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Phenomenology of D-branes
at Toric Singularities



Disclaimer: This talk is somewhat 
independent of the LHC.

... string theorists could have talked about this 20 years ago
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Heterotic String Theory

e.g. intersecting branes in IIA,
magnetised branes in IIB

Type II brane models

0502005, 0702094

moduli stabilisation

under control in Type IIB
(KKLT, LVS)



Perspective: Local Brane Models (within IIB)

... bottom-up model building

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)

Modular String Model Building (in LARGE volume)



Standard (like) Models
with fractional (D3/D7) branes

at singularities

and what can we get?

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)

E



Brane models: how good are they to date?

chiral matter, adjoint and (bi-)fundamental matter

U(n), SO(n), Sp(n) gauge groups (exceptional gauge 
groups in F-theory)

models with the correct matter content

BUT structure of yukawa couplings, e.g.:
    hierarchy of masses, ckm matrix

e.g. madrid model, 0105155

... this applies also to F-theory models



Content
Why branes at singularities, what gauge theories 
do we get?
      ...background and history

Studying gauge theories with dimers

What general properties do gauge theories of 
the infinite class of toric singularities obey?

How good are the models regarding flavour 
physics, i.e. can we get the CKM-matrix?
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Content
Why branes at singularities, what gauge theories 
do we get?
      ...background and history

Studying gauge theories with dimers

What general properties do gauge theories of 
the infinite class of toric singularities obey?

How good are the models regarding flavour 
physics, i.e. can we get the CKM-matrix?

Mass structure
(0, m, M)

Upper bound of
#families (≤3)

yes, we can...
there is enough structure around
to build conrete models with the right ckm.



Motivation for branes at singularities

Local models -> a lot of information without addressing 
moduli stabilisation

Effective field theory (although distances below string 
scale) well under control

Gauge coupling unification (in principle)

Powerful (dimer) techniques for toric singularities

Gauge theories highly restricted (unlike intersecting 
branes in IIA)
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E

Hanany et al.



Classic Example: 

ni D3-branes: U(n1)xU(n2)xU(n3)

mi D7-branes: U(m1)xU(m2)xU(m3)

Arrows: bi-fundamental matter

Anomaly cancellation

Hypercharge:

. C3/Z3

3[(n1, n̄2, 1), (1, n2, n̄3), (n̄1, 1, n3)]

D3 matter content:
m2 = 3(n3 − n1) + m1,

m3 = 3(n3 − n2) + m1

Qanomaly−free =
∑

i

Qi

ni

aiqu: 0005067
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Pati-Salam Trinification

Left-Right

Standard-Model



e.g. left-right model

3 families SU(3)xSU(2)LxSU(2)RxU(1)B-L

B-L normalisation 32/3:

+ 3 Higgses -> unification at 1012 GeV

Proton stability from global U(1) B-L

embedded in compact CY

sin2 θ =
3
14

= 0.214



e.g. left-right model

3 families SU(3)xSU(2)LxSU(2)RxU(1)B-L

B-L normalisation 32/3:

+ 3 Higgses -> unification at 1012 GeV

Proton stability from global U(1) B-L

embedded in compact CY

sin2 θ =
3
14

= 0.214

details in Aldazabal, Ibanez, Quevedo, 
Uranga hep-th/0005067



What’s bad about the model?



Problem: Yukawa couplings

W = εijk Qi
LHj

uuk
R =




Q1

L
Q2

L
Q3

L








0 Z12 −Y12

−Z12 0 X12

Y12 −X12 0








u1

R
u2

R
u3

R



 .

Masses: (0, M, M)
M2 = |X12|2 + |Y12|2 + |Z12|2

Resolution: Embed into singularities with more structure 
(in this case del Pezzo 1)
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Y12 −X12 0


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


u1

R
u2

R
u3

R



 .

Masses: (0, M, M)
M2 = |X12|2 + |Y12|2 + |Z12|2

Resolution: Embed into singularities with more structure 
(in this case del Pezzo 1)

cmq: 0810.5660
.C3/Z3 = dP0
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Orbifold Singularities

del Pezzo singularities (P2 blown-up), Conifold
 
-> TORIC SINGULARITIES

non-toric singularities

infinite class, techniques

limited techniques

few suitable for model building



Gauge theories probing toric singularities

Toric CY-Cone:
represented as T3 fibration
over rational polyhedral cone
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cone)

D7 branes (wrapping 4-cycles
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Gauge theories probing toric singularities

Toric CY-Cone:
represented as T3 fibration
over rational polyhedral cone

D3 branes (at the tip of the 
cone)

D7 branes (wrapping 4-cycles
passing through singularity)

Gauge theories of toric singularities
are always quiver gauge theories!

