Viscosity and conductivity in general theories of gravity.

M. F. Paulos

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

arXiv:0910.4602, to appear in JHEP.

February 25th 2010, DAMTP, Cambridge

- Recently, great interest in applying AdS/CFT methods to "real" systems.
- Macroscopic, thermal averaged evolution: transport coefficients.
- Insights into quasiparticle excitation structure.
- Examples: condensed matter systems close to quantum critical points, ultra-cold atom gases, graphene...

- Recently, great interest in applying AdS/CFT methods to "real" systems.
- Macroscopic, thermal averaged evolution: transport coefficients.
- Insights into quasiparticle excitation structure.
- Examples: condensed matter systems close to quantum critical points, ultra-cold atom gases, graphene...
- Important application: the strongly coupled quark-gluon plasma.

Transport and gauge/gravity duality
Higher derivative case
Wald like formulae for transport coefficients.

Quark-gluon plasma (artist's depiction)

Transport and gauge/gravity duality
Higher derivative case
Wald like formulae for transport coefficients.
Universality at extremality

Quark-gluon plasma (artist's depiction)

Quark-gluon plasma as seen by strings (?)

- QGP close to deconfinement: strongly coupled, near-perfect, near-conformal plasma.
- Hydrodynamic simulations indicate $\eta/s \simeq 0.04-0.16$: the most ideal fluid in nature.
- Gauge-gravity duality predicts for a large class of theories $\eta/s=1/4\pi\simeq0.08!$

• Kovtun, Son, Starinets: a new universal lower bound in nature?

$$\frac{\eta}{s} \geq \frac{1}{4\pi}$$

- Theories with Einstein gravity dual $\Rightarrow \eta/s = 1/4\pi$.
- $\mathcal{N}=4$ SYM (Type IIB SUGRA $+R^4$ correction):

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + 15 \frac{\zeta(3)}{\lambda^{3/2}} \right) > \frac{1}{4\pi}$$

- Including D7's leads to quadratic curvature terms, which can contribute negative corrections.
- \bullet Violation of bound for superconformal gauge theories with c>a $_{\mbox{\tiny [Buchel,Myers,Sinha '08].}}$

- Theories with Einstein gravity dual $\Rightarrow \eta/s = 1/4\pi$.
- $\mathcal{N}=4$ SYM (Type IIB SUGRA $+R^4$ correction):

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + 15 \frac{\zeta(3)}{\lambda^{3/2}} \right) > \frac{1}{4\pi}$$

- Including D7's leads to quadratic curvature terms, which can contribute negative corrections.
- ullet Violation of bound for superconformal gauge theories with c>a [Buchel,Myers,Sinha '08].
- Is there a bound of the form $\eta/s \ge \mathcal{O}(1)/4\pi$?

- Theories with Einstein gravity dual $\Rightarrow \eta/s = 1/4\pi$.
- $\mathcal{N}=4$ SYM (Type IIB SUGRA $+R^4$ correction):

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + 15 \frac{\zeta(3)}{\lambda^{3/2}} \right) > \frac{1}{4\pi}$$

- Including D7's leads to quadratic curvature terms, which can contribute negative corrections.
- ullet Violation of bound for superconformal gauge theories with c>a [Buchel,Myers,Sinha '08].
- Is there a bound of the form $\eta/s \ge \mathcal{O}(1)/4\pi$? Study shear viscosity in general higher derivative theories!

Main points of this talk:

 It is possible to find universal properties of transport coefficients in general higher derivative theories. These effectively descend from the universality of black hole horizons.

Main points of this talk:

- It is possible to find universal properties of transport coefficients in general higher derivative theories. These effectively descend from the universality of black hole horizons.
- The pole method: a class of transport coefficients can be obtained straightforwardly by computing the residue of a simple pole of an off-shell lagrangian. This requires only information about the horizon.

Main points of this talk:

- It is possible to find universal properties of transport coefficients in general higher derivative theories. These effectively descend from the universality of black hole horizons.
- The pole method: a class of transport coefficients can be obtained straightforwardly by computing the residue of a simple pole of an off-shell lagrangian. This requires only information about the horizon.
- There are simple, generic, Wald-like formulae for the shear viscosity and conductivity. This opens up new perspectives in the holographic study of possible new fundamental bounds.

