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Introduction

● Supersymmetry is well-known to soften UV divergences in QFT. Indeed, 
D=4, N=4 SYM is UV finite. But what about the non-renormalisable case?

● This subject was once thought to have been closed (c. 1990). Such theories 
were expected to diverge at some loop order; the D=7 L=2 MSYM Marcus,Sagnotti 
divergence agreed with predictions; higher loop computations were deemed 
impossible, and in any case the focus had switched to string theory. 

● More recently, new methods have allowed higher loop calculations to be 
made, and “unexpected” finiteness results have reopened the debate.

● In this talk it will be argued that there are no miracles – the finiteness results 
can be understood in terms of the symmetry properties of the invariants that 
can arise as possible counterterms.

● These can be divided into two classes: D-terms and F-terms. The former 
correspond to full superspace integrals and are numerous, while the latter 
correspond to subsuperspace integrals, and there are only a few of them. 
They are also known as short or BPS invariants.

● D-terms are not protected by any conventional field theory argument.



4

● The invariants we shall be interested in are expressions of the form F4 or R4, 
or higher powers, and possibly involving extra derivatives, together with their 
susy partners.

● There are further requirements on a putative counterterm than its just being 
supersymmetric. This can be easily understood using superspace non-
renormalisation theorems (NRTs). Suppose a theory can be formulated in 
off-shell superfields, then any divergence will be given by a local integral 
over the full superspace. For gauge theories, the background field method 
also implies that the integrands should be gauge-invariant functions of the 
background fields (excluding prepotentials). Grisaru, Rocek, Siegel;        Grisaru, Siegel

● For N=1 D=4 this rules out counterterms of the form ∫d4x d2θ f(φ), where φ is 
a chiral field. This is the prototype F-term.

● For D=4 N=2 SYM a D-term counterterm would have to be of the form      
∫d4x d8θ L, where L has dimension zero, and there are no such objects. So 
no divergences. (The action, ∫d4x d4θ Tr(W2), is an F-term). 

● For technical reasons there is a one-loop exception, so N=2 SYM is finite 
except at one loop. N=4 is finite because the one-loop divergences cancel.   
                                                                                                  PH, Stelle, Townsend
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● In D=4 supergravity is finite at L=1,2, even for N=1. The first counterterm one 
can construct is R4 which can occur at three loops. (The superficial degree of 
divergence of a diagram in gravity is (D-2)L +2).                   Deser, Kay, Stelle

● R4 is a D-term for N≤ 4, but an F-term for N>4.

● So we might expect it to be protected in N>4, but there is a problem. The NRT 
applies for the number of susies, M say, that can be linearly realised off-shell 
(the algebra closes without the use of the equations of motion). In the early 
1980s it was thought that the best one could do was to realise half of the 
susies linearly (so M=4 for N=8 MSG).                                            PH, Stelle, Townsend

● This led to the prediction that MSYM would diverge first at L=1,2,3,4 loops in 
D=8,7,6,5 resp. The invariants are F4,d2F4,d2F4 and F4 resp.     PH, Stelle

● In N=8 SG, the R4 invariant can be written as a d16θ integral, and so is 
apparently not protected if only M=4 can be linearly realised.Kallosh; PH, Stelle,Townsend

● If we had had an off-shell version of the theory with N=8 then there would have 
been no problem in declaring that the first divergence could occur at L=7. 
Indeed there is no problem in constructing such invariants even in the full 
theory and with E

7
 symmetry.                                         PH, Lindstrom; Kallosh, 

● Note that the first divergence must also be invariant under the on-shell non-
linear susies.
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● Over the last decade or so new, unitarity based computational techniques 
have allowed explicit calculations to be pushed to a much higher loop order.

Bern, Dixon, Kosower

● In MSYM it has been shown that ½ BPS invariants are finite, including F4 at 
L=4 loops in D=5.  More recently, a certain ¼ BPS counterterm, Tr2(d2F4), 
has been shown to have a zero coefficient in D=6 L=3.

