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Motivation

Motivation

@ Recently, great interest in applying AdS/CFT methods to “real” systems.
@ Macroscopic, thermal averaged evolution: transport coefficients.
@ Insights into quasiparticle excitation structure.

@ Examples: condensed matter systems close to quantum critical points, ultra-cold
atom gases, graphene...
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Motivation

Motivation

Recently, great interest in applying AdS/CFT methods to “real” systems.
Macroscopic, thermal averaged evolution: transport coefficients.
Insights into quasiparticle excitation structure.

Examples: condensed matter systems close to quantum critical points, ultra-cold
atom gases, graphene...

@ Important application: the strongly coupled quark-gluon plasma.
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Motivation

Quark-gluon plasma (artist’s depiction)
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Motivation

Quark-gluon plasma (artist’s depiction)

Black hole (dual theory)
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Motivation

Quark-gluon plasma as seen by strings (?)

@ QGP close to deconfinement: strongly coupled, near-perfect, near-conformal

plasma.

@ Hydrodynamic simulations indicate /s ~ 0.04 — 0.16 : the most ideal fluid in
nature.

@ Gauge-gravity duality predicts for a large class of theories /s = 1 /4w ~ 0.08!
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Motivation

The viscosity bound

L \ Jt \\,/ . ]

@ Kovtun, Son, Starinets: a new universal lower bound in nature?
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Motivation

The viscosity bound

@ Theories with Einstein gravity dual = n/s = 1/4x.
@ N =4 SYM (Type IIB SUGRA + R* correction):

n_ 1 ¢(3) 1
~=— (1415 —
s 4 ( + \3/2 - 4z

@ Including D7’s leads to quadratic curvature terms, which can contribute negative
corrections.

@ Violation of bound for superconformal gauge theories with ¢ > a
[Buchel,Myers,Sinha '08].
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Motivation

The viscosity bound

@ Theories with Einstein gravity dual = n/s = 1/4x.
@ N =4 SYM (Type IIB SUGRA + R* correction):

n_ 1 ¢(3) 1
~=— (1415 —
s 4 ( + \3/2 - 4z

@ Including D7’s leads to quadratic curvature terms, which can contribute negative
corrections.

@ Violation of bound for superconformal gauge theories with ¢ > a
[Buchel,Myers,Sinha '08].

@ Is there a bound of the form /s > O(1)/4x?
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Motivation

The viscosity bound

@ Theories with Einstein gravity dual = n/s = 1/4x.
@ N =4 SYM (Type IIB SUGRA + R* correction):

n_ 1 ¢(3) 1
~=— (1415 —
s 4 ( + \3/2 - 4z

@ Including D7’s leads to quadratic curvature terms, which can contribute negative
corrections.

@ Violation of bound for superconformal gauge theories with ¢ > a
[Buchel,Myers,Sinha '08].

@ Is there a bound of the form n/s > O(1)/4n?
Study shear viscosity in general higher derivative theories!
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Motivation

Main points of this talk:

@ ltis possible to find universal properties of transport coefficients in general higher
derivative theories. These effectively descend from the universality of black hole
horizons.
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Motivation

Main points of this talk:

@ ltis possible to find universal properties of transport coefficients in general higher
derivative theories. These effectively descend from the universality of black hole
horizons.

@ The pole method: a class of transport coefficients can be obtained
straightforwardly by computing the residue of a simple pole of an off-shell
lagrangian. This requires only information about the horizon.
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Motivation

Main points of this talk:

@ ltis possible to find universal properties of transport coefficients in general higher
derivative theories. These effectively descend from the universality of black hole
horizons.

@ The pole method: a class of transport coefficients can be obtained
straightforwardly by computing the residue of a simple pole of an off-shell
lagrangian. This requires only information about the horizon.

