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Disclaimer: This talk is somewhat
independent of the LHC.

.. sString theorists could have talked about this 20 years ago
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under control in Type IIB
(KKLT, LVS)

e.g. intersecting branes in IIA,
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Perspective: Local Brane Models (within IIB)

... bottom-up model building

Modular String Model Building (in LARGE volume)

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)



Standard (like) Models
with fractional (D3/D7) branes
at singularities

e.g.: aldazabal, ibanez, quevedo, uranga (10 years ago),
verlinde, wijnholt (5 years ago)



Brane models: how good are they to date?

@ chiral matter, adjoint and (bi-)fundamental matter

@ U(n), SO(n), Sp(n) gauge groups (exceptional gauge

s a2 e model GISS)

® models with the correct matter content

® BUT structure of yukawa couplings, e.g.:
hierarchy of masses, ckm matrix

... This applies also to F-theory models



Content

@ Why branes at singularities, what gauge theories
do we get?
...background and history

@ Studying gauge theories with dimers

@ What general properties do gauge theories of
the infinite class of toric singularities obey?

@ How good are the models regarding flavour
physics, i.e. can we get the CKM-matrix?
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Motivation for branes at singularities

@ Local models -> a lot of information without addressing
moduli stabilisation

@ Effective field theory (although distances below string
scale) well under control

@ Gauge coupling unification (in principle)
@ Powerful (dimer) techniques for toric singularities

@ Gauge theories highly restricted (unlike intersecting
branes in IIA)
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Classic Example: CS/Zg

D3 matter content:
3[(?11, ﬁg, 1), (1, o, T_lg), (7_21, 1, ng)]
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@ n; D3-branes: U(n;)xU(nz)xU(ns)
@ m; D7-branes: U(m;)xU(m2)xU(ms)
® Arrows: bi-fundamental matter

@ Anomaly cancellation
Mo = 3(713 T n1) 5 m1,

ms = 3(ng — ne) + my

@ Hypercharge:
Qi
Qanomaly—free = Z E
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e.g. left-right model

@ 3 families SU(3)xSU(2).xSU(2)axU(1)s_L

3

& B-L normalisation 32/3: sin“6 = e 0.214

+ 3 Higgses -> unification at 10! GeV
@ Proton stability from global U(1) s-L

@ embedded in compact CY
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What's bad about the model?




Problem: Yukawa couplings

3 ) QlL 0 AP —Y12 u}%
W, = €ijk QEH&U% (Q%) (212 0 X12 ) (U%)

Q?i Yooin — X1 0

Masses: (0, M, M)
M? = | X55]% + Yol = |Z12]*

Resolution: Embed into singularities with more structure
(in this case del Pezzo 1)
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Masses: (0, M, M)
M2Z = [T Ve P o

Resolution: Embed into singularities with more structure
(in this case del Pezzo 1)




@ Orbifold Singularities

@ del Pezzo singularities (P2 blown-up), Conifold

-> TORIC SINGULARITIES

@ non-toric singularities
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Gauge theories probing toric singularities

Toric CY-Cone:

represented as T° fibration
over rational polyhedral cone

D3 branes (at the tip of the
cone)

D7 branes (wrapping 4-cycles
passing through singularity)
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Gauge theories probing toric singularities

Toric CY-Cone:

4
@ represented as T° fibration ’
over rational polyhedral cone
A —

@ D3 branes (at the tip of the

= WARNING

@ D7 branes (wrapping 4-cycles

passing through singularity) only matter content,

dimer for superpotential

Gauge theories of toric singularities
are always quiver gauge theories!




Question:

® How to determine the gauge theory associated to a
given singularity (inverse problem)?
-> most efficient solution via dimers

@ Aside: Dimer techniques useful in understanding gauge theories
of M2 branes at singularities (no inverse algorithm)
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Dimer Language II
Reading off the gauge theory

® Faces
= gauge groups

o Intersection of zigzag paths
= bi-fundamental matter

@ Vertices (faces orbited by zigzag paths)

. \ / . KDMQ 10
= superpotential terms \ \___
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Dimer Language II
Reading off the gauge theory

N7
@ Faces \'(
= gauge groups ﬁk

o Intersection of zigzag paths (A

= bi-fundamental matter

@ Vertices (faces orbited by zigzag paths)
= superpotential terms

N

W = X13X30 X017 — X14X43X32X91



Dimer Language III: How do I get a dimer?