Outline

- Transport and gauge/gravity duality
 - Equilibrium Hydrodynamics
 - Gauge/gravity basics
 - Two-derivative case
- Higher derivative case
 - Canonical momentum method.
 - The pole method
 - Applications
- Wald like formulae for transport coefficients.
 - Two-derivative case
- Universality at extremality
 - Shear viscosity
 - Conductivity

Outline

- Transport and gauge/gravity duality
 - Equilibrium Hydrodynamics
 - Gauge/gravity basics
 - Two-derivative case
- Higher derivative case
 - Canonical momentum method.
 - The pole method
 - Applications
- Wald like formulae for transport coefficients
 - Two-derivative case
- Universality at extremality
 - Shear viscosity
 - Conductivity

Hydrodynamics as Effective Field Theory

- \bullet Hydrodynamics describes slow spatial and temporal variations of fields with respect to some microscopic scale $\ell.$
- Hydrodynamic fields are (approximately) conserved currents, as these necessarily have low frequency and momentum modes. Ex.:

 $T^{\mu\nu}$ Stress energy tensor J^{μ} Abelian charge current

- Fast, non-hydrodynamic modes are integrated out. Effective description in terms of a set of transport coefficients.
- Ex.:

 η Shear viscosity σ Conductivity τ Relaxation time

Derivative expansion of transverse modes.

ullet Exchange T^{00} and momentum density T^{0i} for 4-velocity and energy density.

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} + T^{\mu\nu}_{\perp}$$
$$u_{\mu} T^{\mu\nu}_{\perp} = 0$$

• $T_{\perp}^{\mu
u}$ are fixed and can be written in a derivative expansion. To first order we have:

$$T^{\mu\nu}_{\perp} = P(\varepsilon)\Delta^{\mu\nu} - \eta(\varepsilon)\sigma^{\mu\nu} - \zeta(\varepsilon)\Delta^{\mu\nu}(\nabla \cdot u),$$

• η is the shear viscosity, and ζ the bulk viscosity which vanishes in conformal theories.

Linearized theory

• Perturbing the metric by $h_{xy}(t,z)$ about equilibrium state:

$$T_{xy} = -P h_{xy} - \eta \dot{h}_{xy}$$

Linearized response theory implies:

$$G_R^{xy,xy}(\omega) = P - i\eta\omega + \mathcal{O}(\omega^2)$$

with
$$G_R^{xy,xy}(\omega) \simeq \langle T^{xy}(\omega) T^{xy}(-\omega) \rangle$$
.

Linearized theory

• Perturbing the metric by $h_{xy}(t,z)$ about equilibrium state:

$$T_{xy} = -P h_{xy} - \eta \dot{h}_{xy}$$

Linearized response theory implies:

$$G_R^{xy,xy}(\omega) = P - i\eta\omega + \mathcal{O}(\omega^2)$$

with
$$G_R^{xy,xy}(\omega) \simeq \langle T^{xy}(\omega) T^{xy}(-\omega) \rangle$$
.

• Kubo formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G_{R}^{xy}(\omega)$$

Gauge/gravity dictionnary

- Strongly coupled large N gauge theories ⇔ gravity/string theories.
- Best known example:

$$\mathcal{N}=4~SU(N)$$
 SYM \leftrightarrow Type IIB superstring on $AdS_5 \times S^5$ $\lambda=g_{YM}^2N$ \leftrightarrow R/I_S λ/N \leftrightarrow g_S $\mathcal{O}(x^\mu)$ \leftrightarrow $\phi_{\mathcal{O}}(r,x^\mu)$

Partition function maps onto on-shell gravitational action in the bulk.

$$\mathcal{Z} = \exp(-S_E)$$

• Operators are sourced via $\int d^4x \mathcal{O}(x^{\mu})\phi_{\mathcal{O}}(r=+\infty,x^{\mu})$.

Finite temperature

• In the gravity sector we obtain the effective action:

$$S_{5D} = \frac{1}{16\pi G_N} \int d^5 x \sqrt{-g} \left(R + \frac{12}{L^2} \right)$$

Vacuum described by AdS₅. Finite temperature → Black hole!

$$ds^{2} = \frac{r_{0}^{2}}{L^{2}}(-f(u)dt^{2} + dx^{2}) + \frac{L^{2}du^{2}}{4u^{2}}$$

$$f(u) = 1 - u^{2}, \qquad T = \frac{r_{0}}{L^{2}\pi}.$$

General setup

- Focus on d dimensional field theories which have effective d + 1 gravitational description at strong coupling.
- Gravitational sector:

$$S = -\frac{1}{16\pi G_N} \int d^{d+1}x \sqrt{-g} \left(R + \frac{12}{L^2} + \gamma L^2 (R_{abcd})^2 + \ldots \right)$$

- Treat higher derivative corrections perturbatively $\gamma \ll$ 1, except in special cases.
- Assume that at finite temperature effective gravitational description is

$$ds^{2} = \frac{L^{2}}{z}e^{2g(z)}dz^{2} - ze^{2f(z)}dt^{2} + e^{2\rho(z)}dx^{i}dx_{i}$$

• Functions f, g, ρ regular \Rightarrow Horizon at z = 0.

