the hydrodynamic variables, the
shear stress tensor and their spatial derivatives. Since spatial derivatives of arbitrary orders are present in these
functional forms, we need analytic data as initial conditions for these equations
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+
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Above all the higher moments, including Si , has been determined in terms of the hydrodynamic variables, the
shear stress tensor and their spatial derivatives. Since spatial derivatives of arbitrary orders are present in these
functional forms, we need analytic data as initial conditions for these equations
Any solution of the above equations of motion of the ten variables can be uniquely lifted to a full solution of the
Boltzmann equation for f through the functional forms for f (n) already determined.
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Conservative Solutions (3/4)

There are two special kinds of conservative solutions
(a) normal or purely-hydrodynamic solutions [Enskog(1917), Burnett(1935), Chapman(1939)]
where f is determined as functional of the five hydrodynamic variables and their spatial derivatives
only
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Conservative Solutions (3/4)

There are two special kinds of conservative solutions
(a) normal or purely-hydrodynamic solutions [Enskog(1917), Burnett(1935), Chapman(1939)]
where f is determined as functional of the five hydrodynamic variables and their spatial derivatives
only
(b) homogenous non-hydrodynamic solutions where all hydrodynamic variables are constants and
the shear stress tensor (therefore all the higher moments) is a function of time only, describing
dynamics in only velocity space and hence relaxation.
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Conservative Solutions (3/4)

There are two special kinds of conservative solutions
(a) normal or purely-hydrodynamic solutions [Enskog(1917), Burnett(1935), Chapman(1939)]
where f is determined as functional of the five hydrodynamic variables and their spatial derivatives
only
(b) homogenous non-hydrodynamic solutions where all hydrodynamic variables are constants and
the shear stress tensor (therefore all the higher moments) is a function of time only, describing
dynamics in only velocity space and hence relaxation.
The normal solutions can be found by noting that the equation for pĳ has a special algebraic
solution given in terms of hydrodynamic variables only. This solution is unique. Upto two
derivatives this solution is as below:

pĳ = ησĳ +λ1
η2

p
(∂.u)σĳ +λ2

η2

p
(

D

Dt
σĳ −2(σikσkj −

1

3
δĳσlmσlm)) (18)

+λ3
η2

ρT
(∂i∂jT −

1

3
δĳ�T )+λ4

η2

pρT
(∂ip∂jT +∂jp∂iT −

2

3
δĳ∂lp∂lT )

+λ5
η2

pρT
(∂i T∂jT −

1

3
δĳ∂lT∂lT )+ ......

where σĳ = ∂i uj +∂jui − (2/3)δĳ∂l ul , η = (p/B2) and the λ’s which are pure numbers can be
determined from the Boltzmann equation. Note all time-derivatives can be replaced by spatial
derivatives through hydrodynamic equations of motion. This matches with the second order
expression for pĳ for normal solutions [Chapman and Cowling, Chapter 15]
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Conservative Solutions (4/4)

Interestingly, the homogenous non-hydrodynamic solutions has singularities. For instance

f
(4)

ĳkl = (2B(2)δ(klmn)(ĳtu)−B
(4,4,0)
(klmn)(ĳtu))

−1B
(4,2,2)
(ĳtu)(pqrs)ppqprs + ..... and this becomes

indeterminate when (2B(2)δ(klmn)(ĳtu)−B
(4,4,0)
(klmn)(ĳtu)) regarded as an 81×81 matrix fails to

be invertible. Such singularities also appear in normal solutions in kinetic theory of liquids
(to be discussed later) and has the interpretation of local nucleation of solid phase and so
here the singularities probably signal local condensation of the liquid phase.
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(ĳtu)(pqrs)ppqprs + ..... and this becomes

indeterminate when (2B(2)δ(klmn)(ĳtu)−B
(4,4,0)
(klmn)(ĳtu)) regarded as an 81×81 matrix fails to

be invertible. Such singularities also appear in normal solutions in kinetic theory of liquids
(to be discussed later) and has the interpretation of local nucleation of solid phase and so
here the singularities probably signal local condensation of the liquid phase.
Any generic solution of the Boltzmann Equation at sufficiently late times is approximated by
an appropriate conservative solution. Since the maximum of the propagation speeds of the
linear modes increases as more and more moments are included [Boillat, Muller], we can
argue that, at a sufficiently late time, the part of the higher moments functionally
independent of the hydrodynamic variables and the shear stress tensor becomes irrelevant,
so that the dynamics is well approximated by an appropriate conservative solution. Thus ten
variables suffice to capture systematically a whole range of phenomena which includes
hydrodynamics and relaxation.
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ĳkl = (2B(2)δ(klmn)(ĳtu)−B
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(ĳtu)(pqrs)ppqprs + ..... and this becomes

