
Introduction
Duality Invariant Formalisms for Abelian T-duality

Renormalisation of Duality Invariant Formalism
Generalising T-duality Invariant Constructions

Conclusions

T-duality Invariant Formalisms

at the Quantum Level

Daniel Thompson

Queen Mary University of London

January 28, 2010

based on: 0708.2267 (Berman, Copland, DCT); 0712.1121 (Berman,

DCT); 0910.1345, 100x.xxxx (Sfetsos, Siampos, DCT)

Daniel Thompson T-duality Invariant Formalisms at the Quantum Level



Introduction
Duality Invariant Formalisms for Abelian T-duality

Renormalisation of Duality Invariant Formalism
Generalising T-duality Invariant Constructions

Conclusions

Table of contents

1 Introduction

2 Duality Invariant Formalisms for Abelian T-duality

3 Renormalisation of Duality Invariant Formalism

4 Generalising T-duality Invariant Constructions
Poisson–Lie T-duality
Renormalisation of Poisson–Lie T-duality Invariant Action
Hidden Lorentz Invariance
Coset Constructions

5 Conclusions

Daniel Thompson T-duality Invariant Formalisms at the Quantum Level



Introduction
Duality Invariant Formalisms for Abelian T-duality

Renormalisation of Duality Invariant Formalism
Generalising T-duality Invariant Constructions

Conclusions

T-duality I - Overview

T-duality is one of the most remarkable features of string
theory

Two string theories defined in different backgrounds may be
physically identical

Simplest example is the bosonic string on S1 of radius R dual
to the string on S1 radius α′/R

Extends to toroidal T d compactifications with O(d , d ,Z)
duality group

T-duality is not an obvious symmetry
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T-duality II - Buscher Procedure

Bosonic sigma-model in background fields

S =
1

2πα′

∫
d2σGij (X )∂αX i∂αX j + εαβBij (X )∂αX i∂βX j

with an invariance/isometry generated by a vector k

LkGij = LkH = 0

Gauge the isometry with Lagrange multiplier for flat connection

Recover ungauged sigma model after integrating out the
Lagrange multiplier

Integrating out the gauge field gives T-dual sigma-model

Dilaton transformation due to path integral measure
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Motivation

1 Can we better understand T-duality?

2 Can we make the T-duality symmetry manifest?
3 Possible applications of T-duality

String compactifications (T-folds, non-geometric backgrounds,
mirror symmetry)
Scattering amplitudes (fermionic T-duality and AdS-CFT)
Supergravity (solution generation, generalised geometry)

Today we will look at Duality Invariant String Theory
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Doubled Formalism I

For toroidal T d fibrations we have the Doubled Formalism [Hull]

Extend the fibration to a T 2d by doubling the coordinates

XI =
(
x i , x̃i

)
O(d , d) then has a natural action

X′I = (O−1)I
JXJ

where O preserves the O(d , d) metric

ηIJ =

(
0 I
I 0

)
Further restrict O ∈ O(d , d ,Z) to preserve periodicities of XI
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Doubled Formalism II

Geometric data packaged into O(d , d)/O(d)× O(d) coset form

HIJ(y) =

(
g − bg−1b bg−1

−g−1b g−1

)
The O(d , d ,Z) duality transformations are now transparent

H′ = OTHO

Compare with the fractional linear transformation

Eij = gij + bij → (a.E + b)(cE + d)−1 , O =

(
a b
c d

)

Duality transformations on the same footing as geometrical
transition functions so can describe T-folds
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Doubled Formalism III

Lagrangian for Doubled Formalism

L =
1

4
HIJ(y)dXI ∧ ∗dXJ +

1

2
ΩIJdXI ∧ dXJ + L(y)

Unconventional normalisation of kinetic term

Topological term - not needed for today

Standard action for base coordinates y

Constraint for correct number of degrees of freedom

dXI = ηIJHJK ∗ dXK

Classically equivalent to standard string
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Chirality Constraints

