Strongly coupled dense matter and hedgehog black holes

S. Prem Kumar (Swansea U.)

February 1, 2011, DAMTP, Cambridge

(work in progress with P. Benincasa)

Introduction

 The behaviour of cold dense baryonic matter is one of the outstanding issues in theoretical physics.
 Equation of state for bulk nuclear matter (e.g. Stephanov '07; Schäfer '05)

- Passing from nucleons to quarks requires non-perturbative treatment.
 - Standard lattice techniques suffer from infamous sign problem. [Alternate approaches: Imaginary μ ; stochastic quantization..]

- Another approach: theories without a sign problem,
 e.g. QCD with isospin chemical potential; theories with real matter respresentations.
- Models within the framework of the AdS/CFT correspondence Require large-N (colours) and large-N_f (flavours):

Veneziano limit: $N_f \to \infty$ and $N \to \infty$ with $\frac{N_f}{N}$ fixed.

Not obvious if weakly coupled string dual exists when $\frac{N_f}{N}\sim 1$.

Outline

- Review $\mathcal{N}=4$ theory with $\mathcal{N}=2$ matter (D3-D7 system).
- Reducing the flavour group by "smearing".
- Phase structure at weak coupling.
- Strong coupling picture at finite baryon density.
- Outlook

Theory with fundamental matter: D3-D7 system

- D3-D7 open strings: N_f hypermultiplets $i=1,2...N_f$, $(Q^i,\tilde{Q}_i) \rightarrow (N,\bar{N})$ of SU(N). (Karch-Katz '02)
- $\mathcal{N}=4$ theory coupled to $\mathcal{N}=2$ matter

$$W = \sum_{i=1}^{N_f} \left(\sqrt{2} \, \tilde{Q}_i \, \Phi_3 \, Q^i + m \tilde{Q}_i \, Q^i \right) + \sqrt{2} \operatorname{Tr} \left(\Phi_3 \left[\Phi_1, \Phi_2 \right] \right).$$

- Flavour symmetry: $U(N_f) \simeq U(1)_B \times SU(N_f)$
- R-symmetry: $SU(2)_R \times U(1)_R \times SU(2)_{\Phi}$

$\mathcal{N}=1$ "smeared" theory: D-brane picture

(see Núñez-Paredes-Ramallo 2003 ..., 2010 review)

• Six directions transverse to D3-brane:

$$z_1 = x_4 + ix_5$$
, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

Note that $z_1 = x_4 + ix_5$, $z_2 = x_6 + ix_7$, $z_3 = x_8 + ix_9$

• Obtained by action of $\frac{SU(3)}{U(1)\times SU(2)}$ on the orientation vector (0,0,1).

- As $N_f \to \infty$ the smearing "orbit" $\frac{SU(3)}{U(1) \times SU(2)} \simeq \mathbb{CP}^2$.
- New superpotential Yukawa couplings :

$$\sum_{a=1}^{3}\sum_{i=1}^{N_f}\lambda_i^a\ ilde{Q}_i\Phi_aQ^i
ightarrow\int dec{X}\ ilde{Q}_X\ ec{X}^\dagger\cdotec{\Phi}\ Q^X$$

with
$$\vec{X} = \Omega(1,0,0)^T$$
 and $\Omega \in SU(3)$.

- Theory has $SU(3) \times U(1)$ global symmetry; and $U(1)^{N_f}$ whose diagonal combination is baryon number
- For $N_f \sim N_c$, perturbative β -function has Landau pole, $\beta_{\lambda} \sim \frac{N_f}{N} \lambda^2$. We must treat the theory with a UV cut-off.

Some weak-coupling intuition

- Perturbative study of gauge theories on $S^3 \times R$ can provide some intuition for what to expect.
- Studying large-N theories on finite volume is natural from the point-of-view of AdS/CFT correspondence.
- Most famously, Hawking-Page transition in AdS_5 has been connected to Hagedorn/deconfinement transition of free gauge theory on $S^3 \times S^1_{eta}$. (Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk '03)
- What is the thermodynamics of weakly coupled large-N theory with $N_f \sim N$ flavor fields?