indeterminate when (2B(2)δ(klmn)(ĳtu)−B
(4,4,0)
(klmn)(ĳtu)) regarded as an 81×81 matrix fails to

be invertible. Such singularities also appear in normal solutions in kinetic theory of liquids
(to be discussed later) and has the interpretation of local nucleation of solid phase and so
here the singularities probably signal local condensation of the liquid phase.
Any generic solution of the Boltzmann Equation at sufficiently late times is approximated by
an appropriate conservative solution. Since the maximum of the propagation speeds of the
linear modes increases as more and more moments are included [Boillat, Muller], we can
argue that, at a sufficiently late time, the part of the higher moments functionally
independent of the hydrodynamic variables and the shear stress tensor becomes irrelevant,
so that the dynamics is well approximated by an appropriate conservative solution. Thus ten
variables suffice to capture systematically a whole range of phenomena which includes
hydrodynamics and relaxation.
It can be shown that the relativistic semiclassical Boltzmann equation has conservative
solutions as well.
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Conservative Solutions of the Boltzmann Equation Non-relativistic classical monoatomic gases

Multi-Component Systems

In order to generalize conservative solutions of Boltzmann equation to relativistic
gauge theories we also need to understand how to construct such solutions for
multi-component systems.
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Multi-Component Systems

In order to generalize conservative solutions of Boltzmann equation to relativistic
gauge theories we also need to understand how to construct such solutions for
multi-component systems.

In N = 4 SYM theory, all the particles form a multiplet whose internal degrees of
freedom are spin and (SO(6)R) charge along with the color indices. From the
point of view of gravity, since in the universal sector we have pure gravity on the
dual side, not only local and global charges and currents, but also the higher
multipole moments of these charge distrubutions are absent at the boundary. So,
the most natural reflection of this on the conservative solutions is that there is
equipartition at every point in phase space over the internal, i.e the spin, charge
and color degrees of freedom. Then we can easily construct an effective single
component Boltzmann equation by summing over interactions in all spin, charge
and color channels.
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In order to generalize conservative solutions of Boltzmann equation to relativistic
gauge theories we also need to understand how to construct such solutions for
multi-component systems.

In N = 4 SYM theory, all the particles form a multiplet whose internal degrees of
freedom are spin and (SO(6)R) charge along with the color indices. From the
point of view of gravity, since in the universal sector we have pure gravity on the
dual side, not only local and global charges and currents, but also the higher
multipole moments of these charge distrubutions are absent at the boundary. So,
the most natural reflection of this on the conservative solutions is that there is
equipartition at every point in phase space over the internal, i.e the spin, charge
and color degrees of freedom. Then we can easily construct an effective single
component Boltzmann equation by summing over interactions in all spin, charge
and color channels.
For other conformal gauge theories with gravity duals, we may also do the same
even though all particles do not form a multiplet. This is possible because of mass
degeneracy.
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Non-equilibrium Energy-Momentum Tensor in Conformal Theories

Definitions of the Nine Parameters

The equilibrium energy momentum tensor for a conformal theory is
t(0)µν = (πT )4(4uµuν + ηµν). Going to the comoving inertial frame where t(0)µν

is diag(ǫ,p,p,p), we find that the energy density ǫ and the pressure p are
ǫ
3 = p = (πT )4. Let πµν be the non-equilibrium part of the energy momentum
tensor so that the total energy-momentum tensor is tµν = t(0)µν+πµν.
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is diag(ǫ,p,p,p), we find that the energy density ǫ and the pressure p are
ǫ
3 = p = (πT )4. Let πµν be the non-equilibrium part of the energy momentum
tensor so that the total energy-momentum tensor is tµν = t(0)µν+πµν.
We define uµ as the velocity of energy transport and uµuνtµν = ǫ as the energy
density, so πµν should be such that uµπµν = 0 as the energy density remains
uncorrected and in the local inertial comoving frame the energy-momentum
tensor can be corrected only in the spatial block perpendicular to uµ.
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tensor so that the total energy-momentum tensor is tµν = t(0)µν+πµν.
We define uµ as the velocity of energy transport and uµuνtµν = ǫ as the energy
density, so πµν should be such that uµπµν = 0 as the energy density remains
uncorrected and in the local inertial comoving frame the energy-momentum
tensor can be corrected only in the spatial block perpendicular to uµ.
The total energy momentum tensor is traceless, while the equilibrium part is
traceless by itself. So, πµν is also traceless and since uµπµν = 0, πµν has five
independent components.
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We define uµ as the velocity of energy transport and uµuνtµν = ǫ as the energy
density, so πµν should be such that uµπµν = 0 as the energy density remains
uncorrected and in the local inertial comoving frame the energy-momentum
tensor can be corrected only in the spatial block perpendicular to uµ.
The total energy momentum tensor is traceless, while the equilibrium part is
traceless by itself. So, πµν is also traceless and since uµπµν = 0, πµν has five
independent components.
Thus the total energy-momentum tensor can be parametrised by nine variables
uµ, T and the five independent components of πµν .
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Non-equilibrium Energy-Momentum Tensor in Conformal Theories

