N³ AND JUNCTIONS IN 6D (2,0) THEORIES

Stefano Bolognesi (Cambridge Univ.) Kimyeong Lee (KIAS)

June23, 2011, Cambridge

M THEORY

- **strong coupling limit of Type IIA superstring theory
- ** D0 branes are KK modes => 11-dim
- * 11d supergravity is low-energy dynamics
- purely quantum with 11d Planck constant as single parameter
- ** M2 and M5 branes as electric and magnetic objects of 3-form field: C_{MNP}

D3,M2 BRANES

- On N D3 branes, 4d max susy gauge theory of gauge group SU(N):
 - 4d SCFT with dof N^2 =adjoint matter
- - dof: $N^{3/2}$ < N^2 (partially bounded..)
 - From D2 branes: 3d gauge theory and strongly interacting quantum theory
 - ABJM theory of U(N)+k x U(N)-k

M5 BRANES

- ** Single M5 brane: (2,0), SO(5)_R Symmetry
 - Fields: Β_{μν} ,φι ,ψ_A: self-dual H=dB, *H=H
- ** (tensionless) self-dual strings $\hbar=1$
- ** Multiple N M5 branes: nonabelian, no covariant derivative: A_{N-1} type
- **** Two issues:**
 - How to define the theory ???
 - How to account d.o.f. N³???

ADE (2,0) THEORIES

- **type IIB on R¹⁺⁵ x K₃ near ADE type singularities: simple laced A_N, D_N, E₆, E₇, E₈
- N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN type

 N M5+ OM5: DN typ
- **SCFT, Nonabelian,

GRAVITY DUAL

**gravitational solutions of N M2 and N M5 branes, respectively: Klebanov and Tseytlin

Entropy:

$$S_{M_2} \sim N^{3/2} L^2 T^2$$

 $S_{M_5} \sim N^3 L^5 T^5$

SO(5) ANOMALY

- * Chiral Fields: B_{μν}, ψ_A
- single M5 with SO(5) F and curvature R

$$I_8(1) = \frac{1}{48} \Big[p_2(F) - p_2(R) + \frac{1}{4} (p_1(F) - p_1(R))^2 \Big],$$

**ADE type
$$I_8[G] = r_G I_8(1) + c_G \times \frac{p_2(F)}{24}$$
,

- # rank r_G and dimension d_G
- # dual Coxeter number hG
- # anomaly coefficient $c_G = h_G * d_G$

N-CUBIC

Group	r_G	d_G	h_G	$c_G/3$
$A_{N-1} = SU(N)$	N-1	$N^{2} - 1$	N	$\frac{1}{3}N(N^2-1)$
$D_N = SO(2N)$	N	N(2N - 1)	2(N-1)	$\frac{2}{3}N(2N-1)(N-1)$
E_6	6	78	12	312
E_7	7	133	18	798
E_8	8	248	30	2480

Table I: r_G , d_G , h_G and $c_G/3$ for simple-laced groups ADE

- # For large N, $c_{A_{N-1}} \approx N^3$
- Much bigger than adjoint representation
- **** Pants diagram?**

5D GAUGE THEORY

- * (2,0) theory on a circle of radius R₆
- 5-dim N=2 susy gauge theory in 5-dim $\frac{8\pi^2}{g_5^2} = \frac{1}{R_6}$
- # Instantons=Kaluza-Klein modes
- ** Instanton partons in the symmetric phase
- [™] N³ d.o.f. all hidden in KK modes???
- **Strongly coupled above energy $\frac{1}{NR_6}$

COULOMB PHASE

- Broken phase

M2 branes between M5 branes, both of which wrap the circle

- ** 1/4 BPS waves on monopole strings

 waves on M2 branes between M5 branes
- * 1/4 BPS dyonic instantons

waves on M2 branes between M5 branes, where both branes wrap the circle

More BPS Objects?