@ There are simple, generic, Wald-like formulae for the shear viscosity and
conductivity. This opens up new perspectives in the holographic study of possible
new fundamental bounds.
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Motivation

Outline

0 Transport and gauge/gravity duality
@ Equilibrium Hydrodynamics
@ Gauge/gravity basics
@ Two-derivative case

e Higher derivative case
@ Canonical momentum method.
@ The pole method
@ Applications

© Wald like formulae for transport coefficients.
@ Two-derivative case

@ Universality at extremality
@ Shear viscosity
@ Conductivity
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Transport and gauge/gravity duality

Outline

0 Transport and gauge/gravity duality
@ Equilibrium Hydrodynamics
@ Gauge/gravity basics
@ Two-derivative case

T'F
=,
G-

M. F. Paulos



Transport and gauge/gravity duality Equilibrium Hydrodynamics
auge/gravity k

Hydrodynamics as Effective Field Theory

@ Hydrodynamics describes slow spatial and temporal variations of fields with
respect to some microscopic scale 4.

@ Hydrodynamic fields are (approximately) conserved currents, as these necessarily
have low frequency and momentum modes. Ex.:

THY Stress energy tensor
JH Abelian charge current

@ Fast, non-hydrodynamic modes are integrated out. Effective description in terms
of a set of transport coefficients.

@ Ex.:
n Shear viscosity
o Conductivity
Relaxation time
S
c
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Transport and gauge/gravity duality Equilibrium Hydrodynamics

Derivative expansion of transverse modes.

@ Exchange T° and momentum density 7% for 4-velocity and energy density.
T =eutu” + T

u, T =0

@ T/ are fixed and can be written in a derivative expansion. To first order we have:

T = P(e)A* — n(e)o” — ((e)AMY (V-u),

@ 7 is the shear viscosity, and ¢ the bulk viscosity which vanishes in conformal
theories.

"

;&uﬁ
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Transport and gauge/gravity duality Equilibrium Hydrodynamics
auge/gravity k

Linearized theory

@ Perturbing the metric by hyy (¢, z) about equilibrium state:
Ty = —P hyy —nhy
@ Linearized response theory implies:
GY (w) = P— inw + O(w?)

with G (w) ~ (T (w) TY (—w)).
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Transport and gauge/gravity duality Equilibrium Hydrodynamics
auge/gravity k

Linearized theory

@ Perturbing the metric by hyy (¢, z) about equilibrium state:
Ty = —P hyy —nhy
@ Linearized response theory implies:
GY (w) = P— inw + O(w?)

with G (w) ~ (T (w) TY (—w)).

@ Kubo formula:

N Xy
n=— Jino ;Im Gg (@)
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Transport and gauge/gravity duality Equilibrium Hydrodynamics
Gauge/gravity bas
Tia €

Gauge/gravity dictionnary

@ Strongly coupled large N gauge theories < gravity/string theories.
@ Best known example:

N =4 SU(N)SYM «—  Type IIB superstring on AdSs x S°

A=g%N - R/ls
)\/N A d 0Os
O(x#) - $o(r,x)

@ Partition function maps onto on-shell gravitational action in the bulk.
Z = exp(—Sg)

@ Operators are sourced via [ d*xO(x*)¢po (r = +oo, x*).

T'F
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Transport and gauge/gravity duality Equilibrium Hydrodynamics
Gauge/gravity bas
Tia €

Finite temperature

@ In the gravity sector we obtain the effective action:
12
d5
oy | vo(A )

@ Vacuum described by AdSs. Finite temperature — Black hole!

Ssp =

L du
2 _ 2 2
ds® = 2( f(u)dt® + dx=) +
o
f = 1- T=—-.
(v) e 2

@ Field theory thermodynamics « Black hole thermodynamics.

@ Hydrodynamics < Small frequency and momentum modes.

T'F
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G-
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Transport and gauge/gravity duality Equilibrium
Gaug
Two-derivative case

General setup

@ Focus on d dimensional field theories which have effective d + 1 gravitational
description at strong coupling.