Definitions of the Nine Parameters

The equilibrium energy momentum tensor for a conformal theory is
t(0)µν = (πT )4(4uµuν + ηµν). Going to the comoving inertial frame where t(0)µν

is diag(ǫ,p,p,p), we find that the energy density ǫ and the pressure p are
ǫ
3 = p = (πT )4. Let πµν be the non-equilibrium part of the energy momentum
tensor so that the total energy-momentum tensor is tµν = t(0)µν+πµν.
We define uµ as the velocity of energy transport and uµuνtµν = ǫ as the energy
density, so πµν should be such that uµπµν = 0 as the energy density remains
uncorrected and in the local inertial comoving frame the energy-momentum
tensor can be corrected only in the spatial block perpendicular to uµ.
The total energy momentum tensor is traceless, while the equilibrium part is
traceless by itself. So, πµν is also traceless and since uµπµν = 0, πµν has five
independent components.
Thus the total energy-momentum tensor can be parametrised by nine variables
uµ, T and the five independent components of πµν .
The conservation of the energy-momentum tensor ∂µtµν = 0, gives us the forced
relativistic Euler equation which shows that πµν is the relativistic shear stress
tensor.
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Non-equilibrium Energy-Momentum Tensor in Conformal Theories

The Conformal Hydrodynamic Energy-Momentum Tensor

(1/2)

The most general form of the traceless hydrodynamic conformal shear stress tensor upto two orders in the
derivative expansion, when all conserved currents vanish and with our definitions of uµ and T is as below
[Baier, Romatschke, Son, Starinets, Stephanov (2007)]

πµν = −ησµν (19)

+α1

[

(u ·∂)σµν+
1

3
σµν(∂ ·u)− (uνσµβ+uµσνβ)(u ·∂)uβ

]

+α2

(

σαµσ να −
1

3
Pµνσαβσ

αβ

)

+α3(σ
αµω να +σαµω ν

α )

+α4

(

ωαµω να −
1

3
Pµνωαβω

αβ

)

+O(∂3u)

where Pµν is the projection tensor orthogonal to uµ

Pµν = uµuν+ ηµν (20)

σµν is the hydrodynamic strain rate

σµν =
1

2
PµαPνβ(∂αuβ+∂βuα)−

1

3
Pµν(∂.u) (21)

ωµν is the hydrodynamic vorticity tensor

ωµν =
1

2
PµαPνβ(∂αuβ−∂αuβ) (22)
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Non-equilibrium Energy-Momentum Tensor in Conformal Theories

The Conformal Hydrodynamic Energy-Momentum Tensor

(2/2)

The semiclassical Boltzmann equation can be used to determine hydrodynamic transport coefficients in high
temperature QCD and it is as good as the full perturbative description [Arnold and Yaffe]. In fact, we only
need to use only tree level S-matrices and ignoring bare quark masses the hydrodynamic energy-momentum
tensor at high temperature is conformal. At weak coupling, η/s is parametrically O(1/(g4 ln(1/g))), in fact
all ln(1/g) terms can be resummed [Arnold, Moore, Yaffe].
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the leading order and as mentioned this is as good as the full perturbative description [Moore and York

(2009)]. The results for 3-quark QCD at leading order are Tsα1
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η2 = 5.2 to 4.1

(varies with g), Tsα3
η2 = 2 Tsα1

η2 and Tsα4
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6π (mD
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At strong coupling for conformal gauge theories with gravity duals the
hydrodynamic transport coefficients in absence of charged currents are universal
as they can be obtained by looking at regular linear or non-linear perturbations (of
Einstein’s equation in five dimensions with a negative cosmological constant)
about the black brane solution which are slowly varying both spatially and
temporally with respect to the temperature. The famous result is that η/s = 1/4π
[Kovtun, Son, Starinets]. The results [Baier, Romatschke, Son, Starinets,
Stephanov; Bhattacharya, Hubeny, Minwalla, Rangamani (2007)] for higher order
transport coefficients are : α1

η
= 2−ln 2

2πT
, α2
η

= 1
2πT

, α3
η

= ln 2
2πT

and α4 = 0.
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Beyond Kinetic Theory

Do Conservative Solutions exist in the Exact Microscopic

Theory?

