Pohlimeyer Reduction
and superstrings iddSs x S°

Arkady Tseytlin

“Pohlmeyer reduction’:

reformulation of gauge-fixedldSs x S° superstring

In terms of current-type variables

preserving 2d Lorentz invariance:

way towards exact solution of quantufalS; x S° superstring?



Some history

K. Pohlmeyer

Integrable Hamiltonian Systems

and Interactions through Quadratic Constraints.

Commun.Math.Phys. 46, 207 (1976)

[Cited 405 times in Spires]

Abstract: O(n)-invariant classical relativistic field trees in one
time and one space dimension with interactions that areeintiue

to quadratic constraints are shown to be closely relatedtegyrable
Hamiltonian systems.

Discovery of integrability (existence of infinite humber obn-
servation laws) oftlassical O(3) sigma model via relation to sine-
Gordon theory. Generalization to O(4) sigma model relatecoim-
plex sine-Gordon theory. Integrability of O(n) model: Baokd
transformations to generate solutions and higher condatrarges.



Extensions and generalizations

e M. Luscher, K. Pohlmeyer, “Scattering of Massless Lumps ldnd-
local Charges in the Two-Dimensional Classical Nonlineignt Model.”
Nucl.Phys. B137, 46 (1978) [Cited 246 times in Spires]

Finite-energy solutions of the field equations of the noedir sigma-
model are shown to decay asymptotically into massless lurBysmeans
of a linear eigenvalue problem connected with the field agonatwe then
find an infinite set of dynamical conserved charges.

e K. Pohlmeyer and K. H. Rehren, “Reduction Of The Two-Dimenal
O(N) Nonlinear Sigma Model,” J. Math. Phys. 20, 2628 (1979).

We reduce the field equations of the two-dimensional O(n)linear
sigma-model to relativistic O(n) covariant differentiajuations involving
n scalar fields.

e H. Eichenherr and K. Pohlmeyer, “Lax Pairs For Certain Galiea-
tions Of The Sine-Gordon Equation,” Phys. Lett. B 89, 76 @97
We derive the one-parameter family of isospectral linegeevalue prob-

lems which is the basic tool for treating certain generaizme-Gordon
equations by the inverse scattering method.



But why reduction relevant? Assumed classical 2d conformal
Invariance which is broken at quantum level.

e “The existence of an infinite number of conservation lawsclassical
O(N) model has been discovered by Pohimeyer. However, sheguan-
tum vacuum of the model appears to be crucially differentfitbie classi-
cal one, the relation between the classical conservats End quantum
ones cannot be straightforward. In particular, the confdrmvariance of
the classical theory which is of essential use in Pohimeyaerivation is
surely broken in a quantum case due to coupling constantmeaization.
The presence of higher conservation laws in quantum O(N)aioas been
shown by Polyakov. Here we present briefly Polyakov’'s déiove’

[A. B. Zamolodchikov and A. B. Zamolodchikov, “Factorizeehfatrices
In two dimensions as the exact solutions of certain relstitviguantum field
models,” Annals Phys. 120, 253 (1979).]

¢ “It has been shown by Pohimeyer that on the classical leedltbory is
completely integrable by the inverse scattering method.sW#l show that
this result has its non-trivial quantum counterpart.”

[A. M. Polyakov,“Hidden Symmetry Of The Two-Dimensional G
Fields,” Phys. Lett. B 72 (1977) 224.]



Pohimeyer reduction (PR) was not used much in the next 2@year

Technical issue:

equations of dim higher din» 3 reduced models

(e.g. forS™ = SO(n+1)/50(n), n > 2)

were apparently non-Lagrangian

Resolution suggested in:

[K. Bakas, Q. Park and I. Shin, “Lagrangian Formulation

of Symmetric Space sine-Gordon Models,” 1996]
S™=850(n+ 1)/50(n) sigma model is classically equivalent
to an integrable massive theory:

G/H = SO(n)/SO(n—1) gauged WZW model + potential term

Fully justified/generalized recently:

[M. Grigoriev and A.T., “Pohimeyer reduction ofdSs x S°
superstring sigma model.” (2008);

J. Miramontes, “Pohlmeyer reduction revisited,” 2008]



PR became important in the contextstfing theory

Technical toal classical string solutions

e construction oftlassical string solutions in constant-curvature
spaces like de Sitter and anti de Sitter

[Barbashov, Nesterenko, 1981, de Vega, Sanchez, 1993]

e construction oftlassical string solutions inAdSs x S°
representing semiclassical closed string states in AdB&ORtext
[Hofman, Maldacena, 2006; Dorey et al, 2006, Jevicki, Skmad
\Volovich et al, 2007; ..., Hoare, Iwashita, AT, 2009;
Hollowood, Miramontes, 2009; ...]

e construction of euclidean open-string world-surfaceatssl to
N = 4 SYM scattering amplitudes at strong coupling

[Alday, Maldacena, 2009; Alday, Gaiotto, Maldacena, 2009;
Dorn et al, 2009; Jevicki, Jin, 2009, ...]