@ Gravitational sector:
1

—_ 12
_ d+1 — e 2 2
S= 167rGN/d xy/ Q<R+ 1z + 7L (Rabed) +)

@ Treat higher derivative corrections perturbatively v < 1, except in special cases.

@ Assume that at finite temperature effective gravitational description is
L2 i
ds? = = —e?9gz2 _ 7 (AR 4 &27(2) gx! dx;
z

@ Functions f, g, p regular = Horizon at z = 0.

T'F
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Transport and gauge/gravity duality Equilibrium
Gauge/g
Two-derivative case

Real-time correspondence

@ Studying hydrodynamics requires real-time correlation functions -
Policastro,Son,Starinets '02.

@ Simple case: massless scalar field.
/ dix dz Y =9 9 (ve)?

@ Near horizon equation for ¢(t, z) = ¢(z)e— !

" ¢'(Z) w \2 ¢(Z)
¢,(2) + 2 +(m) 720

@ Prescription: Infalling boundary condition (retarded propagator!)

= ¢(2) ~ ¢poexp (—i4:—7_ log z) .

T'F
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Transport and gauge/gravity duality Equilibrium
Gaug
Two-derivative case

Real-time correlation functions

@ Evaluating the on-shell action we obtain a boundary term

z=1

/ d9x { 99724/ (2)6(2)

z=0

@ Prescription: take z = 1 piece. Rewriting in terms of canonical momentum get

_ ) n(z)
Grlw)=_ M .32

@ Transport coefficient via Kubo formula:

Nnz=1)
EiJ'Tolm o(z=1)
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e
G-

M. F. Paulos



Transport and gauge/gravity duality

Two-derivative case

Bulk flow is trivial.

@ At g = 0, the equation of motion is:
8;M(2) = O(w?)
@ In low frequency limit M(z) is constant!

@ Also, at w = 0, solution is ¢(z) = Constant.

= wdp(2) = O(w?)
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Transport and gauge/gravity duality Equilibrium
Gaug
Two-derivative case

Bulk flow is trivial.

@ At g = 0, the equation of motion is:
02N(2) = O(w?)
@ In low frequency limit M(z) is constant!
@ Also, at w = 0, solution is ¢(z) = Constant.
= wdz(2) = O(w?)

Conclusion: Massless scalars have trivial bulk flow at small frequencies.

@ In particular we may compute transport coefficient at the horizon:

_ N(z=0)
¢= M ooz =0)

M. F. Paulos



Transport and gauge/gravity duality Equilibrium
Gaug

Transport coefficient of a massless scalar.

@ Recall near horizon behaviour,

. W
bw(2) ~ P exp (—/m log z)

@ Using definition of canonical momentum,

@ We conclude 0 A
e— tim NE=0__ Ay
w—0 iwpy(z =0) K
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Transport and gauge/gravity duality Equilibrium
Gaug

Transport coefficient of a massless scalar.

@ Recall near horizon behaviour,

. W
bw(2) ~ P exp (—/m log z)

@ Using definition of canonical momentum,

@ We conclude n 0 2
€= lim M _h
w—0 iwpy(z =0) K

@ Dividing by entropy density:
£ _ 4Gy

S K
@ Shear viscosity corresponds to

n 1
=167G = —=— i
" TN s  A4r EEE
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Transport and gauge/gravity duality Equilibrium H
Gauge/g y
Two-derivative case

Lessons learned

This simple two derivative case has taught us valuable lessons

@ Lesson 1
ImGg(w) <« Canonical momentum T(z)

@ Lesson 2
Low frequency limit + Zero “mass” — Trivial bulk flow

@ Lesson 3
Universal horizon behaviour: Scaling solution

¢(Z) ~ Zfl'w/(47-rT)

T'F
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G-
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derivative case The pole mett
Appl

Outline

e Higher derivative case
@ Canonical momentum method.
@ The pole method
@ Applications
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Canonical momentum method.
method

Higher derivative case

@ General action for ¢(t,2) = ¢u(2)e“":

2
S<(Z5) = /de/ S(z)+3()+33).

S(z)

1

/ az Z An,m(2)® n+1 (Z)¢ (1) (z) )
0 n,m>0

@ Always possible to write in this form for massless perturbations.