BPS EQUATIONS

- **SO(4)** spatial rotational symmetry
- **SO(5)** R-symmetry
- ** Lock SO(4) and SO(4) of SO(5)

$$E_1 = \Gamma_{8127}P_+, \ E_2 = \Gamma_{8163}P_+, \ E_3 = \Gamma_{8246}P_+, \ E_4 = \Gamma_{8347}P_+, \ E_5 = \Gamma_{8567}P_+, \ E_6 = \Gamma_{8253}P_+, \ E_7 = \Gamma_{8154}P_+,$$

** 1/16 BPS Equation (Ho-Ung Yee, KL)

$$F_{ab} - \epsilon_{abcd} D_c \phi_d + i [\phi_a, \phi_b] = 0 , \ D_a \phi_a = 0 ,$$

 $D_a^2 \phi_5 - [\phi_a, [\phi_a, \phi_5]] = 0 .$

$$a = 1, 2, 3, 4$$
 $F_{a0} = D_a \phi_5$

=> 4-dim Webs of Junctions

$$F_{12} + F_{34} + F_{56} + F_{78} = 0$$

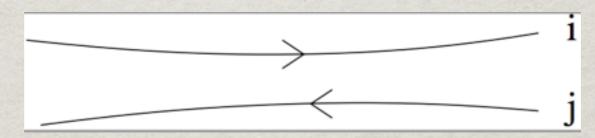
$$F_{13} + F_{42} + F_{57} + F_{86} = 0$$

$$F_{14} + F_{23} + F_{76} + F_{85} = 0$$

$$F_{15} + F_{62} + F_{73} + F_{48} = 0$$

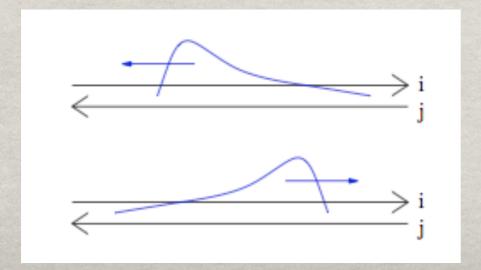
$$F_{16} + F_{25} + F_{47} + F_{38} = 0$$

$$F_{17} + F_{35} + F_{64} + F_{82} = 0$$


$$F_{18} + F_{27} + F_{63} + F_{54} = 0$$

MONOPOLE STRINGS

between i and j D4 branes


** 1/2 BPS monopole strings=anti-string

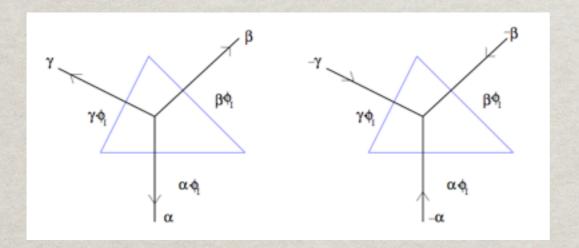
$$\Gamma^{1238}\epsilon = \epsilon$$
, $F_{12} = D_3\phi_4$, $F_{23} = D_1\phi_4$, $F_{31} = D_2\phi_4$, $D_4\phi_4 = 0$

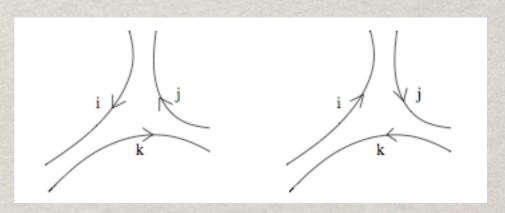
* 1/4 BPS waves on monopole string

$$\Gamma^{40}\epsilon = \pm \epsilon, \quad F_{0i} = \pm F_{4i}, \quad D_0\phi_4 = \pm D_0\phi_4$$

left moving \neq right moving

1/4 BPS JUNCTIONS

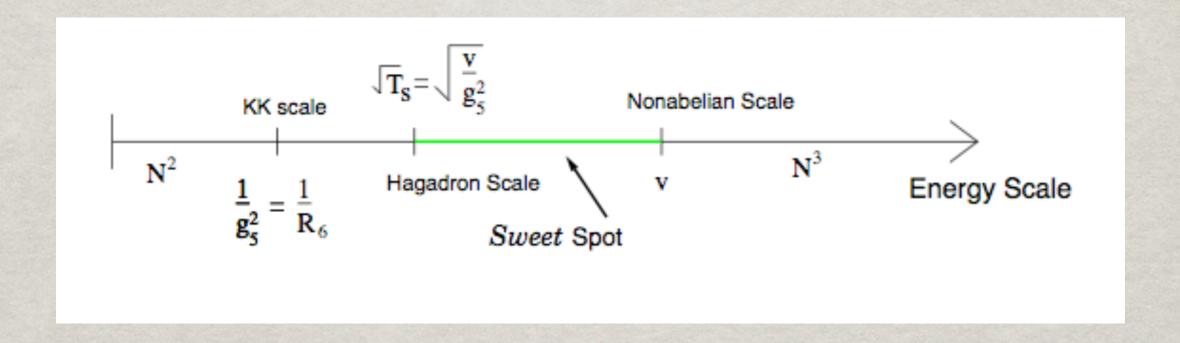

** Lock 34 to 78 direction


$$\Gamma^{1238}\epsilon = \epsilon, \Gamma^{1247}\epsilon = \pm \epsilon, \ \phi_1 = \phi_2 = 0,$$

