
Strongly coupled dense matter and hedgehog
black holes

S. Prem Kumar (Swansea U.)

February 1, 2011,
DAMTP, Cambridge

(work in progress with P. Benincasa)

S. Prem Kumar (Swansea U.) Strongly coupled dense matter and hedgehog black holes



Introduction

The behaviour of cold dense baryonic matter is one of the
outstanding issues in theoretical physics.
Equation of state for bulk nuclear matter (e.g. Stephanov ’07; Schäfer ’05 )
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Passing from nucleons to quarks requires non-perturbative
treatment.
Standard lattice techniques suffer from infamous sign
problem. [Alternate approaches: Imaginary µ; stochastic
quantization..]
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Another approach: theories without a sign problem,
e.g. QCD with isospin chemical potential; theories with real
matter respresentations.

Models within the framework of the AdS/CFT correspondence
Require large-N (colours) and large-Nf (flavours):

Veneziano limit: Nf →∞ and N →∞ with Nf
N fixed.
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Not obvious if weakly coupled string dual exists when Nf
N ∼ 1.
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Outline

• Review N = 4 theory with N = 2 matter (D3-D7 system).

• Reducing the flavour group by “smearing”.

• Phase structure at weak coupling.

• Strong coupling picture at finite baryon density.

• Outlook
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Theory with fundamental matter: D3-D7 system

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 × × × ×
D7 × × × × × × × ×

D3-D7 open strings: Nf hypermultiplets i = 1, 2 . . .Nf ,
(Q i , Q̃i ) → (N, N̄) of SU(N). (Karch-Katz ’02)

N = 4 theory coupled to N = 2 matter

W =

Nf∑
i=1

(√
2 Q̃i Φ3 Q i + mQ̃i Q

i
)

+
√

2 Tr (Φ3 [Φ1,Φ2]).

Flavour symmetry: U(Nf ) ' U(1)B × SU(Nf )

R-symmetry: SU(2)R × U(1)R × SU(2)Φ
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N = 1 “smeared” theory: D-brane picture

(see Núñez-Paredes-Ramallo 2003 . . . , 2010 review)

• Six directions transverse to D3-brane:

z1 = x4 + ix5 , z2 = x6 + ix7 , z3 = x8 + ix9

N    D7 's

N  D3 's

m

f

Smearing

U(N  ) fU(1)Nf

z

z

z

 3

2

1

• Obtained by action of SU(3)
U(1)×SU(2) on the orientation vector

(0, 0, 1).
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As Nf →∞ the smearing “orbit” SU(3)
U(1)×SU(2) ' CP2.

New superpotential Yukawa couplings :

3∑
a=1

Nf∑
i=1

λa
i Q̃iΦaQ

i →
∫

d ~X Q̃X
~X † · ~Φ QX

with ~X = Ω (1, 0, 0)T and Ω ∈ SU(3).

Theory has SU(3)× U(1) global symmetry; and U(1)Nf

whose diagonal combination is baryon number

For Nf ∼ Nc , perturbative β-function has Landau pole,
βλ ∼ Nf

N λ
2. We must treat the theory with a UV cut-off.
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Some weak-coupling intuition

Perturbative study of gauge theories on S3 × R can provide
some intuition for what to expect.

Studying large-N theories on finite volume is natural from the
point-of-view of AdS/CFT correspondence.

Most famously, Hawking-Page transition in AdS5 has been
connected to Hagedorn/deconfinement transition of free gauge
theory on S3 × S1

β . (Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk ’03)

What is the thermodynamics of weakly coupled large-N theory
with Nf ∼ N flavor fields?
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Lightest field on S3 × S1
β is the Wilson/Polyakov loop:

U = exp i

∮
β

A0 ≡ (α1, α2 . . . αN)

Integrating out KK harmonics and matter fields results in a
unitary matrix model

Z [U] =

∫
dU exp

[
−Nf

∑
`

(
d` Tr ln(1− U e−β(ε`−µ))

+d`Tr ln(1− U† e−β(ε`+µ)) + . . .
)]

When Nf ,N →∞, complex saddle point configuration
dominates the integral: {αi} lie on a continuous contour in
the complex plane. (Hands-Hollowood-Myers ’10)
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Fixed (low) T and varying µ

{αi} distributed on a contour C - density function ρ(z) with
pole(s):

Pole

Low μ

confined phase

< Tr U > =0 < Tr U > =0

increasingμ

Gross-Witten "deconfinement" transition 

Pole

When µ→ mass of lightest scalar mode, Bose-Einstein
condensation occurs, and occupation number →∞.

z=1
Pole

<Tr U >=1 • Theory makes transition to Higgs
phase (akin to moving from “Coulomb
to Higgs branch”)
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Phase diagram

T

Confined 

deconfinement  of N=4 

Higgs phase
(runaway ?)

Deconfined

μ

3rd order GW

The deconfined phase goes all the way to T = 0.
Taken seriously, this suggests a dual black hole state at low
temperatures.

The Higgs phase potential seems to be runaway at tree level.
This could be corrected radiatively.
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The “smeared D3/D7” system at strong coupling

Start with the probe picture of D7-branes in AdS5 × S5,
wrapping S3 ⊂ S5.