Real-time correspondence

- Studying hydrodynamics requires real-time correlation functions -Policastro, Son, Starinets '02.
- Simple case: massless scalar field.

$$S_{\phi}^{(2)} = -\frac{1}{2} \int d^d x \, dz \frac{\sqrt{-g}}{\kappa} \left(\nabla \phi \right)^2$$

• Near horizon equation for $\phi(t,z) = \phi(z)e^{-i\omega t}$:

$$\phi_{\omega}^{\prime\prime}(z) + \frac{\phi^{\prime}(z)}{z} + \left(\frac{\omega}{4\pi T}\right)^2 \frac{\phi(z)}{z^2} = 0$$

Prescription: Infalling boundary condition (retarded propagator!)

$$\Rightarrow \phi(z) \simeq \phi_0 \exp\left(-i\frac{\omega}{4\pi T}\log z\right).$$

Real-time correlation functions

Evaluating the on-shell action we obtain a boundary term

$$S_{\phi}^{(2)} = \frac{1}{2} \int d^d x \left[-\frac{\sqrt{-g}}{\kappa} g^{zz} \phi'(z) \phi(z) \right]_{z=0}^{z=1}$$

• **Prescription**: take z = 1 piece. Rewriting in terms of canonical momentum get

$$G_R(\omega) = \lim_{\omega \to 0, z \to 1} \frac{\Pi(z)}{\phi(z)}$$

Transport coefficient via Kubo formula:

$$\xi = \lim_{\omega \to 0} \operatorname{Im} \frac{\Pi(z=1)}{\omega \, \phi(z=1)}$$

Bulk flow is trivial.

• At q = 0, the equation of motion is:

$$\partial_z \Pi(z) = \mathcal{O}(\omega^2)$$

- In low frequency limit $\Pi(z)$ is constant!
- Also, at $\omega = 0$, solution is $\phi(z) = \text{Constant}$.

$$\Rightarrow \omega \partial_Z \phi(z) = \mathcal{O}(\omega^2)$$

Bulk flow is trivial.

• At q = 0, the equation of motion is:

$$\partial_z \Pi(z) = \mathcal{O}(\omega^2)$$

- In low frequency limit $\Pi(z)$ is constant!
- Also, at $\omega = 0$, solution is $\phi(z) = \text{Constant}$.

$$\Rightarrow \omega \partial_z \phi(z) = \mathcal{O}(\omega^2)$$

Conclusion: Massless scalars have trivial bulk flow at small frequencies.

In particular we may compute transport coefficient at the horizon:

$$\xi = \lim_{\omega \to 0} \frac{\Pi(z=0)}{i\omega\phi(z=0)}$$

Transport coefficient of a massless scalar.

Recall near horizon behaviour,

$$\phi_{\omega}(z) \simeq \phi_0 \exp\left(-irac{\omega}{4\pi T}\log z
ight)$$

Using definition of canonical momentum,

$$\Pi(z) = -rac{\sqrt{-g}}{\kappa}g^{zz}\phi'(z)$$

We conclude

$$\xi = \lim_{\omega \to 0} \frac{\Pi(z=0)}{i\omega \phi_{\omega}(z=0)} = \frac{A_h}{\kappa}.$$

Transport coefficient of a massless scalar.

Recall near horizon behaviour,

$$\phi_{\omega}(z) \simeq \phi_0 \exp\left(-i \frac{\omega}{4\pi T} \log z\right)$$

Using definition of canonical momentum,

$$\Pi(z) = -rac{\sqrt{-g}}{\kappa}g^{zz}\phi'(z)$$

We conclude

$$\xi = \lim_{\omega \to 0} \frac{\Pi(z=0)}{i\omega\phi_{\omega}(z=0)} = \frac{A_h}{\kappa}.$$

Dividing by entropy density:

$$\frac{\xi}{s} = \frac{4G_N}{\kappa}$$

Shear viscosity corresponds to

$$\kappa = 16\pi G_N \quad \Rightarrow \quad \frac{\eta}{s} = \frac{1}{4\pi}$$

Lessons learned

This simple two derivative case has taught us valuable lessons

Lesson 1

 $Im G_R(\omega) \Leftrightarrow Canonical momentum \Pi(z)$

- Lesson 2
 Low frequency limit + Zero "mass" → Trivial bulk flow
- Lesson 3

Universal horizon behaviour: Scaling solution

$$\phi(z) \simeq z^{-i\omega/(4\pi T)}$$

Outline

- Transport and gauge/gravity duality
 - Equilibrium Hydrodynamics
 - Gauge/gravity basics
 - Two-derivative case
- Higher derivative case
 - Canonical momentum method.
 - The pole method
 - Applications
- Wald like formulae for transport coefficients
 - Two-derivative case
- Universality at extremality
 - Shear viscosity
 - Conductivity