$$F_{12} = D_3\phi_4 - D_4\phi_3, F_{23} = D_1\phi_4, F_{31} = D_2\phi_4$$

$$F_{41} = D_2\phi_3, F_{24} = D_1\phi_3, F_{43} = -i[\phi_4, \phi_3], D_3\phi_3 + D_4\phi_4 = 0$$

#junctions and anti-junctions between i,j,k D4 branes $\alpha + \beta + \gamma = 0$, $\alpha = e_i - e_j$, $\beta = e_j - e_k$, $\gamma = e_k - e_i$


**tension balance: angle on 34 and 78 are locked

LIFT TO M5 BRANES in Coulomb phase

- * 1/2 BPS objects:
 - massless waves
 - self-dual strings
- - left and right moving waves on self-dual strings
 - junctions and anti-junctions

APPEARANCE OF NEW D.O.F.

** Heating Up the 5-dim theory of the Coulomb phase in the limit v >> 1/R₆

COUNTING 1/2 BPS OBJECTS

** massless particles

$$r_G$$

infinitely massive self-dual strings

$$(d_G - r_G)/2 = h_G r_G/2$$

*They cannot be in the adjoint representation.

COUNTING 1/4 BPS OBJECTS IN SU(N)

*N M5 branes, roots

$$roots = \{e_i - e_j\}$$

** l.m. and r.m. waves on strings connecting i and j M5

 $A = 2 * \frac{1}{2}N(N-1) = N(N-1)$

(anti)-junctions connecting i,j,k M5 branes

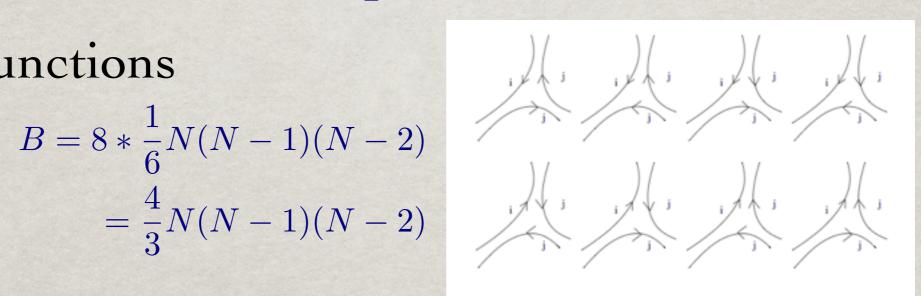
$$B = 2 * \frac{1}{6}N(N-1)(N-2)/6 = \frac{1}{3}N(N-1)(N-2)$$

**Total number

$$A + B = \frac{1}{3}N(N^2 - 1) = \frac{1}{3}c_{A_{N-1}}$$

$D_N = O(2N)$

※roots


$${e_i \pm e_j}, i \neq j, i, j = 1, 2 \cdots N$$

**waves on strings

$$A = 2 * 2 * \frac{1}{2}N(N-1) = 2N(N-1)$$

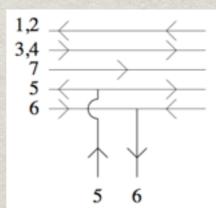
junctions

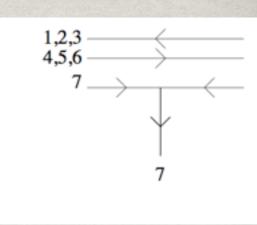
$$B = 8 * \frac{1}{6}N(N-1)(N-2)$$
$$= \frac{4}{3}N(N-1)(N-2)$$

$$A + B = \frac{2}{3}N(N-1)(2N-1) = \frac{1}{3}c_{D_N}$$

E₆

roots


$$e_i - e_j$$
, $(i, j = 1, 2, 3, 4, 5, 6)$, $\pm \sqrt{2}e_7$, $\frac{1}{2}(\pm e_1 \pm e_2 \pm e_3 \pm e_4 \pm e_5 \pm e_6) \pm \frac{1}{\sqrt{2}}e_7$ (3 plus and 3 minus for $e_1, ...e_6$)


