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Motivation

Recently, great interest in applying AdS/CFT methods to “real” systems.

Macroscopic, thermal averaged evolution: transport coefficients.

Insights into quasiparticle excitation structure.

Examples: condensed matter systems close to quantum critical points, ultra-cold
atom gases, graphene...

Important application: the strongly coupled quark-gluon plasma.

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Motivation

Recently, great interest in applying AdS/CFT methods to “real” systems.

Macroscopic, thermal averaged evolution: transport coefficients.

Insights into quasiparticle excitation structure.

Examples: condensed matter systems close to quantum critical points, ultra-cold
atom gases, graphene...

Important application: the strongly coupled quark-gluon plasma.

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Quark-gluon plasma (artist’s depiction)

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Quark-gluon plasma (artist’s depiction)

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Quark-gluon plasma as seen by strings (?)

?'

QGP close to deconfinement: strongly coupled, near-perfect, near-conformal
plasma.

Hydrodynamic simulations indicate η/s ' 0.04− 0.16 : the most ideal fluid in
nature.

Gauge-gravity duality predicts for a large class of theories η/s = 1/4π ' 0.08!
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The viscosity bound

Kovtun, Son, Starinets: a new universal lower bound in nature?
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The viscosity bound

Theories with Einstein gravity dual⇒ η/s = 1/4π.

N = 4 SYM (Type IIB SUGRA + R4 correction):

η

s
=

1
4π

(
1 + 15

ζ(3)

λ3/2

)
>

1
4π

Including D7’s leads to quadratic curvature terms, which can contribute negative
corrections.

Violation of bound for superconformal gauge theories with c > a
[Buchel,Myers,Sinha ’08].

Is there a bound of the form η/s ≥ O(1)/4π?
Study shear viscosity in general higher derivative theories!
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Main points of this talk:

It is possible to find universal properties of transport coefficients in general higher
derivative theories. These effectively descend from the universality of black hole
horizons.

The pole method: a class of transport coefficients can be obtained
straightforwardly by computing the residue of a simple pole of an off-shell
lagrangian. This requires only information about the horizon.

There are simple, generic, Wald-like formulae for the shear viscosity and
conductivity. This opens up new perspectives in the holographic study of possible
new fundamental bounds.
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Hydrodynamics as Effective Field Theory

Hydrodynamics describes slow spatial and temporal variations of fields with
respect to some microscopic scale `.

Hydrodynamic fields are (approximately) conserved currents, as these necessarily
have low frequency and momentum modes. Ex.:

Tµν Stress energy tensor

Jµ Abelian charge current

Fast, non-hydrodynamic modes are integrated out. Effective description in terms
of a set of transport coefficients.

Ex.:

η Shear viscosity

σ Conductivity

τ Relaxation time

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Equilibrium Hydrodynamics
Gauge/gravity basics
Two-derivative case

Derivative expansion of transverse modes.

Exchange T 00 and momentum density T 0i for 4-velocity and energy density.

Tµν = εuµuν + Tµν⊥
uµTµν⊥ = 0

Tµν⊥ are fixed and can be written in a derivative expansion. To first order we have:

Tµν⊥ = P(ε)∆µν − η(ε)σµν − ζ(ε)∆µν(∇·u),

η is the shear viscosity, and ζ the bulk viscosity which vanishes in conformal
theories.
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Linearized theory

Perturbing the metric by hxy (t , z) about equilibrium state:

Txy = −P hxy − ηḣxy

Linearized response theory implies:

Gxy,xy
R (ω) = P − iηω +O(ω2)

with Gxy,xy
R (ω) ' 〈T xy (ω)T xy (−ω)〉.

Kubo formula:

η = − lim
ω→0

1
ω

Im G xy
R xy (ω)
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Gauge/gravity dictionnary

Strongly coupled large N gauge theories⇔ gravity/string theories.

