Mesons as Open Strings

in Holographic QCD

Shigeki Sugimoto (IPMU, Univ of Tokyo)

based on: **arXiv:1005.0655**

with T. Imoto and T. Sakai

1 Introduction

mesons $(N_f = 2, Isovector)$

par		harge conju	ugation	mass (MeV) \triangle not established						
	$0^{-+}(\pi)$	135	1300	1812						
	$0^{++}(a_0)$	985	1474							
	$1^{}(\rho)$	776	1459	1570^{\triangle}	1720	1900^{\triangle}	2150^{\triangle}			
	$1^{++}(a_1)$	1230	1647^{\triangle}							
	$1^{+-}(b_1)$	1230								
	$1^{-+}(\pi_1)$	1376	1653							
	$2^{++}(a_2)$	1318	1732^{\triangle}							
	$2^{-+}(\pi_2)$	1672	1895	2090^{\triangle}						
	$3^{}(\rho_3)$	1689	1990^{\triangle}	2250^{\triangle}						
	$4^{++}(a_4)$	2001								
	$5^{}(\rho_5)$	2330^{\triangle}								
	$6^{++}(a_6)$	2450^{\triangle}								

Q: How can we understand these numbers?

Hint: Regge trajectory

mass² [GeV²]

+
$$(P,C)=(+,+)$$

 $(P,C)=(+,-)$

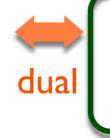
7
$$(P,C)=(-,+)$$
 $\times (P,C)=(-,-)$

Mesons are strings !?

Spin

Difficulties in the old days

- Consistent in 10 dim space-time
- \blacksquare a massless particles with J=1 and J=2 (open) (closed) $J=\alpha_0+\alpha'm^2$ $\alpha_0=1$! (for open string)


Not consistent with meson spectrum!?

- Gauge/String duality suggests

 - massive particles massless particles in 4 dim in 10 dim

The above difficulties can be solved!!

Holographic QCD

4 dim QCD 10 dim string theory

(in a certain curved background)

holographic QCD

(in some approximation: low energy, large N_c , large λ , ...)

D4/D8-branes in type IIA string theory

[T.Sakai and S.S. 04]

- mesons are open strings on D8
- $\pi, \ \rho, \ a_1, \ \text{etc.}$ are obtained from the massless mode

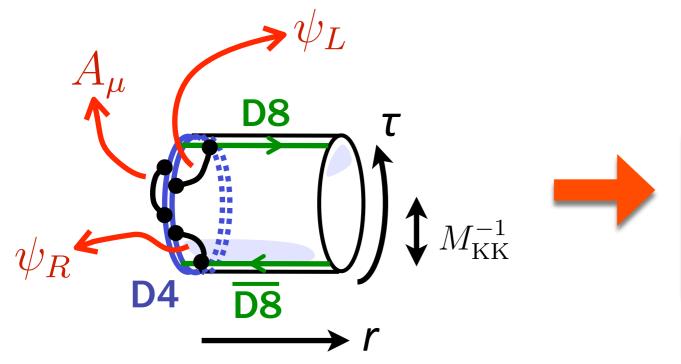
$$m_{a_1}/m_{\rho} \simeq \begin{cases} 1.53 & \text{(theory)} \\ 1.59 & \text{(exp)} \end{cases}$$

What about the other mesons?

Consider massive modes (excited strings)

Plan

- Introduction
 - 2 Brief review of the model
 - Meson spectrum
 - Comparison with data
 - Discussion