**waves on strings

$$A = 2 * (\frac{1}{2} * 6 * 5) + \left[2 + (\frac{1}{6} * 6 * 5 * 4) * 2\right] = 30 + 42 = 72$$

junctions: su(6) type + new ones

$$B = 2 * (\frac{1}{6} * 6 * 5 * 4) + \left[2 * (\frac{1}{2} * 6 * 5) * (\frac{1}{2} * 4 * 3)\right]$$
$$+2 * (\frac{1}{6} * 6 * 5 * 4) * \frac{1}{2} = 40 + [180 + 20] = 240$$

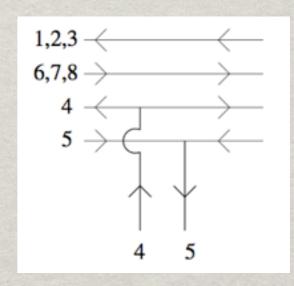
*****total number

$$A + B = 72 + 240 = 312 = \frac{1}{3}c_{E_6}$$

E7

roots = su(8) roots

$$e_i - e_j, (i, j = 1, 2, \dots 8)$$


$$\frac{1}{2}(\pm e_1 \pm e_2 \dots \pm e_8)$$
(4 plus and 4 minus)

** waves on strings

$$A = 2 * (\frac{1}{2} * 8 * 7) + \left[\frac{1}{4!} * 8 * 7 * 6 * 5\right]$$
$$= 56 + 70 = 126$$

junctions = su(8) type+ new ones

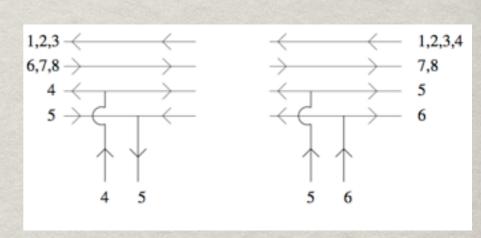
$$B = 2 * (\frac{1}{6} * 8 * 7 * 6) + \left[2 * (\frac{1}{2} * 8 * 7) * \frac{1}{2} * (\frac{1}{6} * 6 * 5 * 4))\right] = 112 + 560 = 672$$

$$A + B = 168 + 630 = 798 = \frac{1}{3}c_{E_7}$$

E₈

**roots: D8 roots + others

$$e_i \pm e_j, (i \neq j, i, j = 1, 2, \dots 8)$$


$$\frac{1}{2}(\pm e_1 \pm e_2 \dots \pm e_8)$$

$$(even \# of minus)$$

**waves on strings

$$A = 4 * (\frac{1}{2} * 8 * 7) + 2^8/2 = 112 + 128 = 240$$

$$B = 8 * (\frac{1}{6} * 8 * 7 * 6) + \left[(\frac{1}{2} * 8 * 7) + (\frac{1}{2} * 8 * 7) \right]$$
$$*(\frac{1}{2} * 2^8 * \frac{1}{2}) = 448 + 1792 = 2240$$

$$A + B = 560 + 1920 = 2480 = \frac{1}{3}c_{E_8}$$

MATH

** Coxeter number = number of roots/rank

$$h_G = (d_G - r_G)/r_G, \quad d_G = r_G(h_G + 1)$$

- ** Coxeter=Dual Coxeter for simple laced groups
- # Anomaly Coefficient $c_G = h_G d_G$

Relation
$$\frac{1}{3}c_G = \frac{1}{3}h_G(h_G + 1)r_G = d_G - r_G + \frac{1}{3}h_G(h_G - 2)r_G$$

- # of roots: wave on strings $A = d_G r_G = h_G r_G$
- *# of SU(3) imbedding= # of junctions

$$B = \frac{1}{3}h_G(h_G - 2)r_G$$

CONCLUSION

- N degrees of freedom are revealed in the Coulomb phase
- **# Just Numerology?**
- Find more evidence for these object is in the related theories (Toda, Sicilian, ...)
- **W** Ultimate understanding of (2,0) theories