Setup

• General action for $\phi(t,z) = \phi_{\omega}(z)e^{i\omega t}$:

$$S_{\phi}^{(2)} = \int \prod_{i=1}^{d-1} dx^{i} \int \frac{d\omega}{2\pi} \left(S_{(z)} + S_{(t)} + S_{B} \right).$$

$$S_{(z)} = \int_{0}^{1} dz \left(\sum_{n,m \geq 0} A_{n,m}(z) \phi_{\omega}^{(n+1)}(z) \phi_{-\omega}^{(m+1)}(z) \right),$$

- Always possible to write in this form for massless perturbations.
- $S_{(t)} \propto \omega^2$ and S_B contains boundary terms. Three types:
 - $S_B^1 \simeq (B_0(z)\phi^2) \to \text{no contribution to Im } G_B$.
 - $S_B^2 \simeq \mathcal{O}(\omega^2)$ \rightarrow don't contribute in low frequency limit.
 - $S_B^3 \simeq (B_{n,m}(z)\phi_{\omega}^{(n+1)}\phi_{-\omega}^{(m+1)}) \rightarrow \phi(z)$ always appears differentiated!

The generalized canonical momentum

Generalize definition of canonical momentum:

$$\Pi_{\omega}(z) \equiv \frac{\delta S_z}{\delta(\partial_z \phi_{-\omega})}$$

Radial action becomes after integration by parts:

$$S_{(z)} = \int_0^1 dz \left(\frac{1}{2} \Pi_{\omega}(z) \phi'_{-\omega}(z) \right)$$

Equation of motion

$$\partial_z \Pi_\omega(z) = \omega^2 F(z, \phi, \phi', ...).$$

• The Green's function is given by the value of the on-shell action:

$$G_R(\omega) = \lim_{z \to 1} \frac{\Pi_{\omega}(z)}{\phi_{\omega}(z)} + \text{Boundary terms.}$$

Bulk flow is still trivial

Transport coefficient is determined by horizon quantities.

- Just as in the two derivative case we have
 - $\partial_z \Pi_\omega(z) = \mathcal{O}(\omega^2)$.
 - $\omega \partial_z \phi(z) = \mathcal{O}(\omega^2)$
- Bulk flow is trivial!
- Relevant boundary terms are of form $B_{n,m}(z)\phi_{\omega}^{(n+1)}\phi_{-\omega}^{(m+1)}=\mathcal{O}(\omega^2)$
- Conclusion:

$$\xi = \lim_{\omega \to 0} \frac{\Pi(z=0)}{i\omega\phi_{\omega}(z=0)}$$
.

 In higher derivative theories, the important quantity is the generalized canonical momentum.

The most important slide of this talk.

- Infalling observer must see regular ϕ at the horizon.
- At horizon, perturbation must be function of Eddington-Finkelstein coordinates:

$$\partial_z \phi = \pm \sqrt{-\frac{g_{zz}}{g_{tt}}} \partial_t \phi = \mp \frac{i\omega}{4\pi T} \frac{\phi_0}{z}.$$

Composing the two possible behaviours we get

$$\phi_k''(z) + \frac{\phi_k'(z)}{z} + \frac{\omega^2}{(4\pi T)^2} \frac{\phi_k(z)}{z^2} = 0.$$

- This is exactly the near-horizon equation of motion of the two derivative case.
- Argument is completely general: near horizon behaviour is universal and fixed by regularity.

Near horizon behaviour

Form of the equation of motion implies near horizon action:

$$S_{\phi}^{(2)} = \int \prod_{i=1}^{d-1} dx^{i} \int \frac{d\omega}{2\pi} \int_{0}^{1} dz \frac{-\sqrt{-g}}{2\tilde{\kappa}} \left(g^{zz} \phi_{\omega}'(z) \phi_{-\omega}'(z) + g^{tt} \omega^{2} \phi_{\omega}(z) \phi_{-\omega}(z) \right),$$

This implies the canonical momentum at the horizon

$$\Pi_{\omega}(z) = i\omega \frac{A_h}{\tilde{\kappa}} \frac{\phi_0}{z}.$$

• And therefore the transport coefficient:

$$\xi = \frac{A_h}{\tilde{\kappa}}$$
.

• Higher derivative structure is packaged into the single coefficient $\tilde{\kappa}$.

Computing the canonical momentum

How to obtain the value of the canonical momentum?

- 1. Find the effective action and compute $\delta S/\delta \phi'(z)$. Evaluate near the horizon.
- 2. Use equations of motion on action to reduce it to two derivative form and read off $\tilde{\kappa}$.

Problems:

- 1. Must know explicit form of effective action for perturbation.
- 2. Must manipulate this action to find out $\Pi(z)$
- 3. In general higher derivative theories this quickly gets messy!