For massive flavours, the “slipping angle” θ ↔ fermion
bilinear ψ̃iψ

i , smoothly caps off

θ

S

S3

5
0.1 0.2 0.3 0.4 0.5

z
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Mass - 2.56

Writing S5 as a U(1)-fibration over CP2

dΩ2
5 = ds2

CP2 + (dψ + ACP2)2

SU(3)×U(1) manifest; broken to SU(2)Φ× SU(2)R ×U(1)R .
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SU(3)× U(1) is preserved by the smeared, backreacted
solutions of Nf D7’s obtained from

S = SIIB − TD7

(∫
d10x
√
−g10|Ω̃2|+

∫
C8 ∧ Ω̃2

)
,

Ω̃2 is the “smearing form” controlling the D7-distribution

dF1 = −gsΩ2 F1 = Nf p(r)(dψ + ACP2)

ds2 = c1dr2 + c2ds2
1,3 + c3ds2

CP2 + c4(dψ + dACP2)2,

F5 = 16πNα′2(1 + ∗)Ω5 and dilaton exhibits UV Landau pole.

With massive flavours for some r < rcrit(m), the geometry is
AdS5 × S5, with constant dilaton and F1 = 0 (no D7-branes).
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 (global)
   AdS

Backreacted
D7 geometry

What happens when chemical potential µ 6= 0 ?

For probes, µ 6= 0 corresponds to a radial electric field F0r in
the DBI action. (Mateos-Myers-Thomson ’06-’07; Karch-O’bannon ’06-’07)

For large enough quark density, the electric field induces
F1-spike on the D7-brane SD7 → nSF1[Nambu−Goto],
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• In global AdS this poses a potential problem due to Gauss’s law;
need baryon vertices to absorb the string flux:

Backreacted
D7 geometry

We need to describe the
combined D7-F1-D5(baryon
vertex), a potentially
complicated configuration.

• Two crucial simplifications:

Smearing of D7-branes =⇒ smearing of strings.

IIB equations automatically include flux sourced by D5-branes
at the origin.
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Smeared F1’s and IR geometry

• Expect IR geometry to be sourced by a backreaction of strings
only (no D7′s and F1 = 0)

• First approximation: consistent SO(6)-symmetric smearing
ansatz,

S = SIIB −
nNNf

2πα′

(∫
d10x
√
−g |Ω̃8|+

∫
B2 ∧ Ω̃8

)
Ω̃8 = Ω3 ∧ Ω5

The SO(6) will be actually be broken by matching conditions
with the UV flavour-brane background.

The D7-brane physics is frozen/decoupled in this limit.
Equivalent to looking for gravity dual of a state with O(N2)
static quarks in N = 4 SYM.
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The consistent IIB background

With strings uniformly smeared on compact transverse space,
how is Gauss’s law for B2 satisfied:
C-S term ∼

∫
C4 ∧ F3 ∧ H3

Equation of motion for B2 allows H3 = B2 = 0, provided

nNf N

2πα′
Ω8 =

1

32πG10
F5 ∧ F3,

So, F3 = # n Nf Ω3 ↔ nNf D5-branes/baryons.

Therefore, we are looking at a high density state, energy
density ∼ O(N2), containing O(N) baryons.
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SO(6)-symmetric ansatz for metric (Einstein frame)

ds2 = −gtt dt2 + grrdr2 + e2σ dΩ2
3 + e2η dΩ2

5

Action for metric and dilaton,

S =
N2

4

∫
dr dt

√
grrgtt e3σ+5η

[
R(2) + g rr

(
(3σ′ + 5η′)2

−3σ′ 2 − 5η′ 2 − 1

2
φ′ 2
)

+ 6e−2σ + 20e−2η − 8e−10η

−Q2 eφ e−6σ − 2 Q eφ/2e−3σ−5η
]

Q ≡ n 2
√
λ

π
Nf
N

Four equations and one constraint and we look for smooth
solutions.
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Hedgehogs

Similar systems have been studied in different contexts:

Pure gravity (with negative cosmological constant) with a
uniform distribution of strings stretching to the boundary.
(Guendelman-Rabinowitz ’91)

This yields the so-called hedgehog black holes

ds2 = −f (r)dt2 + dr2

f (r) + r2dΩ2
3.

f (r) = (1 + r2 − Q
r −

c
r2 ).

The 1/r term is the Newtonian potential due to the string in
4 + 1 dimensions.

More recently, Headrick (2007), studied the same system in
IIB, but without an F3 flux.
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Basic hedgehog

Any small Q 6= 0 opens up a horizon, including at T = 0.
Thus, there is a phase transition from thermal AdS to “tiny
hedgehog black hole”. (Headrick ’07)

T2 π

3

Big black hole

Tiny hedgehog

Qtransition 
from AdS to hedgehog 
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Our solutions have hedgehog-like asymptotic behaviour, with
two free integration constants

gtt → (1 + r2 − 5

7

Q

r
− c

r2
+ . . .)

φ→ − Q

3r3
+

a

r4
+ . . .

c varies the temperature for a fixed Q, whilst a corresponds to
the VEV of a ∆ = 4 boundary operator.
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• Black hole solutions generically exist.
• Singular solutions:
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Do regular T = 0 solutions exist?

Increasing c cloaks the singular solutions
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Extremal solutions?
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Summary/outlook

Determining (numerically) the T − Q (and T − µ) phase plot
of the hedgehog configurations.

Analytic approximations for the solutions, expanding outwards
and inwards from the horizon and boundary respectively.

Do extremal (T = 0) solutions exist?

Obtaining the free energy for hedgehogs vs. 〈TrU〉, the
Polyakov loop. This is what Headrick attempted in a different
set-up, with mixed results.

Stability, and possible phase transition to Higgs phase, when
the horizon size of the hedgehog approaches the D7-brane
distribution.

Does the pure gravity + strings model provide a useful
physical description of dense quark matter?
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