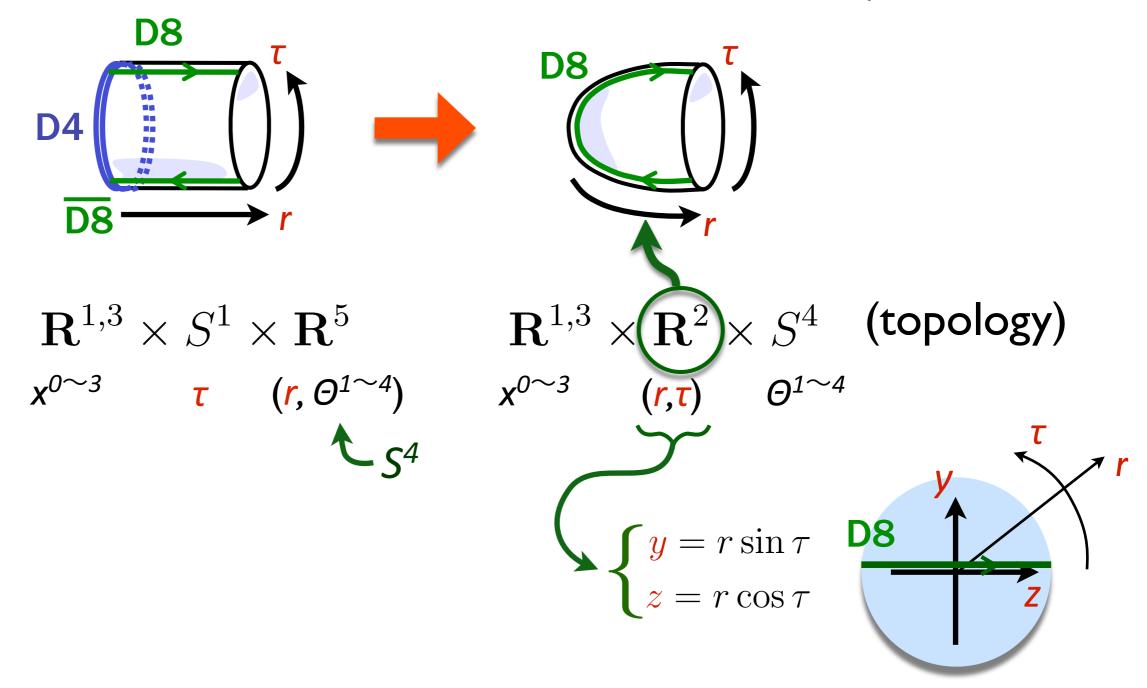

2 Brief review of the model

Brane configuration

[T. Sakai and S.S. 04]

	x ⁰	x ¹	<i>x</i> ²	<i>x</i> ³	τ	x ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	x ⁹
$D4 \times N_C$	0	0	0	0	0					
$D8-\overline{D8} \times N_f$	0	0	0	0		0	0	0	0	0

 $\sim S^1$ with SUSY b.c.



4 dim $U(N_c)$ QCD with N_f massless quarks (at low energy)

(radial direction of $x^{5\sim 9}$)

Holographic description

- replace D4 with the corresponding curved background [Witten 98]
- ullet D8 are treated as probe brane (assuming $N_c\gg N_f$)

Hadrons in the model

$$\mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$$
 $\mathbf{x}^{0\sim3}$ (z,y)

 ${f R}^{1,3} \times {f R}^2 \times S^4$ with D8 extended along (x^{μ},z) x S^4

5dim

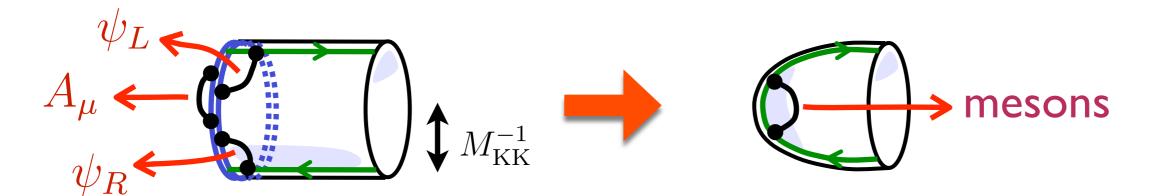
$$(x^{\mu},z) \times S^4$$

 $(\mu=0\sim3)$

particles in $\mathbb{R}^{1,3}$

closed strings

- glueballs
- open strings on D8
- mesons


today's topic

 \bullet D4 wrapped on S^4 baryons

QCD mesons vs artifacts

- Our brane config. is invariant under $SO(5)^{4}S^{4}$
- quarks and gluons are invariant under SO(5)
 (non-invariant states are massive KK modes)