The untruncated BBGKY heirarchy for non-relativistic systems is equivalent to the exact
microscopic theory. Normal/purely hydrodynamic solutions have been constructed for the
untruncated heirarchy [Born and Green (1949)]. These also exist if semiclassical corrections are
included.
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The viscosity, for instance receives corrections as in η = 1

15

∫

ν(r)φ
′

(r)r3dr + the gaseous part
(ν(r) is given by the two-body phase space distribution function where r is the relative
separation), and increases with temperature unlike gases.
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(ν(r) is given by the two-body phase space distribution function where r is the relative
separation), and increases with temperature unlike gases.
It is certainly plausible that the conservative solutions of the untruncated BBGKY heirarchy also
exist. We are investigating this currently.
Recent experimental evidences at RHIC suggests that second order hydrodynamics is indeed
relevant to explain the expansion of the quark-gluon plasma. Moreover, the dynamics can be
approximated quite well by an appropriate purely hydrodynamic equation involving corrections to
the Navier-Stokes.
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relevant to explain the expansion of the quark-gluon plasma. Moreover, the dynamics can be
approximated quite well by an appropriate purely hydrodynamic equation involving corrections to
the Navier-Stokes.
So, it is likely that normal and conservative solutions exist in the exact relativistic quantum guage
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It is certainly plausible that the conservative solutions of the untruncated BBGKY heirarchy also
exist. We are investigating this currently.
Recent experimental evidences at RHIC suggests that second order hydrodynamics is indeed
relevant to explain the expansion of the quark-gluon plasma. Moreover, the dynamics can be
approximated quite well by an appropriate purely hydrodynamic equation involving corrections to
the Navier-Stokes.
So, it is likely that normal and conservative solutions exist in the exact relativistic quantum guage
theories like QCD such that a generic state at sufficient late times can be approximated by an
appropriate conservative solution.
The higher order transport coefficients could be exactly defined (at least implicitly) if we can
construct normal solutions of the exact relativistic quantum gauge theories. We are investigating
this currently as well.
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Beyond Kinetic Theory

The Israel-Stewart-Muller Formalism and Gauge/Gravity

duality

The “philosophy” of the ISM formalism is to do phenomenology of irreversible
transient phenomena using kinetic moments as independent variables even beyond
the weak coupling regime where any kinetic theory can be constructed.
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of the form suµ whose local divergence is positive definite. This formalism also
restricts second order hydrodynamics, as the higher moments have solutions
which are “purely hydrodynamic” in nature.
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of the form suµ whose local divergence is positive definite. This formalism also
restricts second order hydrodynamics, as the higher moments have solutions
which are “purely hydrodynamic” in nature.
However, the “regularity condition” in gravity is equivalent to an exact
microscopic description, so we should not expect irreversibility at time scales less
than the decoherence time scale or the relaxation time scale.
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of the form suµ whose local divergence is positive definite. This formalism also
restricts second order hydrodynamics, as the higher moments have solutions
which are “purely hydrodynamic” in nature.
However, the “regularity condition” in gravity is equivalent to an exact
microscopic description, so we should not expect irreversibility at time scales less
than the decoherence time scale or the relaxation time scale.
The second order hydrodynamic behaviour obtained from gauge/gravity duality
has been shown to violate the ISM formalism [Baier, et al; Loganayagam, etc]
In our extrapolation of conservative solutions to the proposal for the “regularity
condition” in gravity we will not restrict ourselves to the tenets of the ISM
formalism but follow its broader “philosophy”. We will show how this
extrapolation can be done unambiguously and systematically.
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restricts second order hydrodynamics, as the higher moments have solutions
which are “purely hydrodynamic” in nature.
However, the “regularity condition” in gravity is equivalent to an exact
microscopic description, so we should not expect irreversibility at time scales less
than the decoherence time scale or the relaxation time scale.
The second order hydrodynamic behaviour obtained from gauge/gravity duality
has been shown to violate the ISM formalism [Baier, et al; Loganayagam, etc]
In our extrapolation of conservative solutions to the proposal for the “regularity
condition” in gravity we will not restrict ourselves to the tenets of the ISM
formalism but follow its broader “philosophy”. We will show how this
extrapolation can be done unambiguously and systematically.
Interestingly, Ilya Prigogine also made an attempt to rewrite exact microscopic
Hamiltonian dynamics in a “proto-thermodynamic” language. So our approach
also conforms with his vision. In fact, it could be the first instance, where his
vision could be concretely formulated and understood.
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The Full Universal Sector as Defined by Pure Gravity