Putting the lagrangian off-shell

Consider plugging into the action an off-shell perturbation:

$$\phi_{\omega}(z) = \phi_0 \exp\left(-i\alpha \log z\right).$$

In the near horizon limit we get

$$S_{\phi}^{(2)} = \int \prod_{i=1}^{d-1} dx^i \int \frac{d\omega}{2\pi} \int dz \, \frac{A_h}{2\tilde{\kappa}} \left(\frac{\omega^2}{(4\pi T)^2} - \alpha^2 \right) \frac{4\pi T}{z} \phi_0^2.$$

On-shell lagrangian is zero as it reduces to boundary term:

$$\partial_z(\Pi_\omega(z)\phi_{-\omega}(z))=0$$
 (Can. mom. is constant!)

 $\bullet \ \ \text{Residue of simple pole} \leftrightarrow \tilde{\kappa}.$

The pole method.

- We can exploit the pole to obtain $\tilde{\kappa}$!
- Pole method formulae:

$$\xi = 8\pi T \lim_{\omega \to 0} \frac{\operatorname{Res}_{z=0} \mathcal{L}^{(2)}_{\phi = z^{i\omega}/(4\pi T)}}{\omega^2} \qquad \text{Radial formula}$$

$$\xi = -8\pi T \lim_{\omega o 0} rac{\operatorname{Res}_{z=0} \mathcal{L}_{\phi=e^{-i\omega t}}^{(2)}}{\omega^2}$$
 Time formula.

- Works for any lagrangian, on any non-extremal black hole background.
- No detailed knowledge of effective action necessary: simply evaluate a covariant lagrangian on perturbed background, and extract residue.

Shear viscosity and conductivity

Important transport coefficients are η , σ .

ullet Shear viscosity read off from correlator of $T^{\mu
u}$

$$G_{R}^{xy,xy}(\omega) = -i \int dt \, \theta(t) \langle T^{xy}(t) T^{xy}(0) \rangle e^{-i\omega t},$$

$$\eta = \lim_{\omega \to 0} \frac{\text{Im } G_{R}^{xy,xy}(\omega)}{i\omega}.$$

ullet Shear viscosity read off from correlator of J^{μ}

$$G_{R}(\omega)^{x,x} = -i \int dt \, \theta(t) \langle J^{x}(t)J^{x}(0) \rangle e^{-i\omega t},$$

$$\sigma = \lim_{\omega \to 0} \frac{\operatorname{Im} G_{R}^{x,x}(\omega)}{i\omega}.$$

Shear viscosity and conductivity

• In gauge-gravity duality, T^{xy} , J^x couple to perturbations

$$\begin{array}{ccc} dx_2 & \to & dx_2 + \phi(t,z)dx_1, \\ A_x(t,z) & = & \psi(t,z) \end{array}$$

- ϕ is always massless by SO(2) symmetry.
- ullet ψ is effectively massless if background is uncharged.
- Gauge-invariance guarantees action automatically depends only on differentiated perturbations.
- No need to integrate by parts to put it into required form!

• Let us compute the shear viscosity in a simple case. Take $\gamma \ll$ 1:

$$\mathcal{S} = -\frac{1}{16\pi G_N} \int d^5x \sqrt{-g} \left(R + \frac{12}{L^2} + \gamma L^4 \nabla_a R_{bcde} \nabla^a R^{bcde} \right),$$

• Solution at $\gamma = 0$: AdS-Schwarzschild

$$ds^{2} = \frac{L^{2}dz^{2}}{4z(1-z)^{2}(2-z)} + \frac{r_{0}^{2}}{L^{2}(1-z)} \left(-z(2-z)dt^{2} + \sum_{i} (dx_{i})^{2}\right)$$

- Higher derivative term implies $O(\gamma)$ correction to g_{tt}, g_{zz}
- Lowest order results only depend on g_{xx} , $\xi = g_{xx}^{(d-1)}/\kappa$.

• Let us compute the shear viscosity in a simple case. Take $\gamma \ll$ 1:

$$\mathcal{S} = -\frac{1}{16\pi G_N} \int d^5x \sqrt{-g} \left(R + \frac{12}{L^2} + \gamma L^4 \nabla_a R_{bcde} \nabla^a R^{bcde} \right),$$

• Solution at $\gamma = 0$: AdS-Schwarzschild

$$ds^{2} = \frac{L^{2}dz^{2}}{4z(1-z)^{2}(2-z)} + \frac{r_{0}^{2}}{L^{2}(1-z)} \left(-z(2-z)dt^{2} + \sum_{i} (dx_{i})^{2}\right)$$

- Higher derivative term implies $O(\gamma)$ correction to g_{tt}, g_{zz}
- Lowest order results only depend on g_{xx} , $\xi = g_{xx}^{(d-1)}/\kappa$.
- To $\mathcal{O}(\gamma^2)$ correction is irrelevant!