- Bound states of quarks and gluons are SO(5) invariant (non-invariant states are artifacts made by unwanted massive modes)
- Similarly, we can show that quarks and gluons are invariant under \mathbb{Z}_2 sym generated by $I_{y9}(-1)^{F_L}$ $I_{y9}: (y,x^9) \to (-y,-x^9) \quad (\tau \to -\tau)$

Consider $SO(5) \rtimes \mathbf{Z}_2$ invariant states

3 Meson spectrum

Consider open strings attached on D8

Strategy

't Hooft coupling $\lambda \sim (\text{curvature radius}/l_s)^2$

Consider flat space-time, (justified when $\dot{\lambda}\gg 1$) and quantize the open strings attached on D8.

space-time:
$$\mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$$
 (topology) $\mathbf{R}^{0\sim3}$ (z,y) $\mathbf{R}^{0\sim9}$ D8-brane: $(\mathbf{R}^{\mu},\mathbf{Z}) \times S^4$

In the flat space-time limit,

$$S^4 \rightarrow R^4$$
, $SO(5) \rightarrow$ rotation and translation of $x^{6\sim 9}$

2 Pick up the $SO(5) \rtimes \mathbb{Z}_2$ invariant states.

reduced to 5 dim:
$$(x^{\mu},z)$$

 \bigcirc Recover the z dependence of the background (perturbatively).

General rules for light-cone quantization (NS-sector) (light-cone direction $x^{\pm} = x^0 \pm x^1$)

- Fock vacuum $|0\rangle_{\rm NS}$
- e creation op. $\psi_{-r}^{i} \text{ fermion } \alpha_{-n}^{i} \text{ boson } (i=2,3,\cdots,9)$

 - physical state $\underbrace{\psi_{-r_1}^{i_1}\cdots\psi_{-r_k}^{i_k}\alpha_{-n_1}^{j_1}\cdots\alpha_{-n_l}^{j_l}|0\rangle_{\mathrm{NS}}}_{\mathrm{odd}}$ mass $m_0^2=\frac{N}{\alpha'} \qquad N\equiv\sum_{s=1}^k r_s+\sum_{t=1}^l n_t-\frac{1}{2}$
- \bigcirc No SO(5) invariant states in R-sector.
- Parity and Charge conjugation:

$$\mathsf{P}: (x^1, x^2, x^3, z) \to (-x^1, -x^2, -x^3, -z)$$

$$\mathsf{C}:\ I_z\Omega(-1)^{F_L} \qquad I_z:z o -z$$

Massless mode (N=0)

 $\mu = 0, 1, 2, 3$

•
$$\psi_{-1/2}^{I}|0\rangle_{NS}$$
 $(I=2,3,z)$

5 dim gauge field A_{μ}^{\downarrow} , A_z

•
$$\psi_{-1/2}^{A}|0\rangle_{NS}$$
 ($A = y, 6, 7, 8, 9$)

not invariant under $SO(5) \times \mathbb{Z}_2$

KK decomposition along Z direction

Recovering the curved background, we obtain 5 dim $U(N_f)$ YM-CS theory in a curved space-time.