Consider simplest case d = 1 i.e. a circle of radius R then

L =
1

4
R2dX ∧ ∗dX +

1

4
R−2dX̃ ∧ ∗dX̃

Change basis

P = RX + R−1X̃ , Q = RX − R−1X̃ ,

Then

L =
1

8
dP ∧ ∗dP +

1

8
dQ ∧ ∗dQ

Constraint becomes a chirality constraint

∂−P = 0 , ∂+Q = 0
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Implementing The Constraints

Pasti-Sorokin-Tonin procedure allows a Lorentz covariant way
to implement chirality constraints at the expense of
introducing some auxiliary fields (closed 1-forms)

PST symmetry allows gauge fixing of auxiliary fields u, v to
give Floreanini-Jackiw action

S =
1

4

∫
d2σ [∂1P∂−P − ∂1Q∂+Q]

Equivalent to Tseytlin’s duality invariant string

S =
1

2

∫
d2σ

[
−(R∂1X )2 − (R−1∂1X̃ )2 + 2∂0X∂1X̃

]
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Quantum Aspects of Duality Invariant String

What is the quantum behaviour of the duality invariant
string?

Partition function (Berman, Copland; Chowdhury)
Canonical Quantisation (Hackett-Jones, Moutsopoulos)
Doubled string field theory (Hull, Zwiebach)

What are the beta-functions and how do they constrain the
geometry?

Weyl anomaly of string theory gives equations of motion of
Supergravity
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Background Field Expansion I

We work with the Doubled action in Tseytlin form:

L = −1

2
HIJ(y)∂1XI∂1XJ +

1

2
ηIJ∂0XI∂1XJ + L(y)

Background field expansion

Covariant expansion in the tangent ξ to the geodesic between
classical and quantum values

Expand to quadratic order in ξ

Calculate effective action by exponentiation and Wick
contraction

Regulate UV divergences produce 1/ε poles for 1-loop
beta-function
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Background Field Expansion II

Non-Lorentz invariant structure complicates matters upon Wick
contraction since

lim
z→0
〈ξI (z)ξJ(0)〉 ∼ 1

ε
HIJ + θηIJ

Two sources of anomalies

1 Weyl anomaly parametrised by the UV divergent quantity 1/ε
related to scale of z

2 Lorentz anomaly parametrised by finite quantity θ related to
the argument of z
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Background Field Expansion III

Then to find the effective action

Seff =< Sint > + < (Sint)2 > + . . .

One encounters strange contractions like

〈ξA∂0ξ
BξC∂0ξ

D〉 ∼ −1

2
(HA[CHD]B + 3ηA[CηD]B)

1

ε

−(HA[CηD]B + ηA[CHD]B)Θ ,

And again must keep track of both Lorentz and Weyl anomaly
contributions
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Beta functions of the Duality Invariant String

1 There is no Lorentz anomaly at one-loop (non-trivial
cancellations)

2 The Weyl anomaly vanishes providing the background fields
obey a consistent set of equations:

βIJ = −1

2
∇̂HIJ +

1

2

(
∇̂aHH−1∇̂aH

)
IJ
− 1

2
∇̂aHIJ∇̂aΦ

βab = R̂ab +
1

8
∇̂aHIJ∇̂bHIJ − ∇̂a∇̂bΦ

βΦ =
α′

2

(
−2∇̂2Φ− (∇̂Φ)2 +

1

8
∇̂aHIJ∇̂aHIJ

)
These equations have a space-time interpretation as the
equations of motion of a toroidally reduced gravity theory!
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Poisson–Lie T-duality
Renormalisation of Poisson–Lie T-duality Invariant Action
Hidden Lorentz Invariance
Coset Constructions

Generalised T-duality

Generalisation of T-duality to non-abelian isometries [de la
Ossa, Quevedo]

Loss of isometry after Buscher dualisation
Dualisation procedure invalid on higher genus world sheets
[Giveon, Rocek]