@ Sy w? and Sp contains boundary terms. Three types:

o SL~ (By(2)¢®) — no contribution to Im Gg.

o S2~ O(w?) — don'tcontribute in low frequency limit.

0 S}~ (Bm(2)p™ ™YY ¢(2) always appears differentiated!

T'F
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Canonical momentum method.
Higher derivative case The method

The generalized canonical momentum

@ Generalize definition of canonical momentum:
_ (SSZ
T 8(02¢—w)

@ Radial action becomes after integration by parts:

Ny (2)

1 1
S(z) :/0 dz (EI'IW(Z)QSLW(Z))
@ Equation of motion

8Zr|w(z) - WZF(Z7 ¢” ¢/7 )

@ The Green'’s function is given by the value of the on-shell action:

- Nw(2)
= | B .
Gp(w) lim 5o(2) + Boundary terms

T'F
=,
G-
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Canonical momentum method.
Higher derivative case e pole method

Bulk flow is still trivial

Transport coefficient is determined by horizon quantities.
@ Just as in the two derivative case we have
e 9,M,(2) = O(w?).
0 wd,P(z) = O(W?)

@ Bulk flow is trivial!

o Relevant boundary terms are of form By m(2)p 6™ ) = O(w?)

@ Conclusion:

_ MN(z=0)
&= Jlino iwpw(z =0) [

@ In higher derivative theories, the important quantity is the generalized canonical
momentum.

=
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Canonical momentum method.
Higher derivative case Tr method
Applic 5

The most important slide of this talk.

@ Infalling observer must see regular ¢ at the horizon.

@ At horizon, perturbation must be function of Eddington-Finkelstein coordinates:

Jzz iw o
Oz =+, | —Z=0tp = F—= —.
2 o (P :':47rT =

@ Composing the two possible behaviours we get

LA, 2wl

9(2) (@nT)E 22

@ This is exactly the near-horizon equation of motion of the two derivative case.

@ Argument is completely general: near horizon behaviour is universal and fixed by
regularity.

"
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Canonical momentum method.
Higher derivative case Tr method
Applic 5

Near horizon behaviour

@ Form of the equation of motion implies near horizon action:

s® = / de IE= o / dz Y28 (4700, (2)60 () + 6"P0u(2)6u(2))

@ This implies the canonical momentum at the horizon

A
nw(z) = ’wTh@
4
@ And therefore the transport coefficient:
g=2n
K

@ Higher derivative structure is packaged into the single coefficient <.

T'F
=,
G-
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Canonical momentum method.
Higher derivative case e pole method

Computing the canonical momentum

How to obtain the value of the canonical momentum?
1. Find the effective action and compute 6S/§¢’(z). Evaluate near the horizon.

2. Use equations of motion on action to reduce it to two derivative form and read off
K.

Problems:
1. Must know explicit form of effective action for perturbation.

2. Must manipulate this action to find out M(z)

3. In general higher derivative theories this quickly gets messy!

T'F
=,
G-
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C cal momentum method.
Higher derivative case The pole method

Appli

Putting the lagrangian off-shell

@ Consider plugging into the action an off-shell perturbation:
$(2) = do exp (~ialog z).

@ In the near horizon limit we get

d—1 2
@) _ i [ dw Ap [ w5\ 4nT ,
5 _/de/zﬂ/dzza<(4ﬂ)2 “) 7 %o

@ On-shell lagrangian is zero as it reduces to boundary term:

0z(Nw(2)p—w(2)) =0 (Can. mom. is constant!)

@ Residue of simple pole < &.

T'F
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nical momentum method.
Higher derivative case

The pole method.

@ We can exploit the pole to obtain &!

@ Pole method formulae:

@)
Resz—o £¢:ziu/(47r T)
2

Radial formula

¢ =8rT lim
w—0 w

2
Res,—o L;ir ot

¢=—8xT lim =

Time formula.