A Proposal for the Regularity Condition in Gravity (1/2)

It is natural to identify our conservative solutions at weak coupling with the universal sector
at strong coupling and large N as that will explain why all observables get determined by
the energy-momentum tensor alone.
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It is natural to identify our conservative solutions at weak coupling with the universal sector
at strong coupling and large N as that will explain why all observables get determined by
the energy-momentum tensor alone.
Now the “conservative” condition on the energy-momentum tensor becomes the “regularity”
condition in gravity such that the dual solutions have smooth future horizons. So, on top of
the conservation equation ∂µ[(πT )4(4uµuν + ηµν)+πµν ] = 0 which gives us the forced
Euler equation with πµν as an independent variable; the regularity condition must involve
five independent equations which tells us how any analytic initial data on πµν evolves with
time.
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the conservation equation ∂µ[(πT )4(4uµuν + ηµν)+πµν ] = 0 which gives us the forced
Euler equation with πµν as an independent variable; the regularity condition must involve
five independent equations which tells us how any analytic initial data on πµν evolves with
time.
When πµν is given in terms of hydrodynamic variables only, we will have “normal” solutions
of the microscopic theory and the gravity duals at strong coupling could be easily identified
with the “tubewise black brane solutions” found by Bhattachaya, et al. In a radial tube from
every point at the boundary these solutions can be parametrised by the local hydrodynamic
variables which from the gravity viewpoint are the Goldstone-like fields corresponding to
boost and scale invariance, the maximally commuting broken symmetries present in the
asymptotic geometry.
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It is natural to identify our conservative solutions at weak coupling with the universal sector
at strong coupling and large N as that will explain why all observables get determined by
the energy-momentum tensor alone.
Now the “conservative” condition on the energy-momentum tensor becomes the “regularity”
condition in gravity such that the dual solutions have smooth future horizons. So, on top of
the conservation equation ∂µ[(πT )4(4uµuν + ηµν)+πµν ] = 0 which gives us the forced
Euler equation with πµν as an independent variable; the regularity condition must involve
five independent equations which tells us how any analytic initial data on πµν evolves with
time.
When πµν is given in terms of hydrodynamic variables only, we will have “normal” solutions
of the microscopic theory and the gravity duals at strong coupling could be easily identified
with the “tubewise black brane solutions” found by Bhattachaya, et al. In a radial tube from
every point at the boundary these solutions can be parametrised by the local hydrodynamic
variables which from the gravity viewpoint are the Goldstone-like fields corresponding to
boost and scale invariance, the maximally commuting broken symmetries present in the
asymptotic geometry.
We propose the regularity condition as the most general equation for πµν which can
reproduce the correct purely hydrodynamic energy-momentum tensor known exactly upto
second order in derivatives as a special solution.
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The Full Universal Sector as Defined by Pure Gravity

A Proposal for the Regularity Condition in Gravity (2/2)

Therefore, our regularity condition for pure gravity in AdS5 is:

(1−λ3)

[

(u ·∂)πµν +
4

3
πµν(∂ ·u)−

(

πµβuν +πνβuµ
)

(u ·∂)uβ

]

(23)

=−
2πT

(2− ln2)
[πµν+2(πT )3σµν

−λ3(2− ln2)(πT )2

(

(u ·∂)σµν+
1

3
σµν(∂ ·u)−

(

uνσµβ+uµσνβ
)

(u ·∂)uβ

)

−λ4(ln2)(πT )2(σαµω να +σαµω να )

−2λ1(πT )2

(

σαµσνα−
1

3
Pµνσαβσαβ

)

]

−(1−λ4)
ln2

(2− ln2)
(πµαω

αν+πναω
αµ)

−
2λ2

(2− ln2)

[

1

2
(πµασνα+πνασµα)−

1

3
Pµνπαβσαβ

]