          Bern,Dixon,Dunbar, Perelstein, Rozowsky;                         Bern,Carrasco,Dixon,Johansson,Roiban

● In supergravity, N=8 finite at L=3 in D=4   (d16θ   → R4)  ½ BPS

Bern,Carrasco,Dixon,Johansson,Kosower,Roiban

● MSG finite at L=4 in D=5  (d28θ → d6R4)  1/8 BPS

Bern,Carrasco,Dixon,Johansson,Roiban

● But note that there are F-term divergences in D=6,7,8

● Recently, a manifestly supersymmetric approach based on pure spinor 
quantum mechanics has been proposed.  Confirms and extends the MSG 
results of Bern et al.

Bjornsson,Green
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● In MSYM one can improve superspace NRT predictions by using the 
harmonic superspace formalism which allows ¾ susies (i.e. 12) to be 
linearly  realised. This explains the D=5 L=4 finiteness result but not the L=3 
D=6 one.                                           Galperin, Ivanov, Kalitsin, Ogievetsky, Sokatchev;        PH, Stelle

● In MSG the status of off-shell harmonic superspace formulations is unclear 
and difficult to analyse.

● Algebraic renormalisation theory (ART) offers another approach to 
restricting the allowed counterterms. The quantisation is in components. 
Each putative counterterm can be thought of as a D-form in D dimensions, 
L

D
. Susy (BRST) variations then yield a series of forms L

D-1,1
, L

D-2,2
, etc, 

where the second index labels the susy ghost number. The whole series 
can be interpreted as a cocycle of the operator d

0
 + s, the sum of the 

spacetime exterior derivative and the susy BRST operator. The algebraic 
NRT states that any allowed counterterm must have the same cocycle 
structure as that of the action.                       

● For MSYM this gives the same results as harmonic superspace, namely that 
½ BPS operators are protected, but not ¼ BPS. ½ BPS operators are also 
protected by ART in MSG.                                                                   BHS
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● An explanation of the MSYM finiteness results using pure spinors has also 
been given.                                               Berkovits,Green,Russo,Vanhove;  Bjornsson,Green

● To summarise, the difficulty lies with the F-term counterterms in MSG. Which 
ones are protected and which are not? How do we construct them, and what 
are their cocycle structures?

● The discussion so far has made little mention of duality symmetries, but it 
turns out that these are the key to resolving these problems.

● The importance of dualities in this context has been emphasised for some 
time in the string theory approach.

Green,Russo,Vanhove 

● In the past year there have been a number of developments from various 
points of view

● The string theory discussion has been strengthened.   Green,Russo,Vanhove               
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● It has been pointed out that E
7
 can be preserved in perturbation theory, at the 

cost of manifest Lorentz invariance. Duality symmetries can therefore be 
expected to hold in all dimensions where there are no anomalies. Indeed, in 
odd dimensions, they are symmetries of the spacetime Lagrangian.

Bossard, Hillmann, Nicolai             

●  E
7
 violation in N=8 D=4 R4 .                                           Broedel, Dixon 

● The lack of E
7
 invariance for R4 has been confirmed by an argument using 

string theory and dimensional reduction.                       Elvang, Kiermaier

● In two recent papers the discussion has been extended to other short 
invariants.

BHS;                                              Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger

● The upshot is that imposing duality symmetries is more restrictive than had 
been thought, and its implications for the onset of UV divergences are in line 
with explicit computations. It also makes predictions beyond current unitarity 
computations; for example, N=8 should be finite at six loops.
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Linearised F-term invariants in MSG

Focus on D=4 N=8. In the linearised theory the field strength superfield is 
W

ijkl
 in the 70 of SU(8). It is an antisymmetric, self-dual  fourth-rank tensor. It 

obeys the constraint DW=Λ, where Λ is the spinor in the 56 of SU(8).