Essential ideareformulation/solution of quantum string theory

QuantumAdSs x S° string theory is UV finite so PR
— reformulation in terms of integrable massive theory —

may lead to an equivalent theory also at quantum level
[Grigoriev and A.T, 2007; Mikhailov and Schafer-Nameki0Z)

Advocated as a way texact solutiorof AdSs x S° superstring
e proof of UV finiteness of the reduced theory

[Roiban and A.T., 0902.2489]

e semiclassical expansion and relation between 1-loop
guantum partition functions of string theory and reduceszbtiy
[Hoare, Iwashita and A.T., 0906.3800]

e derivation of tree-level S-matrix of reduced theory and its
similarity with AdSs x S° magnon S-matrix

[Hoare and A.T., 0912.2958]



Pohlmeyer reduction: bosonic coset models
Original example:S?-sigma model— Sine-Gordon theory
L=0,Xm0_X™ —AX™X™—-1), m=1,23
Equations of motion:
0 0_X™+AX™ =0, A=0,XTO_X", XMX™=1
Stress tensorl' L4+ = 0L X™M0L X™
T, =0, 0,T__=0, 9_-Tiy=0

impliesT, . = f(oy), T__ =h(o_)
using the conformal transformations. — F. (o) can set

0L XMOLX™ = p? O_X"O_X™ =p?, 1 =const .
3 unit vectors in 3-dimensional Euclidean space:

xm, X7 =plto X", XM=y to_xm,



X™ is orthogonal taX* and X™ (X™0+X™ = 0)
remainingSO(3) invariant quantity is scalar product

0L XMO_X™ = u? cos 2y

then 0,0_¢p+ “72 sin 2¢ = 0
following from sine-Gordon actiofPohlmeyer, 1976)

L=0yp0_¢+ 5 cos 2p

2d Lorentz invariant despite explicit constraints

Classical solutions and integrable structures

(Lax pair, Backlund transformations, etc) are directhated
e.g., SG soliton mapped into rotating string $f

“glant magnon” in theJ = oo limit (Hofman, Maldacena 06)



Analogous construction fo$* model gives
Complex sine-Gordon modé@&pPohlmeyer; Lund, Regge 76)

- 2
L =0,00_p + cot® v 0,00_6 + % cos 2¢

@, 0 are SO(4)-invariants:
pu?cos2p = 9L XmO_X™
p3sin® 0 040 = Flemnu Xm0 X"0_Xk92 X!

In the case oddS, or AdS5:
replacesin ¢ — sinh ¢, etc.
Reduced egs faf > 3 are non-Lagrangian (but see below)



String-theory interpretation: string aR; x S™

conformal gauge plus= p7 to fix conformal diffeomorphisms:
0 Xm0 X™ = p? areVirasoroconstraints

e.g., reduced theory for string dg, x S°

_ 2
L =0,00_p+ cot? 0 0,00_6 + % COS 2¢

Similar construction fordd.S,, case,
l.e. string onAdS,, x Sy, with ¢ = ur
e.g., reduced theory for string ofd.S; x S*

_ 2
L = 0.¢0_¢ + coth? © 94 xO_x — % cosh 2¢



Comments:

e Virasoro constraints are solved by a special choice of bérg
related nonlocally to original coordinates

e Although the reduction is not explicitly Lorentz invariatite
resulting Lagrangian turns out to be 2d Lorentz invariant

e Thereduced theory is formulated in terms of manifesty(n)
iInvariant variables: “blind” to original global symmetry

e reduced theory is equivalent to the original theory as irsielp
system: the respective Lax pairs are gauge-equivalent

e PR may be thought of as a formulation in terms of physical
d.o.f. — coset space analog of flat-space |.c. gauge (where 2d
Lorentz symmetry is unbroken, but broken in curved space)