+
1−λ1−λ2

(2− ln2)(πT )3

(

πµαπνα−
1

3
Pµνπαβπαβ

)

+

O
(

π3,π∂π,∂2π,π2∂u,π∂2u,∂2π,∂3u,(∂u)(∂2u),(∂u)3
)

where the O(π3,π∂π, ...) term indicates that the corrections to our proposal can include terms of the structures
displayed or those with more derivatives or containing more powers of πµν or both only. Also, the four λi ’s
(i = 1,2,3,4) are pure numbers.
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The Full Universal Sector as Defined by Pure Gravity

A Simple Prediction of our Proposal

A simple predction of our proposal is that the universal sector consists of three branches of linearized
fluctuations which could be easily identified with their weak coupling counterparts in the conservative
solutions.
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By the logic of our proposal, two of the three branches consists of the hydrodynamic sound and
shear branches. It can be shown that these branches are exactly the same as in the quasinormal
mode spectrum obtained by solving the linearized fluctuations of the black brane with infalling
boundary condition at the horizon.
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By the logic of our proposal, two of the three branches consists of the hydrodynamic sound and
shear branches. It can be shown that these branches are exactly the same as in the quasinormal
mode spectrum obtained by solving the linearized fluctuations of the black brane with infalling
boundary condition at the horizon.
The third branch in the spectrum can be seen as follows. We put all the hydrodynamic variables
uµ and T to be spatio-temporal constants and also the flow at rest so that uµ = (1,0,0,0). Then
the conservation of energy-momentum tensor requires ∂µπµν = 0.
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boundary condition at the horizon.
The third branch in the spectrum can be seen as follows. We put all the hydrodynamic variables
uµ and T to be spatio-temporal constants and also the flow at rest so that uµ = (1,0,0,0). Then
the conservation of energy-momentum tensor requires ∂µπµν = 0.
The conservation of the energy-momentum tensor can be achieved if we put π00 = π0i = 0 and
πĳ ’s are functions of time t only. The linearized equation πµν is solved if πĳ =Aĳexp(−t/τπ)

with τπ = (1−λ3)(2−ln 2)
2πT

and Aĳ is a spatio-temporal constant and traceless matrix.
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A simple predction of our proposal is that the universal sector consists of three branches of linearized
fluctuations which could be easily identified with their weak coupling counterparts in the conservative
solutions.

By the logic of our proposal, two of the three branches consists of the hydrodynamic sound and
shear branches. It can be shown that these branches are exactly the same as in the quasinormal
mode spectrum obtained by solving the linearized fluctuations of the black brane with infalling
boundary condition at the horizon.
The third branch in the spectrum can be seen as follows. We put all the hydrodynamic variables
uµ and T to be spatio-temporal constants and also the flow at rest so that uµ = (1,0,0,0). Then
the conservation of energy-momentum tensor requires ∂µπµν = 0.
The conservation of the energy-momentum tensor can be achieved if we put π00 = π0i = 0 and
πĳ ’s are functions of time t only. The linearized equation πµν is solved if πĳ =Aĳexp(−t/τπ)

with τπ = (1−λ3)(2−ln 2)
2πT

and Aĳ is a spatio-temporal constant and traceless matrix.

We note that the third branch is the branch that contains the above mode ω =−iτ−1
π ,k = 0. This

mode at weak coupling was associated with relaxation or local equilibriation in the
quasiparticle-velocity space, so we will call this branch as the relaxation branch. Such a branch is
not present in the quasinormal mode spectrum.
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By the logic of our proposal, two of the three branches consists of the hydrodynamic sound and
shear branches. It can be shown that these branches are exactly the same as in the quasinormal
mode spectrum obtained by solving the linearized fluctuations of the black brane with infalling
boundary condition at the horizon.
The third branch in the spectrum can be seen as follows. We put all the hydrodynamic variables
uµ and T to be spatio-temporal constants and also the flow at rest so that uµ = (1,0,0,0). Then
the conservation of energy-momentum tensor requires ∂µπµν = 0.
The conservation of the energy-momentum tensor can be achieved if we put π00 = π0i = 0 and
πĳ ’s are functions of time t only. The linearized equation πµν is solved if πĳ =Aĳexp(−t/τπ)

with τπ = (1−λ3)(2−ln 2)
2πT

and Aĳ is a spatio-temporal constant and traceless matrix.