@ embed toric singularity in @ merge zigzag paths according
orbifold of conifold whose to cutting of toric diagram

dimer is known (chess-board).
@ caveat: additional crossings,

@ collaps cycles in singularity concrete prescription to be
(= cutting toric diagram) avoided by precise operations
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Operations on the dimer

Operation 1:
(1,0) + (0,1) -> (1,1)

Operation 2:

(1,0) + (0,1) &

e L

I et iy =0

lob = Mo M= Wy




e.qg. del Pezzo 3

Wap, = —Xi12Y31203 — Xy5Ye42Z56 + Xas5Y31214p53 + X12Y95256Ps1
+X36Y64223V 42 — X36Y25214P53Pe1 Wi

X5 0 L A5z %% Y64 X36
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Z2s5 Y64V 42 —X19 0 Z56



e.qg. del Pezzo 3

Wap, = —Xi12Y31203 — Xy5Ye42Z56 + Xas5Y31214p53 + X12Y95256Ps1
+X36Y64223V 42 — X36Y25214P53Pe1 Wi

X5 0 L A5z %% Y64 X36
=l Yoo —Z14p53Pe1 V42 0 X12Pg1 ]

Z2s5 Y64V 42 —X19 0 Z56



Application of Gulotta’s algorithm
to toric del-Pezzo surfaces




Gulotta’s dimers = Traditional dimers




Philosophy: Use this algorithmic view of
gauge theories to find general features for
gauge theories probing toric singularities!

Are there properties revealed that are not
apparent from looking at the superpotential
and are they useful for model building?



bicting + S .
Restricting the # of famllle

@ The dimers obtained with the operations
of Gulotta are highly restricted
(otherwise: inconsistent dimers)

@ example: additional crossing (-> mass term)

@ without add. crossings 3 (left),
with add. crossings 4 but unique (right)
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(otherwise: inconsistent dimers)
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maximum of
3 fields in/out for
any gauge group

-> 3 families
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estricting the # of families a% o>

@ The dimers obtained with the operations
of Gulotta are highly restricted
(otherwise: inconsistent dimers)

@ example: additional crossing (-> mass term) .'

@ without add. crossings 3 (left), .
with add. crossings 4 but unique (right)

e.g.
3 maximum of 4 fields

| (no add. branches)
between 2 gauge groups

-> 4 families
(unique FO)




Upper bound on the number of
families given by the physically
observed number with one
exception (4 families in FO).
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Upper bound on the number of
families given by the physically
observed number with one
exception (4 families in FO).

requires to go to non-toric phases/singularities.
there are examples with more families.



Mass Hierarchies
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@ Known result: dPO (0, M, M); dP1 (O,
m, M)

@ the zero eigenvalue is present in all
toric dPs

@ appearing due fo vanishing
determinant of Yukawa matrix

o Is the structure (0, m, M) generic WA S X o2 4 | Zes?
iIn models at foric singularities? G162
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Mass hierarchies 11

@ How do we choose “quarks”?
one left & right handed quark in every
coupling with quarks.
-> every superpotential term has two
quarks
-> quarks aligned in closed lines

® Connected or disconnected lines?
connected to be able to higgs to common

gauge group

@ Maximal or non-maximal number of quarks?
after Higgsing the same result of vanishing
determinant
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general structure (O, m, M)

corrections to Kahler pb’ren’rial, deformation of singularity (non-toric)



... back to model building
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In dP1 we get almost the right CKM.
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In dP1 we get almost the right CKM.



A left-right model
with the right CKM

X 0 £14 —Y64
W=| Yk —Zyy 2802 0 X208
Z34 el a2

. M, g

After breaking of U(2)r

X3 Qe d B o — Yo X35 X5 D8, 78 Y X5
W=\ Y53 AT 0 Xih% Y31 +| Y v 2 Y
Z3s Yosh o= g ) 236 Z3s
The CKM is given in tferms of ratios of Higgs vevs. dP2:
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0 0 1 1 Ere €
A O AY S A 0
S o e e U e
T P P, 3 2
14 P61 12414 b 0 € (& 1
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In dP1 we get almost the right CKM. In dP2 we get the right CKM
CP violation: with correct CKM, Jarlskog invariant J=~€°®



Summary

@ D-branes at foric singularities interesting class of models:
@ Upper bound of 3 families in foric singularities
@ Mass Hierarchies are possible, generic structure (0, m, M).

® Sufficient structure for realistic CKM-matrix & CP-violation
(concrete models with this structure)

@ Open questions: compact models,
a completely realistic local model...




Seiberg duality in quivefs and dimers
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