• Lightest field on $S^3 \times S^1_{\beta}$ is the Wilson/Polyakov loop:

$$U = \exp i \oint_{\beta} A_0 \equiv (\alpha_1, \alpha_2 \dots \alpha_N)$$

 Integrating out KK harmonics and matter fields results in a unitary matrix model

$$Z[U] = \int dU \, \exp \left[-N_f \, \sum_\ell \left(d_\ell \, {
m Tr} \, \ln (1 - U \, {
m e}^{-eta(\epsilon_\ell - \mu)})
ight. \ \left. + d_\ell {
m Tr} \, \ln (1 - U^\dagger \, {
m e}^{-eta(\epsilon_\ell + \mu)}) + \ldots
ight)
ight]$$

• When N_f , $N \to \infty$, complex saddle point configuration dominates the integral: $\{\alpha_i\}$ lie on a continuous contour in the complex plane. (Hands-Hollowood-Myers '10)

Fixed (low) T and varying μ

• $\{\alpha_i\}$ distributed on a contour C - density function $\rho(z)$ with pole(s):

• When $\mu \to \text{mass}$ of lightest scalar mode, Bose-Einstein condensation occurs, and occupation number $\to \infty$.

• Theory makes transition to Higgs phase (akin to moving from "Coulomb to Higgs branch")

Phase diagram

- The deconfined phase goes all the way to T = 0.
 Taken seriously, this suggests a dual black hole state at low temperatures.
- The Higgs phase potential seems to be runaway at tree level.
 This could be corrected radiatively.

The "smeared D3/D7" system at strong coupling

- Start with the probe picture of D7-branes in $AdS_5 \times S^5$, wrapping $S^3 \subset S^5$.
- For massive flavours, the "slipping angle" $\theta \leftrightarrow$ fermion bilinear $\tilde{\psi}_i \psi^i$, smoothly caps off

ullet Writing S^5 as a U(1)-fibration over \mathbb{CP}^2

$$d\Omega_5^2 = ds_{\mathbb{CP}^2}^2 + (d\psi + A_{\mathbb{C}P^2})^2$$

 $SU(3) \times U(1)$ manifest; broken to $SU(2)_{\Phi} \times SU(2)_{R} \times U(1)_{R}$.

• $SU(3) \times U(1)$ is preserved by the smeared, backreacted solutions of N_f D7's obtained from

$$S = S_{IIB} - T_{\mathrm{D7}} \left(\int d^{10} x \sqrt{-g_{10}} |\tilde{\Omega}_{2}| + \int C_{8} \wedge \tilde{\Omega}_{2}
ight),$$

ullet $ilde{\Omega}_2$ is the "smearing form" controlling the D7-distribution

$$dF_1 = -g_s\Omega_2$$
 $F_1 = N_f p(r)(d\psi + A_{\mathbb{C}P^2})$

$$ds^{2} = c_{1}dr^{2} + c_{2}ds_{1,3}^{2} + c_{3}ds_{\mathbb{C}P^{2}}^{2} + c_{4}(d\psi + dA_{\mathbb{C}P^{2}})^{2},$$

 $F_5 = 16\pi N\alpha'^2(1+*)\Omega_5$ and dilaton exhibits UV Landau pole.

• With massive flavours for some $r < r_{crit}(m)$, the geometry is $AdS_5 \times S^5$, with constant dilaton and $F_1 = 0$ (no D7-branes).

- What happens when chemical potential $\mu \neq 0$?
- For probes, $\mu \neq 0$ corresponds to a radial electric field F_{0r} in the DBI action. (Mateos-Myers-Thomson '06-'07; Karch-O'bannon '06-'07)
- For large enough quark density, the electric field induces F1-spike on the D7-brane $S_{D7} \rightarrow nS_{F1}[Nambu Goto]$,

• In global AdS this poses a potential problem due to Gauss's law; need baryon vertices to absorb the string flux:

We need to describe the combined D7-F1-D5(baryon vertex), a potentially complicated configuration.

- Two crucial simplifications:
 - Smearing of D7-branes ⇒ smearing of strings.
 - IIB equations automatically include flux sourced by D5-branes at the origin.