• Effective action for ϕ :

$$\mathcal{L}_{\phi}^{(2)} = -\frac{1}{32\pi G_{N}} \left(A\phi'_{\omega}\phi'_{-\omega} + B\phi'_{\omega}\phi''_{-\omega} + C\phi''_{\omega}\phi''_{-\omega} + D\phi^{(3)}_{\omega}\phi'_{-\omega} + E\phi^{(3)}_{\omega}\phi''_{-\omega} + F\phi^{(3)}_{\omega}\phi^{(3)}_{-\omega} \right)$$

• Canonical momentum is then:

$$\begin{array}{rcl} \Pi_{\omega}(z) & = & \tilde{A}\phi_{\omega}'(z) - (\tilde{B}\phi_{\omega}'(z))' + (E\phi_{\omega}''(z))'' \\ \\ \tilde{A} & = & A - \frac{1}{2}B' + \frac{1}{2}D'', \qquad \tilde{B} = C - \frac{1}{2}E' - D \end{array}$$

• Plugging in the near horizon $\phi_{\omega}=z^{-i\omega/4r_0}$ gives

$$\Pi_{\omega}(0) = i\omega \frac{r_0^3}{16\pi L^3 G_N} (1 - 1024\gamma) \phi_0 + \mathcal{O}(\omega^2),$$

$$\Rightarrow \eta = \frac{1}{16\pi G_N} \left(\frac{r_0^3}{L^3}\right) (1 - 1024\gamma).$$

- Alternatively, use the pole method.
- Evaluate gravitational lagrangian on perturbed background,

$$dx_2 \rightarrow dx_2 + z^{-i\omega/4\pi T} dx_1$$
.

Expand near horizon:

$$\mathcal{L} = \frac{1}{16\pi G_N} \left(\dots + \frac{(\omega r_0)^2}{8L} \frac{1 - 1024\gamma}{z} + \text{Regular} \right)$$

and we read off $\boldsymbol{\eta}$ from the residue of the simple pole.

Outline

- Transport and gauge/gravity duality
 - Equilibrium Hydrodynamics
 - Gauge/gravity basics
 - Two-derivative case
- Higher derivative case
 - Canonical momentum method.
 - The pole method
 - Applications
- Wald like formulae for transport coefficients.
 - Two-derivative case
- Universality at extremality
 - Shear viscosity
 - Conductivity

The Wald formula for the entropy

Recall we're considering backgrounds of type

$$ds^{2} = g_{ab}dx^{a}dx^{b} = \frac{L^{2}}{z}e^{2g(z)}dz^{2} + g_{\mu\nu}dx^{\mu}dx^{\nu}$$

$$g_{\mu\nu} = -z e^{2f(z)}dt^{2} + e^{2\rho(z)}dx^{i}dx_{i}.$$

Wald's formula for the entropy:

$$S = \int_{H} d\Sigma \left(\frac{\delta \mathcal{L}}{\delta R_{abcd}} \right) \epsilon_{ab} \epsilon_{cd}$$

For the above backgrounds we obtain the entropy density

$$s = rac{A_h}{4 \, G_N} \, X_{zt}^{zt} \, \Bigg|_{z=0}, \qquad X^{abcd} = -rac{32 \pi G_N}{\sqrt{-g}} \, rac{\delta \mathcal{L}}{\delta R_{abcd}}$$

• Can a similar formula be found for transport coefficients?

Two derivative case: conductivity

Strategy: compute the simple pole in a general uncharged background.

$$S = -rac{1}{2g_{d+1}^2}\int d^dx\,dz\sqrt{-g}\left(rac{1}{4}M^{abcd}F_{ab}F_{cd}
ight).$$

with Mabcd some arbitrary tensor.

• Turn on a small perturbation $A_{x_1}(t,z) \equiv \psi(t,z)$, obtain:

$$S_{\psi}^{(2)} = -\frac{1}{2g_{d+1}^2} \int d^d x \, dz \, \sqrt{-g} \, g^{xx} \left(M^{zx_1}_{zx_1} g^{zz} \partial_z \psi \, \partial_z \psi + M^{tx_1}_{tx_1} g^{tt} \, \partial_t \psi \, \partial_t \psi \right)$$

• Plugging in near horizon solution, read off the pole. Radial and time formula give:

$$\sigma = \frac{e^2}{g_{d+1}^2} (g_{xx})^{d-3} M_{zx_1}^{zx_1} \bigg|_{z=0}$$

$$\sigma = \frac{e^2}{g_{d+1}^2} (g_{xx})^{d-3} M_{zx_1}^{zx_1} \bigg|_{z=0} \quad \text{or} \quad \sigma = \frac{e^2}{g_{d+1}^2} (g_{xx})^{d-3} M_{tx_1}^{tx_1} \bigg|_{z=0}$$

Equality is insured by horizon regularity.