$$S_{\text{5dim}} = \kappa \int d^4x dz \operatorname{Tr} \left(\frac{1}{2} K(z)^{-1/3} F_{\mu\nu}^2 + K(z) F_{\mu z}^2 \right) + \frac{N_c}{24\pi^2} \int_5 \omega_5(A) \qquad K(z) = 1 + z^2$$

$$A_{\mu}(x^{\mu},z) = \sum_{n=1}^{\infty} B_{\mu}^{(n)}(x^{\mu}) \psi_{n}(z)$$

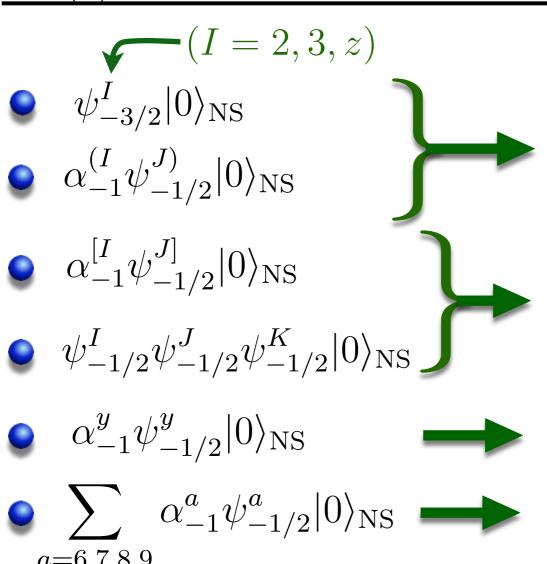
$$(\mu=0,1,2,3)$$

$$A_{z}(x^{\mu},z) = \sum_{n=0}^{\infty} \varphi^{(n)}(x^{\mu}) \underline{\phi_{n}(z)}$$

	$B_{\mu}^{(1)}$	$B_{\mu}^{(2)}$	$B_{\mu}^{(3)}$	•••	$oldsymbol{arphi}^{(0)}$	$ arphi^{(1)} $	•••
JPC	1	1++	1	•••	0-+	eat	en
	ρ	a ₁	ρ΄	•••	π		

complete sets

$$-K(z)^{1/3}\partial_z(K(z)\partial_z\psi_n(z)) = m_n^2\psi_n(z) \qquad \phi_n(z) = \partial_z\psi_n(z)$$


$$\phi_n(z) = \partial_z \psi_n(z)$$

[T.Sakai and S.S. 04]

 $\psi_n(z)$: eigenfunction m_n^2 : eigenvalue \Rightarrow mass² of $B_u^{(n)}$

First excited massive modes

$SO(5) \times \mathbb{Z}_2$ invariant states:

5dim field SO(4) little gr

KK decomposition along z direction

$$h_{MN}(x^\mu,z)=\sum_{n=0}^\infty h_{MN}^{(n)}(x^\mu)\phi_n(z)$$
 etc.

lowest modes: (i,j,k = 1,2,3)

	$h_{ij}^{(0)}$	$h_{iz}^{(0)}$	$h_{zz}^{(0)}$	$A_{ijk}^{(0)}$	$A_{ijz}^{(0)}$	$oldsymbol{arphi}^{[1,2](0)}$
JPC	2**	1+-	0++	0-+	1	0 ⁺⁺ x 2

Second excited massive mode

lowest modes:

- Mass formula (naive shortcut)
 - Flat space-time limit:

Massive particle in curved space-time

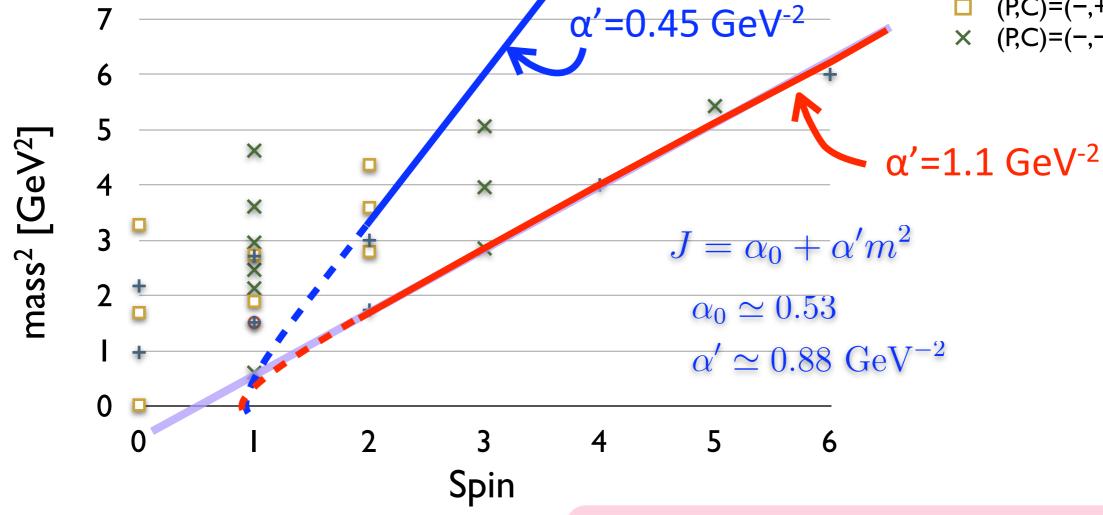
$$S = -m_0 \int \sqrt{g_{tt}} \, dt = -m_0 (1+z^2)^{1/4} \int dt$$
 particle in potential: $V(z) = m_0 (1+z^2)^{1/4}$

$$M_n \simeq m_0 + \frac{1}{\sqrt{2}} \left(n + \frac{1}{2} \right) M_{KK} + \mathcal{O}(\lambda^{-1/2})$$
 $n = 0, 1, 2, \cdots$

harmonic oscillator approx.

More careful analysis shows that the O(1) term is not affected by the RR-flux, α' correction, etc.