Best known example:

N = 4 SU(N) SYM ↔ Type IIB superstring on AdS5 × S5

λ = g2
YM N ↔ R/ls

λ/N ↔ gs

O(xµ) ↔ φO(r , xµ)

Partition function maps onto on-shell gravitational action in the bulk.

Z = exp (−SE )

Operators are sourced via
∫

d4xO(xµ)φO(r = +∞, xµ).

M. F. Paulos
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Finite temperature

In the gravity sector we obtain the effective action:

S5D =
1

16πGN

∫
d5x

√
−g
(

R +
12
L2

)

Vacuum described by AdS5. Finite temperature→ Black hole!

ds2 =
r2
0

L2
(−f (u)dt2 + dx2) +

L2 du2

4 u2

f (u) = 1− u2, T =
r0

L2π
.

Field theory thermodynamics↔ Black hole thermodynamics.

Hydrodynamics↔ Small frequency and momentum modes.

M. F. Paulos
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General setup

Focus on d dimensional field theories which have effective d + 1 gravitational
description at strong coupling.

Gravitational sector:

S = −
1

16πGN

∫
dd+1x

√
−g
(

R +
12
L2

+ γL2(Rabcd )2 + . . .

)
Treat higher derivative corrections perturbatively γ � 1, except in special cases.

Assume that at finite temperature effective gravitational description is

ds2 = =
L2

z
e2g(z)dz2 − z e2f (z)dt2 + e2ρ(z)dx i dxi

Functions f , g, ρ regular⇒ Horizon at z = 0.

M. F. Paulos
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Real-time correspondence

Studying hydrodynamics requires real-time correlation functions -
Policastro,Son,Starinets ’02.

Simple case: massless scalar field.

S(2)
φ = −

1
2

∫
dd x dz

√
−g
κ

(∇φ)2

Near horizon equation for φ(t , z) = φ(z)e−iωt :

φ′′ω(z) +
φ′(z)

z
+
( ω

4πT

)2 φ(z)

z2
= 0

Prescription: Infalling boundary condition (retarded propagator!)

⇒ φ(z) ' φ0 exp
(
−i

ω

4πT
log z

)
.
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Real-time correlation functions

Evaluating the on-shell action we obtain a boundary term

S(2)
φ =

1
2

∫
dd x

[
−
√
−g
κ

gzzφ′(z)φ(z)

]z=1

z=0

Prescription: take z = 1 piece. Rewriting in terms of canonical momentum get

GR(ω) = lim
ω→0,z→1

Π(z)

φ(z)

Transport coefficient via Kubo formula:

ξ = lim
ω→0

Im
Π(z = 1)

ω φ(z = 1)

M. F. Paulos
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Bulk flow is trivial.

At q = 0, the equation of motion is:

∂z Π(z) = O(ω2)

In low frequency limit Π(z) is constant!

Also, at ω = 0, solution is φ(z) = Constant.

⇒ ω∂zφ(z) = O(ω2)

Conclusion: Massless scalars have trivial bulk flow at small frequencies.

In particular we may compute transport coefficient at the horizon:

ξ = lim
ω→0

Π(z = 0)

iωφ(z = 0)

M. F. Paulos
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Transport coefficient of a massless scalar.

Recall near horizon behaviour,

φω(z) ' φ0 exp
(
−i

ω

4πT
log z

)
Using definition of canonical momentum,

Π(z) = −
√
−g
κ

gzzφ′(z)

We conclude

ξ = lim
ω→0

Π(z = 0)

iωφω(z = 0)
=

Ah

κ
.