A formula for the shear viscosity

We consider a general lagrangian:

$$S = -\frac{1}{16\pi G_N} \int d^d x \sqrt{-g} \, \mathcal{L}(R_{abcd}, \tilde{F}_{ab}^{(q)}, \Phi^{(r)}, \ldots)$$

Add a shear mode perturbation to the background:

$$dx_2 \rightarrow dx_2 + A_m(x^n)dx^m$$
,

The curvatures transform as

$$\begin{array}{lll} R_{mnpq} & = & \hat{R}_{mnpq} - \frac{3}{4}e^{2\rho}P[F_{mn}F_{pq}] \\ \\ R_{mymy} & = & \hat{R}_{mymy} + \frac{1}{4}e^{4\rho}F_{mp}F_n^{\ \rho} \\ \\ R_{mnpy} & = & -\frac{1}{6}e^{-\rho}\left[2\nabla_{\rho}(e^{3\rho}F_{mn}) + \nabla_{n}(e^{3\rho}F_{mp}) - \nabla_{m}(e^{3\rho}F_{np})\right] \end{array}$$

A formula for the shear viscosity

• We look for the simple pole in the off-shell lagrangian. Defining:

$$X^{abcd} = -rac{32\pi G_N}{\sqrt{-g}}rac{\delta \mathcal{L}}{\delta R_{abcd}}, \qquad Y^{abcd,\,efgh} = rac{\delta X^{abcd}}{\delta R_{efgh}}$$

The final result is

$$\left| \eta = \frac{A_h}{16\pi G_N} \left(2X_{zy}^{zy} - X_{xy}^{xy} - \frac{4e^{-2g_0}}{L^2} \left[\partial_z \alpha^{zt} - \alpha^{zt} \tilde{R} \right] \right) \right|_{z=0}$$

where

$$\tilde{R} = \left(e^{2g_0}L^2R + (d+3)\partial_z\rho\right)
\alpha^{zt} = Y_{zy}^{xz},_{zx}^{yz} - Y_{zy}^{xz},_{tx}^{yt}$$

Application: Gauss-Bonnet theory

As an example, consider Gauss-Bonnet gravity in 5 dimensions

$$S = -\frac{1}{16\pi G_N} \int d^4x dz \sqrt{-g} \left(R + \frac{12}{L^2} + W \right)$$

$$W = \frac{\lambda}{2} L^2 \left(R_{abcd}^2 - 4R_{ab}^2 + R^2 \right)$$

Planar black hole solution

$$\begin{split} ds^2 &= \frac{r_0^2}{L^2} \left(-N^2 \, f(u) dt^2 + dx^i dx_i \right) + \frac{du^2}{4 \, u^2 f(u)} \\ f(u) &= \frac{1}{2\lambda} \left(1 - \sqrt{1 - 4\lambda \left(1 - u^2 \right)} \right), \qquad N^2 = \frac{1}{2} \left(1 + \sqrt{1 - 4\lambda} \right). \end{split}$$

The Ricci scalar is given by

$$R \bigg|_{z=0} = -\frac{20}{L^2} \left(1 + \frac{8}{5} \lambda \right)$$

Next step is to compute the various coefficients, X, Y.

Application: Gauss-Bonnet theory

Computing quantities in formula yields

$$\begin{vmatrix}
X_{xy}^{xy} \\ z = 0 & = 1 - 4\lambda - 32\lambda^2, & X_{zy}^{zy} \\ \partial_z \alpha^{zt} \Big|_{z=0} & = 0, & \alpha^{zt} \Big|_{z=0} = \frac{\lambda L^2}{4},
\end{vmatrix}$$

Final result

$$\eta = \frac{A_h}{16\pi G_N} (1 - 4\lambda),$$

This agrees with previous calculations in the literature.

Outline

- Transport and gauge/gravity duality
 - Equilibrium Hydrodynamics
 - Gauge/gravity basics
 - Two-derivative case
- Higher derivative case
 - Canonical momentum method.
 - The pole method
 - Applications
- Wald like formulae for transport coefficients
 - Two-derivative case
- Universality at extremality
 - Shear viscosity
 - Conductivity

Extremal black holes

- Theories at zero temperature but finite chemical potential.
- Holographic description: extremal charged black hole (e.g. extremal AdS-RN).

$$ds^{2} = \frac{L^{2}}{z^{2}} e^{2g(z)} dz^{2} + \left(-z^{2} e^{2f(z)} dt^{2} + e^{2\rho(z)} dx^{i} dx_{i}\right),$$

• Near horizon $AdS_2 \times R^{d-1}$ factor supported by flux:

$$ds^{2} = -v_{1}\left(-z^{2}d\tau^{2} + \frac{dz^{2}}{z^{2}}\right) + v_{2}(dx^{2}).$$

$$F_{z\tau} = Q.$$

Double pole at horizon! Problems?