@ Works for any lagrangian, on any non-extremal black hole background.

@ No detailed knowledge of effective action necessary: simply evaluate a covariant
lagrangian on perturbed background, and extract residue.

Sl
%
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al momentum method.
Higher derivative case method
Applications

Shear viscosity and conductivity

Important transport coefficients are 7, o.

@ Shear viscosity read off from correlator of T+¥

GV = i [ oI OTYO)e

o= tim MG )

w—0 iw

@ Shear viscosity read off from correlator of J#

Galoy™ = ~i [ a0 (S O)e
o~ fm MGRw)
w—0 iw
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al momentum method.
Higher derivative case method
Applications

Shear viscosity and conductivity

@ In gauge-gravity duality, T, JX couple to perturbations
dxe  —  dxa+ ¢(t,Z)dxq,
A(t,z) = ¥t 2)

@ ¢ is always massless by SO(2) symmetry.
@ 1 is effectively massless if background is uncharged.

@ Gauge-invariance guarantees action automatically depends only on differentiated
perturbations.

@ No need to integrate by parts to put it into required form!

T'F
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G-

M. F. Paulos



al momentum method.
Higher derivative case method
Applications

Example: (V Raped)?

@ Let us compute the shear viscosity in a simple case. Take v <« 1:

12
S= 16”6 /d5x\/ g <H+ +9L vaHbcdevaHbcde>
@ Solution at v = 0: AdS-Schwarzschild

[2dz? 5

os” = 4z(1 —z)2(2 — 2) * [2(1 — 2) (Z(z — 2+ z,:(dxi)2>

@ Higher derivative term implies O(~) correction to gn,gzz

o Lowest order results only depend on gu, € = g\8~ " /x.
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al momentum method.
Higher derivative case method
Applications

Example: (V Raped)?

@ Let us compute the shear viscosity in a simple case. Take v <« 1:

12
S= 16”6 /d5x\/ g <H+ +9L vaHbcdevaHbcde>
@ Solution at v = 0: AdS-Schwarzschild

[2dz? 5

os” = 4z(1 —z)2(2 — 2) * [2(1 — 2) (Z(z — 2+ z,:(dxi)2>

@ Higher derivative term implies O(~) correction to gn,gzz

o Lowest order results only depend on gu, € = g\8~ " /x.

@ To O(~?) correction is irrelevant!

T'F
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} al momentum method.
Higher derivative case method
Applications

Example: (V Raped)?

@ Effective action for ¢:
5(2) _ 1 (A(j), &+ BoLd" + Co "
o) 327TGN wr—w wr—w wr—w

+ Do, + EeDe, + FoloC))

@ Canonical momentum is then:
Nu(z) = AL, (2) — (B, (2)) + (E¢l (Z))”

1 1

B +-D', B= le_p
2 +2 c 2

A = A-

@ Plugging in the near horizon ¢, = z—«/4% gives

3

I;
MNe(0) = jw—=>=39 (1 —1024 O(w?
( ) Iw167TL3GN( ’Y)¢0+ (w )7
S r3 (1 — 10247).
=T T6rGy 7 58
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al momentum method.
Higher derivative case method
Applications

Example: (V Raped)?

@ Alternatively, use the pole method.
@ Evaluate gravitational lagrangian on perturbed background,

dX2 — dX2 + Z_iw/47erX1 .

@ Expand near horizon:

1 ( (wrp)® 1 — 1024y

C= Regul
167Gy 8L + eg“ar)

and we read off  from the residue of the simple pole.

T'F
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Two-derivative case
Wald like formulae for transport coefficients.

Outline

© Wald like formulae for transport coefficients.
@ Two-derivative case
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Two-derivative case
Wald like formulae for transport coefficients.

The Wald formula for the entropy

@ Recall we're considering backgrounds of type

2
ds? = gupdx?dx? = L?ezg(z)dzz + gy dxFdx?
g = —z&*@a 4+ 2@ axidy;.