Dividing by entropy density:
ξ

s
=

4GN

κ

Shear viscosity corresponds to

κ = 16πGN ⇒
η

s
=

1
4π
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Lessons learned

This simple two derivative case has taught us valuable lessons

Lesson 1
ImGR(ω) ⇔ Canonical momentum Π(z)

Lesson 2
Low frequency limit + Zero “mass”→ Trivial bulk flow

Lesson 3
Universal horizon behaviour: Scaling solution

φ(z) ' z−iω/(4πT )

M. F. Paulos
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Setup

General action for φ(t , z) = φω(z)eiωt :

S(2)
φ =

∫ d−1∏
i=1

dx i
∫

dω
2π

(
S(z) + S(t) + SB

)
.

S(z) =

∫ 1

0
dz

 ∑
n,m≥0

An,m(z)φ
(n+1)
ω (z)φ

(m+1)
−ω (z)

 ,

Always possible to write in this form for massless perturbations.

S(t) ∝ ω2 and SB contains boundary terms. Three types:

S1
B ' (B0(z)φ2) → no contribution to Im GR .

S2
B ' O(ω2) → don’t contribute in low frequency limit.

S3
B ' (Bn,m(z)φ(n+1)

ω φ
(m+1)
−ω ) → φ(z) always appears differentiated!

M. F. Paulos
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The generalized canonical momentum

Generalize definition of canonical momentum:

Πω(z) ≡
δSz

δ(∂zφ−ω)

Radial action becomes after integration by parts:

S(z) =

∫ 1

0
dz
(

1
2

Πω(z)φ′−ω(z)

)
Equation of motion

∂z Πω(z) = ω2F (z, φ, φ′, ...).

The Green’s function is given by the value of the on-shell action:

GR(ω) = lim
z→1

Πω(z)

φω(z)
+ Boundary terms.

M. F. Paulos
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Bulk flow is still trivial

Transport coefficient is determined by horizon quantities.

Just as in the two derivative case we have

∂z Πω(z) = O(ω2).

ω∂zφ(z) = O(ω2)

Bulk flow is trivial!

Relevant boundary terms are of form Bn,m(z)φ
(n+1)
ω φ

(m+1)
−ω = O(ω2)

Conclusion:

ξ = lim
ω→0

Π(z = 0)

iωφω(z = 0)
.

In higher derivative theories, the important quantity is the generalized canonical
momentum.
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The most important slide of this talk.

Infalling observer must see regular φ at the horizon.

At horizon, perturbation must be function of Eddington-Finkelstein coordinates:

∂zφ = ±
√
−

gzz

gtt
∂tφ = ∓

iω
4πT

φ0

z
.

Composing the two possible behaviours we get

φ′′k (z) +
φ′k (z)

z
+

ω2

(4πT )2

φk (z)

z2
= 0.

This is exactly the near-horizon equation of motion of the two derivative case.

Argument is completely general: near horizon behaviour is universal and fixed by
regularity.

M. F. Paulos
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Near horizon behaviour

Form of the equation of motion implies near horizon action:

S(2)
φ =

∫ d−1∏
i=1

dx i
∫

dω
2π

∫ 1

0
dz
−
√
−g

2κ̃

(
gzzφ′ω(z)φ′−ω(z) + gttω2φω(z)φ−ω(z)

)
,

This implies the canonical momentum at the horizon

Πω(z) = iω
Ah

κ̃

φ0

z
.

And therefore the transport coefficient:

ξ =
Ah

κ̃
.

Higher derivative structure is packaged into the single coefficient κ̃.

M. F. Paulos
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Computing the canonical momentum

How to obtain the value of the canonical momentum?

1. Find the effective action and compute δS/δφ′(z). Evaluate near the horizon.

2. Use equations of motion on action to reduce it to two derivative form and read off
κ̃.

Problems:

1. Must know explicit form of effective action for perturbation.

2. Must manipulate this action to find out Π(z)

3. In general higher derivative theories this quickly gets messy!

M. F. Paulos
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Putting the lagrangian off-shell

Consider plugging into the action an off-shell perturbation:

φω(z) = φ0 exp (−iα log z) .