Horizon regularity

Same argument as before. Infalling observer must see regular fields

$$\partial_z \phi_0 = \pm \sqrt{-\frac{g_{zz}}{g_{tt}}} \partial_t \phi_0 = \mp \frac{i\omega}{\mu} \frac{\phi_0}{z^2},$$

 Equation of motion is completely determined and coincides with that of scalar in AdS₂:

$$\phi''(z) + \frac{2}{z^2}\phi'(z) + \frac{\omega^2}{z^4}\phi(z) = 0.$$

Solution is

$$\phi(z) = \phi_0 \exp\left(\pm \frac{i\omega}{z}\right).$$

Zero temperature limit is continuous

Generalized canonical momentum at the horizon:

$$\Pi(z) = -\frac{\sqrt{-g}}{\tilde{\kappa}}g^{zz}\partial_z\phi(z) = \frac{i\omega}{\tilde{\kappa}}\sqrt{-g}g^{zz}\sqrt{-\frac{g_{zz}}{g_{tt}}}\phi_0.$$

- The nature of the pole is irrelevant.
- Zero temperature limit is continuous.
- Automatically implies universality of $\eta/s=1/4\pi$ for all extremal backgrounds.

Pole method and formulae

- Since transition is continous analytic formula for η is still valid.
- Simplification because of AdS₂ near horizon:

$$\eta = \frac{v_2^3}{16\pi G_N} \left(2X_{zy}^{zy} - X_{xy}^{xy} - 8\frac{\alpha^{zt}}{v_1} \right).$$

 To use pole method, simply consider any finite temperature AdS₂! Now we have simple pole, but result is independent of this temperature.

Perturbation equations

Background is charged: non-trivial flow for gauge perturbations.

$$a_X(t,z) = A(z)e^{-i\omega\tau}$$

 $h_t^X(t,z) = H(z)e^{-i\omega\tau}$

Gauge constraint plus equation of motion:

$$\begin{split} A_x''(z) + \frac{2}{z} A_x'(z) + \frac{\omega^2 + z^2 v_2 H'(z)/v_1}{z^4} A_x(z) &= 0, \\ QA(z) + v_2 H'(z) &= 0. \end{split}$$

• Equation of motion for a massive scalar field with $m^2 = Q^2/(v_1L^2)$.

$$A''(z) + \frac{2}{z}A'(z) + \frac{\omega^2 - 2z^2}{z^4}A(z).$$

Universal scaling of conductivity

Solution to the equation with infalling boundary conditions.

$$A(z) = \exp(i\omega/z)(z - i\omega) \simeq z + \frac{\omega^2}{2z} + \frac{1}{3}\frac{i\omega^3}{z^2} + \dots$$

IR CFT Green's function is determined by

$$G_{\omega}=i\omega^3$$
.

Non-analytic behaviour of full Green's function is completely fixed by this:

$$\text{Im}G_{R}(\omega) \propto i\omega^{3} \Rightarrow \text{Re}(\sigma) \propto \omega^{2}$$
.

- Universal scaling!
- Higher derivative corrections do not modify this result! (Proof?).
- Scaling dimension of IR CFT operator is protected.

Summary

- Transport in strongly coupled field theories using gauge-gravity duality: QGP, AdS/CMT.
- Finite coupling, N: higher derivative corrections.
- Universal near-horizon behaviour.
- Shear viscosity and DC conductivity easily computed with pole method.
- Analytic, Wald-like formulae.

Prospects and comments

- Our results are straightforwardly extended to extremal black holes (ask me in question time!).
- We can presumably rewrite our results in the language of absorption cross-sections. This would give

$$\sigma_{\mathsf{abs}} = \kappa \xi = \frac{\kappa}{\tilde{\kappa}} \frac{A_h}{.}$$

- Shear viscosity $\rightarrow \sigma_{abs}$ of s-wave gravitons.
- Can our analytic formulae be covariantized? What lessons do they teach us about the relation between n-point functions and transport coefficients?

Prospects and comments

- Our results are straightforwardly extended to extremal black holes (ask me in question time!).
- We can presumably rewrite our results in the language of absorption cross-sections. This would give

$$\sigma_{\mathsf{abs}} = \kappa \xi = \frac{\kappa}{\tilde{\kappa}} \frac{A_h}{.}$$

- Shear viscosity $\rightarrow \sigma_{abs}$ of s-wave gravitons.
- Can our analytic formulae be covariantized? What lessons do they teach us about the relation between n-point functions and transport coefficients?

Thank you!