We note that the third branch is the branch that contains the above mode ω =−iτ−1
π ,k = 0. This

mode at weak coupling was associated with relaxation or local equilibriation in the
quasiparticle-velocity space, so we will call this branch as the relaxation branch. Such a branch is
not present in the quasinormal mode spectrum.
So, our proposal predicts that we should have such a linearized regular perturbation of the black
brane unless λ3 = 1. If λ3 = 1, to the orders that we have written our equation describing regular
non-linear perturbations about global equilibrium we have two possibilities, firstly there is a
strange kind of gapless zero mode or there is no third branch at all and the non-hydrodynamic
solutions arise only when the full non-linear equation is considered.
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The Full Universal Sector as Defined by Pure Gravity

Consistency Checks of Our Proposal (1/2)

The internal consistency of our proposal can be checked, by determining λ’s by various independent
means. Here we will first look at two independent means of determining λ3 and λ1 +λ2. The two
independent means will be considering two different kinds of fluctuations about the linearized
homogenous non-hydrodynamic solution we discussed before.
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The internal consistency of our proposal can be checked, by determining λ’s by various independent
means. Here we will first look at two independent means of determining λ3 and λ1 +λ2. The two
independent means will be considering two different kinds of fluctuations about the linearized
homogenous non-hydrodynamic solution we discussed before.

Configration 1

The hydrodynamic variables are not perturbed, so still are spatio-temporal constants.
We keep π00 = πoi = 0 and maintain spatial translational invariance so that πĳ is still a function of
time only. Therefore, ∂µπµν = 0.
πĳ obeys the following equation of motion which is exact upto third order terms.

(1−λ3)
dπĳ

dt
=−

2πT

(2− ln2)
πĳ (24)

+
1−λ1−λ2

(2− ln2)(πT )3
(πikπkj −

1

3
δĳπlmπlm)

+O(
d2π

dt2
,
dπ

dt
π,π3)

The expansion parameters are ǫ
′

defined as (τ/T ), where τ is the relaxation time and T is the
typical time scale of variation of the solution; and δ defined as |πĳ |/(πT )4.
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πĳ obeys the following equation of motion which is exact upto third order terms.

(1−λ3)
dπĳ

dt
=−

2πT

(2− ln2)
πĳ (24)

+
1−λ1−λ2

(2− ln2)(πT )3
(πikπkj −

1

3
δĳπlmπlm)

+O(
d2π

dt2
,
dπ

dt
π,π3)

The expansion parameters are ǫ
′

defined as (τ/T ), where τ is the relaxation time and T is the
typical time scale of variation of the solution; and δ defined as |πĳ |/(πT )4.

Incidentally, we also find how in this case gravity may reproduce quantum coherent behaviour as

opposed to the explicitly irreversible case of the Boltzmann equation as a d2π/dt2 may appear at ǫ
′2δ

order.
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The Full Universal Sector as Defined by Pure Gravity

Consistency checks of our proposal (2/2)
Configration 2

The temperature is not perturbed, so is still a spatio-temporal constant.
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The Full Universal Sector as Defined by Pure Gravity

Consistency checks of our proposal (2/2)
Configration 2

The temperature is not perturbed, so is still a spatio-temporal constant.
We consider linearized fluctuations of uµ and πµν .
The expansion parameters are ǫ= (1/(LT )) where L is the spatio-temporal scale of variation in the solution and δ = |π0µν |/(πT )4.
The linearized equations exact at orders ǫ, δ and ǫδ are

(u0.∂)δuν +u0ν(∂.δu) =

(

∂µδπµν
4(πT )4

)

(25)

(1−λ3)(u0.∂)δπµν =−(1−λ3)

(

(δu.∂)πµν0 +
4

3
πµν0 (∂.δu)− (πµβ0 uν0 +πµβ0 uν0 )(u0.∂)δuβ

)

−
2πT

(2− ln2)

(

δπµν +2(πT )3σµν
)

−(1−λ4)
ln2

(2− ln2)

(

πµα0 ω ν
α +πνα0 ω µα

)

−
2λ2

(2− ln2)
(
1

2

(

πµα0 σ να +πµα0 σ να
)

−
1

3
P
µν
0 παβ0 σαβ)

+
1−λ1−λ2

(2− ln2)(πT )3

(

πµα0 δπνα+πνα0 δπµα−
1

3
(uµ0 δu

ν +uν0 δu
µ)παβ0 π0αβ−

2

3
P
µν
0 παβ0 δπαβ

)

where, πµν0 is as in the basic configuration and

σµν =
1

2
P
µα
0 P

νβ
0 (∂αδuβ+∂βδuα)−

1

3
P
µν
0 (∂.δu) (26)

lµ = ǫαβγµu
α
0 ∂
βδuγ

One may readily see from the first equation in (25) that
∂.δu = 0 (27)
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1