      Its components are W→Λ→F→Ψ→R (Weyl tensor). All possible short            
      invariants  are given by integrating W4 in various representations over            
      subspaces with odd dimension 16 (R4, ½  BPS), 24 (d4R4, ¼ BPS) and           
      28 (d6R4, 1/8 BPS). 

      For example, for the R4 invariant, one takes W4 in the  232,848 rep of SU(8),  
      or [0004000] in Dynkin labels, or 4 x 4 square YT. 

      Kallosh;       PH, Stelle, Townsend

      The full classification was  obtained  using superconformal methods. 

      Drummond, Heslop, PH,Kerstan  +   DHH

     It has also been obtained from scattering amplitudes.

      Elvang, Freedman, Kiermaier
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● These F-terms can also be written as harmonic superspace integrals.

● We have D
i 
W

jklm 
= D

[i 
W

jklm]
, so that W

1234
 is annihilated by D

1
...D

4
. It is also 

killed by Ḋ5,...,Ḋ8. So the integral ∫ d4x d16θ (W
1234

)4 is supersymmetric, where 
the integration is over the coords that W

1234
 depends on.

● This is not obviously SU(8) invariant but we can remedy this by making an 
SU(8) transformation of the integrand and then integrating over the group, or 
rather over the coset defined by the isotropy group S(U(4)xU(4)). 

● The resulting expression is then an integral of a single-component object 
over a subsuperspace given by a subset of the odd coordinates, and is 
manifestly SU(8) invariant.

● Similar constructions can be made for the other two cases. This is the 
appropriate generalisation of chirality for this type of invariant.
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Difficulties with non-linear F terms

Example: IIB SG in D=10. At the linearised level there is a chiral superfield φ 
(also satisfying a fourth-order reality constraint), and the R4 invariant is the 
integral over chiral superspace of φ4, ∫d10x d16Ө φ4. 

Although we know a good deal about the full invariant from component 
studies we do not know a complete formula for it.

Green, Sethi

The obstruction to constructing a straightforward superspace version is the 
absence of a chiral measure in the full theory. The tangent spaces split 
invariantly into three: the even part and two 16-dim odd parts, primed and 
unprimed, say, which are complex conjugates, the structure group being 
Spin(1,9) x U(1):

                                  T=T
0
 + T

1
 + T'

1
 

In order for there to be a chiral structure we require that the graded 
commutator of two unprimed odd vectors should also lie in the unprimed 
space. But this is not the case due to the fact that there is a component of 
the dimension one-half torsion tensor,

 
T

αβ
γ', that is non-zero.

PH, West                               de Haro, Sinkovics, Skenderis                                          Berkovits, PH
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What happens in D=4? It turns out that, for similar reasons, there are no 
(harmonic superspace) measures for either ½ or ¼ BPS invariants in N=8, 
that is, R4 (L=3) and d4 R4 (L=5). In N=6 there is also no L=3, R4 measure. 
BHS 

Non-linear measures do exist for L=6 (d6R4) in N=8 and L=4 (d2 R4) in N=6, 
as well as for L=3 in N=5. These are integrations over 4(N-1) θs.

In these cases, however, there are no duality invariant integrands available. 
This is because the measures carry R-charges and the only dimension zero 
fields available to soak these up are the scalars that transform under the 
duality group.

Note that this discussion already implies that L=6 in N=8, L=4 in N=6 and 
L=3 in N=5 will be protected, provided that the lower-order counterterms 
have zero coefficients. 

The fact that some measures do not exist, although suggestive,  does not by 
itself rule out the corresponding invariants' being duality invariant nor does it 
necessarily imply that the corresponding divergences cannot occur.
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ART & Ectoplasm

Basic idea: in D-dimensional spacetime a superinvariant can be obtained 
from a closed superspace D-form, L

D, 
by 

                           I=∫ εmn.... L
mn.......