Nonetheless expect cases for which T-duality can be
generalised and these backgrounds of are particular interest
for compactification

Poisson–Lie T-duality is a key generalisation of T-duality

Beautiful mathematical structure: Drinfeld Double
Manifestly duality invariant formalism [Klimcik, Severa]
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Poisson Lie T-duality Invariant Theory I

Key mathematical structure is the Drinfeld Double

Lie-algebra d = g ⊕ g̃

Sub algebras g and g̃ are maximally isotropic with respect to
inner product ηAB = 〈TA|TB〉
Write generators as TA = (Ta, T̃

a) and commutators:

[Ta,Tb] = ifab
cTc ,

[T̃ a, T̃ b] = i f̃ ab
c T̃

c ,

[Ta, T̃
b] = i f̃ bc

aTc − ifac
bT̃ c .

Doubled torus T 2d = T d ⊕ T d is an example
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Poisson Lie T-duality Invariant Theory II

Klimcik and Severa proposed a duality invariant theory whose
action can be written as a chiral WZW model together with an
extra term:

S =
1

2

∫
Σ

d2σ〈h−1∂1h|h−1∂0h〉 −
1

2

∫
Σ

d2σ〈h−1∂1h|H|h−1∂1h〉

+
1

12

∫
B

d3σεαβγ〈h−1∂αh|[h−1∂βh, h−1∂γh]〉

h maps the worldsheet into the group of Drinfeld Double

H is a constant matrix and contains d2 parameters specifying
the theory and HAB = 〈TA|H|TB〉 is the O(d , d) coset
representative we had before

Non-manifestly Lorentz covariant structure as before

Daniel Thompson T-duality Invariant Formalisms at the Quantum Level



Introduction
Duality Invariant Formalisms for Abelian T-duality

Renormalisation of Duality Invariant Formalism
Generalising T-duality Invariant Constructions

Conclusions

Poisson–Lie T-duality
Renormalisation of Poisson–Lie T-duality Invariant Action
Hidden Lorentz Invariance
Coset Constructions

Poisson Lie T-duality Invariant Theory III

By parametrising the group element of the double in two
inequivalent ways as h = gg̃ and h = g̃g one can solve some
constraint type equations for g or g̃ leaving a Lorentz
invariant action for the remaining fields

The resultant geometries are in general extremely complicated

Vector fields of the target space obey a group structure
[Ka,Kb] = f c

ab Kc and do not generate a strict isometry but
instead result in LKaEij = LKa (gij + bij ) = f̃ bc

aK
k
b K l

cEkiElj

Evidence for Poisson Lie T-duality

There exists a canonical equivalence between the dual sigma
models in phase space [Sfetsos]
Pairs of dual models have equivalent systems of RG equations
for the moduli contained in H [Sfetsos, Siampos]
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Background Field Expansion I

The Poisson–Lie duality invariant action can be written as

L = −1

2
HABLA

I LB
J ∂1XI∂1XJ +

1

2
(ηAB + BAB) LA

I LB
J ∂0XI∂1XJ

Dressed by the left-invariant forms LA(X) = LA
I (X)dXI

Maurer-Cartan equations dLA = −1
2 f A

BC LB ∧ LC

Field strength HIJK = (dB)IJK = fABC LA
I LB

J LC
K

Spin-connection and field strength (Torsion) are proportional
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Background Field Expansion II

As before expand to second order quantum fluctuations ξA and find

S (2) = Skin + Sint

Kinetic term for fluctuations same as abelian case described before
hence 〈ξAξB〉 ∼ 1

εH
AB + θηAB and interaction terms

Sint =
1

2

∫
dσdτ

(
IABξ

AξB + JABξ
A∂1ξ

B + KABξ
A∂0ξ

B
)
,

with

IAB = −LC
1 LD

1

[
fAC

E fBD
FHEF + (2fAF

EHEC + fAC
EHEF )fBD

F
]
,

JAB = (fBA
CHCE + 2fEA

CHCB)LE
1 ,

KAB = −fABC LC
1 .
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Beta-function for Poisson-Lie Duality Invariance

1 Lorentz anomaly cancels

2 The theory is renormalisable (i.e. absorb counter terms into
redefinition of H)

3 Concise expression for RG equation [also Avramis et al.]

dHAB

dt
=

1

4
(HACHBF−ηACηBF )(HKDHHE−ηKDηHE )fKH

C fDE
F ,

with t = ln m where m is the energy scale.