In the near horizon limit we get

S(2)
φ =

∫ d−1∏
i=1

dx i
∫

dω
2π

∫
dz

Ah

2κ̃

(
ω2

(4πT )2
− α2

)
4πT

z
φ2

0.

On-shell lagrangian is zero as it reduces to boundary term:

∂z (Πω(z)φ−ω(z)) = 0 (Can. mom. is constant!)

Residue of simple pole↔ κ̃.

M. F. Paulos
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The pole method.

We can exploit the pole to obtain κ̃!

Pole method formulae:

ξ = 8πT lim
ω→0

Resz=0 L
(2)

φ=z iω/(4πT )

ω2
Radial formula

ξ = −8πT lim
ω→0

Resz=0 L
(2)

φ=e−iωt

ω2
Time formula.

Works for any lagrangian, on any non-extremal black hole background.

No detailed knowledge of effective action necessary: simply evaluate a covariant
lagrangian on perturbed background, and extract residue.
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Shear viscosity and conductivity

Important transport coefficients are η, σ.

Shear viscosity read off from correlator of Tµν

Gxy,xy
R (ω) = −i

∫
dt θ(t)〈T xy (t)T xy (0)〉e−iωt ,

η = lim
ω→0

Im Gxy,xy
R (ω)

iω
.

Shear viscosity read off from correlator of Jµ

GR(ω)x,x = −i
∫

dt θ(t)〈Jx (t)Jx (0)〉e−iωt ,

σ = lim
ω→0

Im Gx,x
R (ω)

iω
.

M. F. Paulos



Motivation
Transport and gauge/gravity duality

Higher derivative case
Wald like formulae for transport coefficients.

Universality at extremality

Canonical momentum method.
The pole method
Applications

Shear viscosity and conductivity

In gauge-gravity duality, T xy , Jx couple to perturbations

dx2 → dx2 + φ(t , z)dx1,

Ax (t , z) = ψ(t , z)

φ is always massless by SO(2) symmetry.

ψ is effectively massless if background is uncharged.

Gauge-invariance guarantees action automatically depends only on differentiated
perturbations.

No need to integrate by parts to put it into required form!
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Example: (∇Rabcd)2

Let us compute the shear viscosity in a simple case. Take γ � 1:

S = −
1

16πGN

∫
d5x

√
−g
(

R +
12
L2

+ γL4∇aRbcde∇aRbcde
)
,

Solution at γ = 0: AdS-Schwarzschild

ds2 =
L2dz2

4z(1− z)2(2− z)
+

r2
0

L2(1− z)

(
−z(2− z)dt2 +

∑
i

(dxi )
2

)

Higher derivative term implies O(γ) correction to gtt , gzz

Lowest order results only depend on gxx , ξ = g(d−1)
xx /κ.

To O(γ2) correction is irrelevant!
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Example: (∇Rabcd)2

Effective action for φ:

L(2)
φ = −

1
32πGN

(
Aφ′ωφ

′
−ω + Bφ′ωφ

′′
−ω + Cφ′′ωφ

′′
−ω

+ Dφ(3)
ω φ′−ω + Eφ(3)

ω φ′′−ω + Fφ(3)
ω φ

(3)
−ω

)
Canonical momentum is then:

Πω(z) = Ãφ′ω(z)− (B̃φ′ω(z))′ + (Eφ′′ω(z))′′

Ã = A−
1
2

B′ +
1
2

D′′, B̃ = C −
1
2

E ′ − D

Plugging in the near horizon φω = z−iω/4r0 gives

Πω(0) = iω
r3
0

16πL3GN
(1− 1024γ)φ0 +O(ω2),

⇒ η =
1

16πGN

(
r3
0

L3

)
(1− 1024γ).
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Example: (∇Rabcd)2

Alternatively, use the pole method.

Evaluate gravitational lagrangian on perturbed background,

dx2 → dx2 + z−iω/4πT dx1.