2
P
µα
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0 (∂αδuβ+∂βδuα)−

1
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P
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0 (∂.δu) (26)

lµ = ǫαβγµu
α
0 ∂
βδuγ

One may readily see from the first equation in (25) that
∂.δu = 0 (27)

One can determine the other λ’s through coefficients of various non-linear terms as well and further check consistency.
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The Full Universal Sector as Defined by Pure Gravity

Our Proposal and the Quasinormal Modes

Even if the quasinormal modes give regular linear perturbations, they need not survive in the full
non-linear theory. This can happen because they individually or combining amongst themselves or
in combination with the hydrodynamic branches cannot be developed into solutions of the full
non-linear theory.
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Even if the quasinormal modes give regular linear perturbations, they need not survive in the full
non-linear theory. This can happen because they individually or combining amongst themselves or
in combination with the hydrodynamic branches cannot be developed into solutions of the full
non-linear theory.

On the other hand, our work in progress indicates that λ3 = 1 so the third mode which contradicts
the quasinormal spectrum is also not present as solution to our equations at the linear level, but
non-hydrodynamic solutions do arise as solutions of the full non-linear equations.
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The Full Universal Sector as Defined by Pure Gravity

Our Proposal and the Quasinormal Modes

Even if the quasinormal modes give regular linear perturbations, they need not survive in the full
non-linear theory. This can happen because they individually or combining amongst themselves or
in combination with the hydrodynamic branches cannot be developed into solutions of the full
non-linear theory.

On the other hand, our work in progress indicates that λ3 = 1 so the third mode which contradicts
the quasinormal spectrum is also not present as solution to our equations at the linear level, but
non-hydrodynamic solutions do arise as solutions of the full non-linear equations.

It is also more plausible that the universal sector should contain only finite number of branches
which could be blind to the particle content and other microscopic details of the theory.
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Discussion

Issues in Irreversibility, etc

How does gravity see loss of quantum coherence?

To understand this, we may go back to the conservative solutions, but now construct them in quantum
kinetic theories. It will be interesting if we can study the universal part of the phenomenology of pure
to mixed state transition and at least some aspects of decoherence in general in terms of only ten
variables parametrising the energy-momentum tensor.
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variables parametrising the energy-momentum tensor.

Is the hydrodynamic limit always irreversible?

In gravity, it has been shown that the hydrodynamic solutions, possess an entropy current whose
divergence is positive definite. One can try to understand if it also so for the normal solutions of the
infinite BBGKY heirarchy. We may thus check whether the purely hydrodynamic behaviour in the exact
microscopic theory is generically irreversible. We should also understand why the physical entropy
current is not of the form suµ.
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Issues in Irreversibility, etc

How does gravity see loss of quantum coherence?

To understand this, we may go back to the conservative solutions, but now construct them in quantum
kinetic theories. It will be interesting if we can study the universal part of the phenomenology of pure
to mixed state transition and at least some aspects of decoherence in general in terms of only ten
variables parametrising the energy-momentum tensor.

Is the hydrodynamic limit always irreversible?

In gravity, it has been shown that the hydrodynamic solutions, possess an entropy current whose
divergence is positive definite. One can try to understand if it also so for the normal solutions of the
infinite BBGKY heirarchy. We may thus check whether the purely hydrodynamic behaviour in the exact
microscopic theory is generically irreversible. We should also understand why the physical entropy
current is not of the form suµ.

How do we connect to experiment?

Our proposal implies that universal phenomena at strong coupling consists of the dynamics of three
branches in the spectrum, namely the two hydrodynamic branches and the relaxation branch. It will be
important to understand how we can connect this observation with actual experiments. The spectrum
in the case of cold atoms tuned at Feshback resonance which is independent of all possible
dimensionless parameters may give us support for our proposal.
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Thank You

Ayan Mukhopadhyay (HRI) Universal Phenomena at Strong Coupling and Gravity September 28, 2009 29 / 29


	Introduction
	Conservative Solutions of the Boltzmann Equation
	Non-relativistic classical monoatomic gases

	Non-equilibrium Energy-Momentum Tensor in Conformal Theories 
	Beyond Kinetic Theory
	The Full Universal Sector as Defined by Pure Gravity
	Discussion
	