@ Wald’s formula for the entropy:

oL
S= / ax ( > €abE
H 5Rabcd avted

@ For the above backgrounds we obtain the entropy density

_Ar n yabed _ 327Gy oL
S= =A%z ) ==
4Gy -0 V=3 0Rabcd
@ Can a similar formula be found for transport coefficients?
;I;
;&uﬁ
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Two-derivative case
Wald like formulae for transport coefficients.

Two derivative case: conductivity

@ Strategy: compute the simple pole in a general uncharged background.

1
= / dxdz\/—g (ZMabchachd>.

29d+1

with M2bcd some arbitrary tensor.
@ Turn on a small perturbation Ay, (t, z) = v(t, z), obtain:

s@ —

M / d9 dz /=g g* ( M™% 972 024 029 + Mmm 9" onp 811/)>

29d+1

@ Plugging in near horizon solution, read off the pole. Radial and time formula give:

2 &2 43 it
(gXX ) M 1[)(1

(9?73 M7, or o=

z=0 gd+1

o =

gd+1 z=0

@ Equality is insured by horizon regularity. B
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Two-derivative case
Wald like formulae for transport coefficients.

A formula for the shear viscosity

@ We consider a general lagrangian:

d
S=- 167TG /d X\/ gﬁ(Rabcd: ab),d)(r),,,,)

@ Add a shear mode perturbation to the background:
dxo — dxo + Am(x")dx™

@ The curvatures transform as

PN 3
Rmmpg = Rmnpg — Zesz[F mnFpq]
a 1
Rmymy = Bmymy + Ze4mepan
— ,1 —P 3p 3p _ 3p
Rmnpy = 66 2Vp(e an) + Vn(e Fmp) Vm(e an)
B
;&uﬁ
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Two-derivative case
Wald like formulae for transport coefficients.

A formula for the shear viscosity

@ We look for the simple pole in the off-shell lagrangian. Defining:

Xabcd __ 327TGN oL Yabcd,efgh _ 6Xab0d
V=9 SRaped’ 0 Rergn
9

@ The final result is

A 4 e—29% .
h (ZXZ};}, _ XX})/(y _ 97 |:8Zazt _ aztR:| >

= J6rGy 2 Y
where
B = (6290L2R+(d+3)8zp)
t Xz ,yz Xz yt
ot = YZY ZX_Yzy tx
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Two-derivative case
Wald like formulae for transport coefficients.

Application: Gauss-Bonnet theory

@ As an example, consider Gauss-Bonnet gravity in 5 dimensions

1 — 12
S = - d*xdz\/—g( R+ 5 + W
167rGN/ xazy/ g( et >
A
wo= 21 (RBbca — 4% + F?)
@ Planar black hole solution
2 _ B (_n2 a4 axide) + 2
ds? = L2< N2 f(u)df? + dx dx,) * D
1 DU 1 —
- _ _ w2 2 _ _ _
W = 5 (1 V1—ax( u)), M= (1+VT=4).
@ The Ricci scalar is given by
20 8
R == (1+2x
L2< +5 )
z=0
;I;
@ Next step is to compute the various coefficients, X, Y. W
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Two-derivative case
Wald like formulae for transport coefficients.

Application: Gauss-Bonnet theory

@ Computing quantities in formula yields

X%, = 1-4x-382)3% X% | =1-8x
z=0 z=0
8702 = 0 a? = LLZ
; 7
z=0 z=0
@ Final result A
h
= 1— 4
"= T6nGr ):

@ This agrees with previous calculations in the literature.
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Conductivi

Universality at extremality

Outline

@ Universality at extremality
@ Shear viscosity
@ Conductivity
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Shear viscosity
Conductivity

Universality at extremality

Extremal black holes

@ Theories at zero temperature but finite chemical potential.
@ Holographic description: extremal charged black hole (e.g. extremal AdS-RN).
L? i
ds? = = 29 gz2 ¢ <722 D2 + ezp(z)dx’dx,) ,

z2

@ Near horizon AdS, x R~ factor supported by flux:

ds?