4 Agrees with the RG found in the T-dual pairs for specific
examples

5 This has been extended to show agreement in general
(laborious but easy)

6 Process of constraining and quantising commute

Daniel Thompson T-duality Invariant Formalisms at the Quantum Level



Introduction
Duality Invariant Formalisms for Abelian T-duality

Renormalisation of Duality Invariant Formalism
Generalising T-duality Invariant Constructions

Conclusions

Poisson–Lie T-duality
Renormalisation of Poisson–Lie T-duality Invariant Action
Hidden Lorentz Invariance
Coset Constructions

Hidden Lorentz Invariance

A key feature of these duality invariant theories was a lack of
manifest Lorentz invariance

However this is illusory - there is classical Lorentz invariance

And no Lorentz anomaly at the quantum level

In the abelian case this was an artifact of gauge fixing choice

Can we understand the origin of the Lorentz invariance better?
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Hidden Lorentz Invariance

We considered an arbitrary general sigma model of the form

S =
1

2

∫
dσdτ

(
CMN(X )∂0X

M∂1X
N + MMN(X )∂1X

M∂1X
N
)
,

Not invariant Lorentz transformations

δX M = −σ∂τX
M − τ∂σX M ,

However if the generalised (torsionful) spin-connection defined by
CMN is zero then

1 Equation of motion becomes first order:
0 = SMN∂0X

N + MMN∂1X
N where SMN = 1

2 (CMN + CNM)
2 Action is on-shell invariant provided that

MMPSPQMQN = SMN

These conditions are exactly solved by the group geometry of the
duality invariant theory (but allows more general group structure)
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Coset Constructions I

Interesting classes of sigma-models have been obtained from
WZW through the coset construction

In this one considers a subgroup H ⊂ G and gauges its action
in the WZW model

By solving for the non-propagating gauge fields one finds
resultant exact CFT’s defined on interesting spaces

Classic example: Witten’s cigar 2d black hole defined as
SL(2,R)/U(1)

Do the theories we have been considering admit new coset
constructions?
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Coset Constructions II

The first requirement is that we can gauge the theory. For the
WZW pieces that is unchanged however we need that

SNL[h] = −1

2

∫
Σ

d2σ〈h−1∂1h|H|h−1∂1h〉

can be gauged. Obvious approach is to try

SGNL[h,A] = −1

2

∫
Σ

d2σ〈h−1D1h|H|h−1D1h〉

Gauge invariance is not automatic! Constrains the choice of H:

0 = f E
Ai HEB + f E

Bi HEA

in which i = 1 . . . dim H and A = 1 . . . dim G
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Coset Constructions III

Viewed as a truncation of parameter space the gauge
invariance conditions

0 = f E
Ai HEB + f E

Bi HEA

is preserved by the RG equations

The projection of H into the subgroup completely decouples

The effective geometries that arise depend on dim G − dim H
coordinates and seem to be consistent, if complicated, sigma
models
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Conclusions

Duality invariant frameworks are an interesting approach to
string theory

They shed light on the nature of duality and have applications
to e.g. non-geometric backgrounds

These frameworks seem to be consistent at a quantum level

Some promising progress in constructing new theories through
coset constructions

Many interesting directions for more research

Aspects of compactification

Extension to U-duality and perhaps, M-theory

Application to AdS-CFT and fermionic T-duality
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