 

uR

QL

Hu

Hd dR

1

32

m

6!m

3!m

WARNING
only matter content,

dimer for superpotential



Question:

How to determine the gauge theory associated to a 
given singularity (inverse problem)?
   -> most efficient solution via dimers

Aside: Dimer techniques useful in understanding gauge theories 
of M2 branes at singularities (no inverse algorithm)

0503149, 0504110, 0505211, 0511063, 0511287, 0604136, 0706.1660, 0803.4474
Hanany, Kennaway, Franco, Vegh, Wecht, Martelli, Sparks, Feng, He, Vafa, Yamazaki
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Geometry: Toric Diagram Gauge Theory: Dimer
inverse slopes in toric diagram

winding numbers of zigzag paths
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Dimer Language II
Reading off the gauge theory

Faces 
   = gauge groups

Intersection of zigzag paths
   = bi-fundamental matter

Vertices (faces orbited by zigzag paths) 
   = superpotential terms

W = X13X32X21 −X14X43X32X21



merge zigzag paths according 
to cutting of toric diagram

caveat: additional crossings, 
concrete prescription to be 
avoided by precise operations

Dimer Language III: How do I get a dimer?

embed toric singularity in 
orbifold of conifold whose 
dimer is known (chess-board).

collaps cycles in singularity
(= cutting toric diagram)

Gulotta 0807.3012
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e.g. del Pezzo 3
1 2 1

3 4

5 6 5
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! !
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! !

" "
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WdP3 = −X12Y31Z23 −X45Y64Z56 + X45Y31Z14ρ53 + X12Y25Z56Φ61

+X36Y64Z23Ψ42 −X36Y25Z14ρ53Φ61Ψ42
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
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
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Application of Gulotta’s algorithm
to toric del-Pezzo surfaces
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Gulotta’s dimers = Traditional dimers



Philosophy: Use this algorithmic view of 
gauge theories to find general features for 
gauge theories probing toric singularities!

Are there properties revealed that are not 
apparent from looking at the superpotential 

and are they useful for model building?
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Restricting the # of families
The dimers obtained with the operations 
of Gulotta are highly restricted 
(otherwise: inconsistent dimers)

example: additional crossing (-> mass term)

without add. crossings 3 (left),
with add. crossings 4 but unique (right)

A B

e.g.
1 2

3 4

4 6

7 8

! !

" "

! !

" "

maximum of 4 fields
(no add. branches)

between 2 gauge groups

-> 4 families
(unique F0)
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Upper bound on the number of 
families given by the physically 

observed number with one 
exception (4 families in F0). 

Can you break this bound?

requires to go to non-toric phases/singularities. 
there are examples with more families.



Mass Hierarchies

Known result: dP0 (0, M, M); dP1 (0, 
m, M)

the zero eigenvalue is present in all 
toric dPs

appearing due to vanishing 
determinant of Yukawa matrix

Is the structure (0, m, M) generic 
in models at toric singularities?

CMQ: 0810.5660

m = |Y12|2 +
|φ16|2

Λ2
(|X62|2 + |Z62|2)

M = |Y12|2 + |X62|2 + |Z62|2
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Mass hierarchies II

How do we choose “quarks”?
one left & right handed quark in every 
coupling with quarks.
-> every superpotential term has two 
quarks
-> quarks aligned in closed lines

Connected or disconnected lines?
connected to be able to higgs to common 
gauge group

Maximal or non-maximal number of quarks?
after Higgsing the same result of vanishing 
determinant
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connected to be able to higgs to common 
gauge group

Maximal or non-maximal number of quarks?
after Higgsing the same result of vanishing 
determinant
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general structure (0, m, M)



general structure (0, m, M)

non-vanishing mass?



general structure (0, m, M)

non-vanishing mass?

corrections to Kähler potential, deformation of singularity (non-toric)



... back to model building



Flavour mixing: CKM
Aim: construct models with the correct flavour 
mixing among quarks

2 types of models: 
a) up & down from D3D3 states

... we have a non-trivial 
superpotential (Yukawa 

structure) in these 
singularity models. 

What does this imply 
for model building?

VCKM =




1 ε ε3

ε 1 ε2

ε3 ε2 1



 .

b) up from D3D3 states 
   & down from D3D7 states
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A left-right model
with the right CKM
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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In dP1 we get almost the right CKM.
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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A left-right model
with the right CKM

The CKM is given in terms of ratios of Higgs vevs. 
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In dP1 we get almost the right CKM. In dP2 we get the right CKM.
CP violation: with correct CKM, Jarlskog invariant J≈ε6
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Summary

D-branes at toric singularities interesting class of models:

Upper bound of 3 families in toric singularities

Mass Hierarchies are possible, generic structure (0, m, M).

Sufficient structure for realistic CKM-matrix & CP-violation 
(concrete models with this structure)

Open questions: compact models,
                   a completely realistic local model...

kdmq: 1002.1790



Seiberg duality in quivers and dimers
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