2
—v (zqu—2 + d22> + vo(dx?).
z
Fzr = Q.

@ Double pole at horizon! Problems?

T'F
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Shear viscosity
Conductivity

Universality at extremality

Horizon regularity

@ Same argument as before. Infalling observer must see regular fields

9zz fw ¢o
Outo = & [~ L2000 = 2%,

@ Equation of motion is completely determined and coincides with that of scalar in
Ad82:
w2

/! 2 /
#"(2) + §¢ (2) + ?Gﬁ(z) =0
@ Solution is

Tem—]

T'F
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Shear viscosity
Conductivity

Universality at extremality

Zero temperature limit is continuous

@ Generalized canonical momentum at the horizon:
1(2) =~ g 0u02) = /=097 [ E2 60

@ The nature of the pole is irrelevant.
@ Zero temperature limit is continuous.
@ Automatically implies universality of /s = 1/4x for all extremal backgrounds.

T'F
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Shear viscosity
Conductivity

Universality at extremality

Pole method and formulae

@ Since transition is continous analytic formula for  is still valid.
@ Simplification because of AdS, near horizon:

v3 ot
_ 2 zy Xy
= 2X%, — X%y —8— ).
K 167TGN < il X Vi )

@ To use pole method, simply consider any finite temperature AdS,! Now we have
simple pole, but result is independent of this temperature.

T'F
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Conductivity

Universality at extremality

Perturbation equations

@ Background is charged: non-trivial flow for gauge perturbations.

ax(t, 2) A(z)eivT
m(t,z) = H(z)e T

@ Gauge constraint plus equation of motion:

w2 + 22wnH'(2) /vy
—4AX
z
QA(z) + wH'(z) = O.

AL2) + 2A2) + () = o

@ Equation of motion for a massive scalar field with m® = Q2/(v;L?).

w? — 272

7 A(2).

A'(z) + §A’(z) +

T'F
=,
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Conductivity

Universality at extremality

Universal scaling of conductivity

@ Solution to the equation with infalling boundary conditions.
W 1iWd
A(z) = 1 —iw) ~ — =+ ...
(2) = exp(iw/z)(z — iw) ~ z + 57 + 352 +

@ IR CFT Green'’s function is determined by

Gu = iw®.

Non-analytic behaviour of full Green’s function is completely fixed by this:

IMGr(w) x iw® = Re(o) o w?.

Universal scaling!

@ Higher derivative corrections do not modify this result! (Proof?).
@ Scaling dimension of IR CFT operator is protected.

M. F. Paulos
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Universality at extremality

Summary

Transport in strongly coupled field theories using gauge-gravity duality: QGP,
AdS/CMT.

Finite coupling, N: higher derivative corrections.

Universal near-horizon behaviour.

Shear viscosity and DC conductivity easily computed with pole method.
Analytic, Wald-like formulae.
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G-

M. F. Paulos



Shear v
Conductivity

Universality at extremality

Prospects and comments

@ Our results are straightforwardly extended to extremal black holes (ask me in
question time!).

@ We can presumably rewrite our results in the language of absorption
cross-sections. This would give

¢ Kk Ap
o =K =7 —
abs 5

@ Shear viscosity — ogpg Of s-wave gravitons.

@ Can our analytic formulae be covariantized? What lessons do they teach us about
the relation between n-point functions and transport coefficients?
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Universality at extremality

Prospects and comments

@ Our results are straightforwardly extended to extremal black holes (ask me in
question time!).

@ We can presumably rewrite our results in the language of absorption
cross-sections. This would give

¢ Kk Ap
o =K =7 —
abs 5

@ Shear viscosity — ogpg Of s-wave gravitons.

@ Can our analytic formulae be covariantized? What lessons do they teach us about
the relation between n-point functions and transport coefficients?

Thank you!

T'F
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