Comparison with data

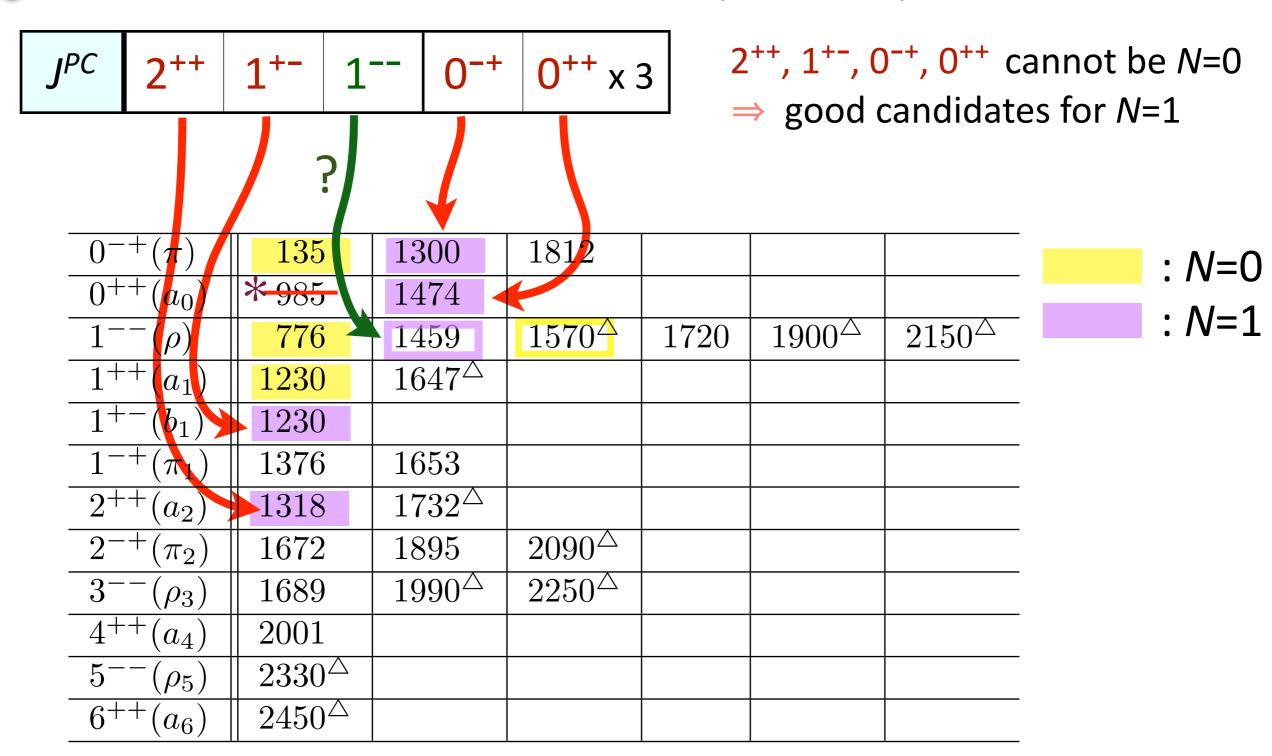

Massless mode

[T.Sakai and S.S. 04]

		B_{μ}	(1)	$B_{\mu}^{(2)}$	2)	$B_{\mu}^{(3)}$	$B_{\mu}^{(3)}$	•••	$oldsymbol{arphi}^{(0)}$		
	JPC	1		1++		1	1++	•••	0-+		
		ρ)	a 1		ρ΄	a' ₁	•••	π		
	mass (MeV)	[77	' 6]	118	9	1607	2024	•••	0		
experi	, , 11		76	1 /		1	} ?	1720	1000	9150	Δ
	$\frac{1^{}(\rho)}{1^{++}(a_1)}$	123	76 30	141 164			570 ^	1720	1900	2150	<u> </u>

Regge trajectory

+ (P,C)=(+,+)• (P,C)=(+,-)• (P,C)=(-,+)× (P,C)=(-,-)


$$M_n \simeq \sqrt{\frac{N}{\alpha'}} + \frac{1}{\sqrt{2}} \left(n + \frac{1}{2} \right) M_{KK}$$

$$\int J \simeq 1 + \alpha' M^2 - \frac{\alpha'}{\sqrt{2}} M_{KK} M + \mathcal{O}(\lambda^{-1})$$

$$(\text{for } N \ge 1)$$

- If we use f_{π} to fix α' , we obtain $\alpha' = 0.45$ GeV⁻². This is unfortunately too small.
- If we set $\alpha'=1.1$ GeV⁻² we get very good fit.

• First excited states (N=1, n=0)

- degenerate around 1300 MeV
- \bullet * a_0 (980) is considered to be a four quark state.

Second excited states (N=2, n=0)

- degenerate around 1700 MeV
- prediction ?
- \bullet * π_1 (1400) is claimed to be a four quark state. (could be hybrid)

Summary

$0^{-+}(\pi)$	135	1300	1812			
$0^{++}(a_0)$	985	1474				
$1^{}(\rho)$	776	1459	1570^{\triangle}	1720	1900^{\triangle}	2150^{\triangle}
$1^{++}(a_1)$	1230	1647^{\triangle}				
$1^{+-}(b_1)$	1230					
$1^{-+}(\pi_1)$	1376	1653				
$2^{++}(a_2)$	1318	1732^{\triangle}				
$2^{-+}(\pi_2)$	1672	1895	2090^{\triangle}			
$3^{}(\rho_3)$	1689	1990^{\triangle}	2250^{\triangle}			
$4^{++}(a_4)$	2001					
$5^{}(\rho_5)$	2330^{\triangle}					
$6^{++}(a_6)$	2450^{\triangle}					

: N=0

: N=1

: N=2

: 4 quarks

I think this is non-trivial. What do you think?

5 Discussion

- Mesons are Strings
- Wikipedia says:

Problems and controversy

Although string theory comes from physics, some say that string theory's current untestable status means that it should be classified as more of a mathematical framework for building models as opposed to a physical theory.

..... Yet, for all this activity, not a single new testable prediction has been made, not a single theoretical puzzle has been solved.

Don't criticize string theory in this way anymore!