(x,0)

Voronov;   Gates;    Gates, Grisaru, Knutt-Wehlau, Siegel

Easy to see that this does define a susy invariant since, under a superspace 
diffeomorphism, a closed form changes by the d of something. Evaluated at 
θ=0 this gives a total derivative. If L

D
 is exact I=0, so we are interested in 

cohomology (but purely algebraic).

In supergeometry we have an invariant splitting of the tangent bundle into 
even and odd, T=T

O 
+ T

1, 
with corresponding basis forms EA=(Ea,Eα), where 

EA=dzM E
M

A = dxm E
m

A + dθμ E
μ

A . We can identify E
m

a(x,o)=e
m

a  and 
E

m
α(x,0)=ψ

m
α (gravitino). 

Then, for example for D=4, we have

I=∫ εmnpq( e
q
d..e

m
a L

abcd
 + 4 ψ

q
δ..e

m
a L

abcδ 
 +.........ψ

q
δ..Ψ

m
α L

αβγδ 
)
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We can analyse closed forms with the aid of superspace cohomology:

space of n-forms, Ωn  = Σ
p+q=n

 Ωp,q, , spaces of (p,q) forms

The exterior derivative splits into various cpts:

                            d=d
0
 + d

1 
+ t

0
 + t

1
 

with bi-degrees (1,0), (0,1),(-1,2), (2,-1) resp. The first two are even and odd 
differential operators, while the third is an algebraic operation involving the 
dimension-zero torsion (gamma matrix). The vector index on the torsion is 
contracted with one of the even indices on the form, while all (q+2) odd 
indices, on the torsion and the form, are symmetrised. 

● t
1
 is also algebraic and uses the dimension 3/2 torsion (gravitino field 

strength), but doesn't play a significant role. 

● The equation d2=0 splits into various cpts:

                                                 t
0
2=0        

                                    d
1
 t

0
 + t

0
 d

1
=0       

                           d
1
2 + d

0
 t

0
 + t

0
 d

0
 = 0 
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The first of these means that we can define cohomology groups H
t
p,q.

We can also define a spinorial derivative, d
s
, that acts on H

t
p,q , by 

d
s
[ω

p,q
]=[d

1
ω

p,q
]. It is easy to see, using the other two equations, that this is 

well-defined and squares to zero. We can therefore define the spinorial 
cohomology groups H

s
p,q.

These groups generalise spaces of multi pure spinors, and pure spinor 
cohomology respectively.

Bonora, Pasti, Tonin:   PH;    Berkovits; Cederwall, Nilsson, Tsimpis;    PH, Tsimpis

The equation dL
D
=0 can be analysed  cpt by cpt, starting from the lowest 

dimension (smallest p) and  solutions can be obtained in terms of spinorial 
cohomology groups. If the lowest non-zero cpt is L

p,q
 say, then the full D-form 

will be given by L
p,q

, L
p+1,q-1

, .....L
D,0  

. 

D-forms like this can be identified with the cocycles that are derived in ART.
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We shall call a cocycle standard if all of its higher cpts are determined from 
the lowest non-zero one directly. Essentially this means that the higher cpts 
are given by acting on the lowest non-zero one by powers of D.

Otherwise, a cocycle is non-standard. 

● The algebraic NRT states that an invariant is protected if its cocycle has a 
different structure to that of the action.

● The action cocycle has the same structure as any cocycle for a full 
superspace integral → D terms not protected. These cocycles are always 
standard.

● Protected invariants have different cocycle structures to those for full 
superspace integrals.

● Invariants with non-standard cocycles are always protected.
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To illustrate this let us consider N=1, D=10 superspace. Each standard 
cocycle has a lowest cpt of the form L

5,5
=Γ

5,2
 M

0,3
, with d

s
 [M

0,3
]=0. In D<10 

such a cocycle will reduce to one that has lowest cpt L
D-5,5

. In MSYM, the 
action cocyle with have this structure for all D>4.