Smeared F1's and IR geometry

- ullet Expect IR geometry to be sourced by a backreaction of strings only (no D7's and $F_1=0$)
- First approximation: consistent SO(6)-symmetric smearing ansatz,

$$S = S_{IIB} - \frac{nNN_f}{2\pi\alpha'} \left(\int d^{10}x \sqrt{-g} |\tilde{\Omega}_8| + \int B_2 \wedge \tilde{\Omega}_8 \right)$$

$$\tilde{\Omega}_8 = \Omega_3 \wedge \Omega_5$$

- The SO(6) will be actually be broken by matching conditions with the UV flavour-brane background.
- The D7-brane physics is frozen/decoupled in this limit. Equivalent to looking for gravity dual of a state with $\mathcal{O}(N^2)$ static quarks in $\mathcal{N}=4$ SYM.

The consistent IIB background

 With strings uniformly smeared on compact transverse space, how is Gauss's law for B₂ satisfied:
 C-S term ~ ∫ C₄ ∧ F₃ ∧ H₃

• Equation of motion for B_2 allows $H_3 = B_2 = 0$, provided

$$\frac{nN_fN}{2\pi\alpha'}\Omega_8 = \frac{1}{32\pi G_{10}} F_5 \wedge F_3,$$

So,
$$F_3 = \# n N_f \Omega_3 \longleftrightarrow nN_f$$
 D5-branes/baryons.

• Therefore, we are looking at a high density state, energy density $\sim \mathcal{O}(N^2)$, containing $\mathcal{O}(N)$ baryons.

• SO(6)-symmetric ansatz for metric (Einstein frame)

$$\label{eq:ds2} {\it ds}^2 = -g_{tt} \, {\it dt}^2 + g_{rr} {\it dr}^2 + e^{2\sigma} \, {\it d\Omega}_3^2 + e^{2\eta} \, {\it d\Omega}_5^2$$

• Action for metric and dilaton,

$$S = \frac{N^2}{4} \int dr \, dt \sqrt{g_{rr}g_{tt}} \, e^{3\sigma + 5\eta} \, \left[R_{(2)} + g^{rr} \left((3\sigma' + 5\eta')^2 - 3\sigma'^2 - 5\eta'^2 - \frac{1}{2}\phi'^2 \right) + 6e^{-2\sigma} + 20e^{-2\eta} - 8e^{-10\eta} - Q^2 \, e^{\phi} \, e^{-6\sigma} - 2 \, Q \, e^{\phi/2} e^{-3\sigma - 5\eta} \right]$$

- $Q \equiv n \frac{2\sqrt{\lambda}}{\pi} \frac{N_f}{N}$
- Four equations and one constraint and we look for smooth solutions.

Hedgehogs

Similar systems have been studied in different contexts:

 Pure gravity (with negative cosmological constant) with a uniform distribution of strings stretching to the boundary.

(Guendelman-Rabinowitz '91)

This yields the so-called hedgehog black holes

$$ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_3^2.$$

 $f(r) = (1 + r^2 - \frac{Q}{r} - \frac{c}{r^2}).$

The 1/r term is the Newtonian potential due to the string in 4+1 dimensions.

• More recently, Headrick (2007), studied the same system in IIB, but without an F_3 flux.

Basic hedgehog

• Any small $Q \neq 0$ opens up a horizon, including at T = 0. Thus, there is a phase transition from thermal AdS to "tiny hedgehog black hole". (Headrick '07)

 Our solutions have hedgehog-like asymptotic behaviour, with two free integration constants

$$g_{tt} \to (1 + r^2 - \frac{5}{7} \frac{Q}{r} - \frac{c}{r^2} + \ldots)$$

 $\phi \to -\frac{Q}{3r^3} + \frac{a}{r^4} + \ldots$

• c varies the temperature for a fixed Q, whilst a corresponds to the VEV of a $\Delta=4$ boundary operator.

- Black hole solutions generically exist.
- Singular solutions:

Do regular T = 0 solutions exist?

Increasing c cloaks the singular solutions

Extremal solutions?

 $\{Q = 1, c = 0.55, g tt\}$

Summary/outlook

- Determining (numerically) the T-Q (and $T-\mu$) phase plot of the hedgehog configurations.
- Analytic approximations for the solutions, expanding outwards and inwards from the horizon and boundary respectively.
- Do extremal (T = 0) solutions exist?
- Obtaining the free energy for hedgehogs vs. $\langle {\rm Tr} U \rangle$, the Polyakov loop. This is what Headrick attempted in a different set-up, with mixed results.
- Stability, and possible phase transition to Higgs phase, when the horizon size of the hedgehog approaches the D7-brane distribution.
- Does the pure gravity + strings model provide a useful physical description of dense quark matter?