Expand near horizon:

L =
1

16πGN

(
...+

(ωr0)2

8L
1− 1024γ

z
+ Regular

)

and we read off η from the residue of the simple pole.
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The Wald formula for the entropy

Recall we’re considering backgrounds of type

ds2 = gabdxadxb =
L2

z
e2g(z)dz2 + gµνdxµdxν

gµν = −z e2f (z)dt2 + e2ρ(z)dx i dxi .

Wald’s formula for the entropy:

S =

∫
H

dΣ

(
δL

δRabcd

)
εabεcd

For the above backgrounds we obtain the entropy density

s =
Ah

4 GN
X zt

zt

∣∣∣∣∣
z=0

, X abcd = −
32πGN√
−g

δL
δRabcd

Can a similar formula be found for transport coefficients?
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Two derivative case: conductivity

Strategy: compute the simple pole in a general uncharged background.

S = −
1

2g2
d+1

∫
dd x dz

√
−g
(

1
4

Mabcd FabFcd

)
.

with Mabcd some arbitrary tensor.

Turn on a small perturbation Ax1 (t , z) ≡ ψ(t , z), obtain:

S(2)
ψ = −

1
2g2

d+1

∫
dd x dz

√
−g gxx

(
Mzx1

zx1
gzz∂zψ ∂zψ + M tx1

tx1
gtt ∂tψ ∂tψ

)
Plugging in near horizon solution, read off the pole. Radial and time formula give:

σ =
e2

g2
d+1

(gxx )d−3 Mzx1
zx1

∣∣∣∣∣
z=0

or σ =
e2

g2
d+1

(gxx )d−3 M tx1
tx1

∣∣∣∣∣
z=0

Equality is insured by horizon regularity.
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A formula for the shear viscosity

We consider a general lagrangian:

S = −
1

16πGN

∫
dd x

√
−g L(Rabcd , F̃

(q)
ab ,Φ

(r), ...)

Add a shear mode perturbation to the background:

dx2 → dx2 + Am(xn)dxm,

The curvatures transform as

Rmnpq = R̂mnpq −
3
4

e2ρP[FmnFpq ]

Rmymy = R̂mymy +
1
4

e4ρFmpF p
n

Rmnpy = −
1
6

e−ρ
[
2∇p(e3ρFmn) +∇n(e3ρFmp)−∇m(e3ρFnp)

]
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A formula for the shear viscosity

We look for the simple pole in the off-shell lagrangian. Defining:

X abcd = −
32πGN√
−g

δL
δRabcd

, Y abcd,efgh =
δX abcd

δRefgh

The final result is

η =
Ah

16πGN

(
2X zy

zy − X xy
xy −

4 e−2g0

L2

[
∂zα

zt − αzt R̃

])∣∣∣∣∣
z=0

where

R̃ =
(

e2g0 L2R + (d + 3)∂zρ
)

αzt = Y xz ,yz
zy zx − Y xz ,yt

zy tx
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Application: Gauss-Bonnet theory

As an example, consider Gauss-Bonnet gravity in 5 dimensions

S = −
1

16πGN

∫
d4xdz

√
−g
(

R +
12
L2

+ W
)

W =
λ

2
L2
(

R2
abcd − 4R2

ab + R2
)

Planar black hole solution

ds2 =
r2
0

L2

(
−N2 f (u)dt2 + dx i dxi

)
+

du2

4 u2f (u)

f (u) =
1

2λ

(
1−

√
1− 4λ (1− u2)

)
, N2 =

1
2

(
1 +

√
1− 4λ

)
.