On the other hand, in e.g. D=6, the lowest cpt of the ½ BPS invariant F4 
turns out to be in L

0,6
 rather than L

1,5
. Both of these cocycles are standard, 

but the one associated with F4 differs from that of the action, in fact it is 
longer, and we conclude that it is protected by ART.

In D=10, however, the F4 invariants are no longer given by BPS superfields. 
Instead they come from Chern-Simons type forms. The eleven-form 
W

11
=H

3
F4 can be written as dK

10
, where K

10
 is a gauge-invariant 10-form, and 

also as dZ
10

, where Z
10

=H
3
 Q

7
, and where Q

7
 is a CS 7-form, dQ

7
=F4. In flat 

sspace H
3 
~Γ

1,2
. So the closed 10-form is L

10
=K

10
-Z

10
. For the double-trace 

invariant we find that the lowest non-zero cpt of this is L
4,6

 so that the cocycle 
has the following structure

                L
4,6

 → L
5,5

 → L
6,4 

→ … → L
10,0                                                                                                            

                                             ↑

                                              
M

0,3
                                    Bossard, Howe, Lindstrom, Stelle, Wulff
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Duality symmetries in MSG

● Ectoplasm. We have seen that the ½ and ¼ BPS counterterms in D=4 MSG 
do not have corresponding non-linear measures. By itself, this does not 
necessarily mean that these invariants do not exist, nor that they necessarily 
violate E

7
. But their cocycles must presumably be non-standard; if so,  they 

can be ruled out as UV divergences by ART. 

We can also say something about their E
7
 properties using our knowledge of 

the linearised invariants which do have standard cocycles.  A full, non-linear 
cocycle for an E

7
 invariant will have cpts L

0,4
, L

1,3
, ..., L

4,0
 which are 

separately E
7
 invariant. In other words, all cpts of L

4
, wrt a preferred basis, 

will be constructed from superspace tensors that do not involve any factors 
of undifferentiated scalars. This is something we can test at the linearised 
level. The top component, L

4,0
, whose integral is the linearised invariant, is 

shift invariant, but we also need to consider its “soul”. 

● Indeed, one can see, from the ectoplasm formula, that the linearised L
0,4

 will 
make a contribution to the 8-pt function.
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As an example consider R4. In D=4 we can compute L
0,4 

by evaluating 
D12(W4)

[000400]
. One can explicitly check that this involves undifferentiated Ws, 

and so is not E
7
 invariant even at the linearised level. 

For the other two linearised BPS invariants, d4R4 and d6R4, this analysis 
does not give the same result. This is rather easy to see. For example, the 
d4R4 invariant can be written as the integral over 16 θs of (∂ W)4

[0004000]
, where 

the spacetime derivatives are contracted in pairs (“pseudo-1/2 BPS”). 
However, this certainly does not prove that the full invariants are E

7
 

symmetric.

We can also use this type of analysis for N<8. In fact, we find that the 
linearised N=6, L=3,4 and N=5, L=3 invariants are not invariant under 
linearised duality transformations. (The groups are SO*(12) and SU(5,1) 
resp.) This shows that these invariants cannot correspond to UV 
divergences.
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● Dimensional reduction. Start with R4 in D=11, no scalars, reduce to D=4, and 
then examine the scalar factor multiplying R4 in D=4.

The idea is to examine whether this factor is constant or not. If the latter, 
then the term cannot be E

7
 invariant. 

We need to do two things:

(1) dualise the antisymmetric tensors where necessary to obtain the 
complete set of scalars

(2) impose SU(8) symmetry. This can be done by averaging over the group 
modulo the trivially preserved subgroup SO(7).                 Elvang, Kirmaier

Step (2) is difficult to do in practise, but we can circumvent this problem by 
observing that such scalar pre-factors, f say, obey differential equations on 
the scalar coset manifolds, e.g. SU(8)\E

7
 for D=4. So we get equations of the 

form (cf. string theory  Green,Russo,Vanhove)

                                   (Δ + k) f=0

where k is a constant and Δ is the Laplacian on the coset. So for f to be 
constant we require that the constant k must vanish. If not, duality symmetry 
is violated.
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This argument depends on the uniqueness of the R4 invariant in D=4, 
because if there were a second one, it might be possible to find a duality-
invariant combination. At the linearised level this would show up at more 
than four points, i.e. there would have to be an independent linearised 
invariant with the same dimension but with more fields. 

So the claim that a given counterterm in D=4 is not E
7
 invariant can be 

reduced to showing that the relevant constant term in the Laplace equation 
is non-zero.

The method can be adapted to discuss the duality properties of other 
invariants in D=4. In fact, we can unify the discussion by noting that R4 in 
D=8(L=1), d4 R4 in D=7 (L=2) and d6R6 in D=6 (L=3) must have trivial scalar 
factors as they correspond to known divergences. We can then predict that 
the scalar factors for these invariants will be non-trivial in D=4 and hence 
that E

7
 will be violated. 
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Explicitly, reducing from D to 4 for d2nR4, we find that the scalar factor f
n
(φ) 

satisfies the Laplace equation

               (Δ + (D-4) (D-2)-1n(32-D-n))f
n
(φ) = 0

The argument can be turned around to show that the only BPS divergences 
in higher dimensions are these three.                                 
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      BPS invariants in MSG that could arise as counterterms for     
    log divergences . Red: known divergences; yellow, known to     
  be finite (unitarity); turquoise, predicted to be finite.

      

      D
L

    4    5     6     7    8     9    10    11

          
   1

          
    R4

          
   2

          
   R4

          
  d4R4

          
  d6R4

          
   3

          
   R4

          
  d6R4

          
   4

          
  d6R4

          
   5

          
 d4R4

          
   6

          
 d6R4
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Conclusions
● It has taken some time, but we are now confident that the question of UV 

divergences for short invariants in MSG has been resolved. The key extra 
ingredient is the use of duality symmetries.

● The only such divergences are 

D=8, L=1:  R4 ;      D=7, L=2:  d4R4   and  D=6,L=3: d6R4

● For D=4, N=8 we have been able to argue the absence of BPS divergences 
in four ways:

- E
7
 + dim red + uniqueness of linearised invariants for D=4

_ Ectoplasm and linearised E
7
 for L=3

- Ectoplasm + ART for L=3,5

- Existence of 1/8 BPS measure + E
7
 for L=6 

● There are no BPS divergences in D=4 for N=5,6. This can also be seen from 
ectoplasm, ART, duality symmetries and measure properties.
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● Remaining questions:

● Can there be truly unexpected, i.e. non-BPS, UV cancellations?

● In D=4 N=8 these invariants start at L=7. The unique E
7
 invariant one is the 

volume of superspace. This is known to vanish for N=1,2,3 on-shell, but 
there is no reason why this should be so for N>3. For N=4 it should give R4, 
and for higher N, R4 with derivatives plus higher-point contributions.

● It has been suggested that N=4 SG might be UV finite at L=3, i.e. the R4 

counterterm should have a zero coefficient. This is a preliminary conjecture 
and has yet to be confirmed.        Dunbar, Hertle, Perkins

Moreover, pure spinor methods indicate that N=8 will diverge at L=7. Bjornsson, 
Green

● It has also been suggested that D=5 MSYM might be UV finite via a 
relationship to a superconformal theory in D=6. Douglas; Lambert, Papageorgakis, Schmidt-
Sommerfeld

● We would also like to understand how to construct the complete BPS 
invariants, at least in principle. The absence of appropriate measures in 
most cases makes this a difficult problem to investigate, but it might be that 
superspace cohomology could help.
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