The Ricci scalar is given by

R

∣∣∣∣∣
z=0

= −
20
L2

(
1 +

8
5
λ

)
Next step is to compute the various coefficients, X , Y .
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Application: Gauss-Bonnet theory

Computing quantities in formula yields

X xy
xy

∣∣∣∣∣
z=0

= 1− 4λ− 32λ2, X zy
zy

∣∣∣∣∣
z=0

= 1− 8λ

∂zα
zt

∣∣∣∣∣
z=0

= 0, αzt

∣∣∣∣∣
z=0

=
λL2

4
,

Final result
η =

Ah

16πGN
(1− 4λ),

This agrees with previous calculations in the literature.
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Extremal black holes

Theories at zero temperature but finite chemical potential.

Holographic description: extremal charged black hole (e.g. extremal AdS-RN).

ds2 =
L2

z2
e2g(z)dz2 +

(
−z2 e2f (z)dt2 + e2ρ(z)dx i dxi

)
,

Near horizon AdS2 × Rd−1 factor supported by flux:

ds2 = −v1

(
−z2dτ2 +

dz2

z2

)
+ v2(dx2).

Fzτ = Q.

Double pole at horizon! Problems?

M. F. Paulos
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Horizon regularity

Same argument as before. Infalling observer must see regular fields

∂zφ0 = ±
√
−

gzz

gtt
∂tφ0 = ∓

iω
µ

φ0

z2
,

Equation of motion is completely determined and coincides with that of scalar in
AdS2:

φ′′(z) +
2
z2
φ′(z) +

ω2

z4
φ(z) = 0.

Solution is

φ(z) = φ0 exp
(
±

iω
z

)
.
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Zero temperature limit is continuous

Generalized canonical momentum at the horizon:

Π(z) = −
√
−g
κ̃

gzz∂zφ(z) =
iω
κ̃

√
−ggzz

√
−

gzz

gtt
φ0.

The nature of the pole is irrelevant.

Zero temperature limit is continuous.

Automatically implies universality of η/s = 1/4π for all extremal backgrounds.
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Pole method and formulae

Since transition is continous analytic formula for η is still valid.

Simplification because of AdS2 near horizon:

η =
v3

2
16πGN

(
2X zy

zy − X xy
xy − 8

αzt

v1

)
.

To use pole method, simply consider any finite temperature AdS2! Now we have
simple pole, but result is independent of this temperature.
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Perturbation equations

Background is charged: non-trivial flow for gauge perturbations.

ax (t , z) = A(z)e−iωτ

hx
t (t , z) = H(z)e−iωτ

Gauge constraint plus equation of motion:

A′′x (z) +
2
z

A′x (z) +
ω2 + z2v2H′(z)/v1

z4
Ax (z) = 0,

QA(z) + v2H′(z) = 0.

Equation of motion for a massive scalar field with m2 = Q2/(v1L2).

A′′(z) +
2
z

A′(z) +
ω2 − 2z2

z4
A(z).
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Universal scaling of conductivity

Solution to the equation with infalling boundary conditions.

A(z) = exp(iω/z)(z − iω) ' z +
ω2

2z
+

1
3

iω3

z2
+ ...

IR CFT Green’s function is determined by

Gω = iω3.

Non-analytic behaviour of full Green’s function is completely fixed by this:

ImGR(ω) ∝ iω3 ⇒ Re(σ) ∝ ω2.

Universal scaling!

Higher derivative corrections do not modify this result! (Proof?).

Scaling dimension of IR CFT operator is protected.
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Summary

Transport in strongly coupled field theories using gauge-gravity duality: QGP,
AdS/CMT.

Finite coupling, N: higher derivative corrections.

Universal near-horizon behaviour.

Shear viscosity and DC conductivity easily computed with pole method.

Analytic, Wald-like formulae.
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Prospects and comments

Our results are straightforwardly extended to extremal black holes (ask me in
question time!).

We can presumably rewrite our results in the language of absorption
cross-sections. This would give

σabs = κξ =
κ

κ̃

Ah

.

Shear viscosity→ σabs of s-wave gravitons.

Can our analytic formulae be covariantized? What lessons do they teach us about
the relation between n-point functions and transport coefficients?

Thank you!

M. F. Paulos
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