PR for string iInAdS;

solve Virasoro just forddS, stress tensor — no exti$t
[de Vega, Sanchez 93; Jevicki et al 07]

string in Ad.S; (in conformal gauge)

V- V==Y -Yi+Yi+..+Y2 =-1

S = Z—X/dea{ﬁY-ﬁY—l—A(a,T)(Y-Y—I—1)
T

DAY — (8Y -AY)Y =0
z=io-7),2=2(c+7),0=0,—-0;,0=0,+0;
oY -0Y =90Y -9Y =0

New SO(2,d— 1) invariant variables to solve Virasoro algebraically:
Introduce basis vectors

e; = (Y,0Y,0Y,By, -+, Bgi1), i=1,2,...,d+1,



B;-B;=46;;, Bi-Y=B;-0Y =B;-9Y =0
Then define the scalar and two sets of auxiliary fields
a(z,2) =In(0Y -9Y), w; = B;-0%Y, v; = B;-0*Y
get new form of equations of motion

d+1
00a — e — e @ g u;v; = 0,
i=4

8uz- = Z(Bj . 6?B7;)uj, 5’02' = Z(B] . 5BZ‘)’U3‘
JF#i j#i
case 0fAdS;5: one vectorBy, i.e. du = 0, dv = 0 and
00a — e* — e “u(z)v(z) =0
get standard sinh-Gordon eq)da — sinh @ = 0 by
a(z,z) = a(z,2) + In/—u(z)v(z)

dz' = \/2u(z)dz, dz' = \/—2v(z)dz




higher-dim cases: related to Toda-type equations
useful for constructing various classical string solusion
employing inverse scattering method

(spiky strings; euclidean open-string surfaces, etc.)
AdS,: egs can be reduced 18, Toda system

004 — €% + e Y cos 3 =0, 0B — e %sin B = 0



PR for bosonicF'/G-coset model

PR theory for string oit'/G x R;:
G /H gauged WZW model + integrable potential
F/G-coset sigma modelsymmetric space

f=pdyg, 9,9 Cg, g,p] Cp, b,p] Cg
J=fldf = A+ P, Acg, Peyp.
L=-Te(P.P.), feF

(G gauge transformationg — fg;

global F-symmetry.f — fof, fo € F;

classical conformal invariance

J = A+ P as fundamental variables

D.P =0, D_P,=0, D=d+ A, | —EOM
D_P.—DyP_ +|P,P |4+F_=0 — Maurer-Cartan
Tr(PyPy) = —p?, Tr(P_P_)= —u? —Virasoro



Main idea: first solve EOM and Virasoro and then MC
special choice ofy gauge condition and conformal diffs
find reduced action giving eqs. resulting from MC
gauge fixing that solves the first Virasoro constraint

Py = T = const, Tep=foug, Te(TT) = —1
choice of special elemefit — decomposition of algebra af:

h is a centraliser of ' in g
second Virasoro constraint is solved by

P_=pg 'Ty, geG
EOMD_P, =0issolvedbyd_ = (A_), = A_

EOM D, P_=0issolvedbyd, =g 10,9 +¢g 1A, g
Thus new dynamical variables

GG-valuedg h-valued A, A, [T,AL]=0



remaining Maurer-Cartan egs gnA.. follow from
G /H gWZW action with potential:

L = —%Tr(g_l&rgg_l@_g) + WZ term
—Tr(A4 0_g9 ' —A_g '01g—g AL gA_+ALA )
—*Tr(Tg~'Tg)

Pohlmeyer-reduced theory fét/G coset sigma model

[Bakas, Park, Shin 95; Grigoriev, AT 07]

= PR theory for string orR; x F//G or F/G x S

equivalent egs of motion; equivalent integrable strucfue pairs)
special case of non-abelian Toda theory:

“symmetric space Sine-Gordon model”

[Hollowood, Miramontes et al 96]

Ay, A_: Integrate out or gauge fix



Reduced equation of motion in the “on-shell” gaugie = 0:
Non-abelian Toda equations:

O_(g~'049) — pw’[T,g ' Tyl =0,

(971049)y =0, (0-99™ ")y =0.
F/G=50(n+1)/SO(n)=5": G/H=50(n)/SO(n—1)
parametrizey by k,,,, > |_, kik; =1
get (in general non-Lagrangian) EOM fby,

9_( 8;@
V1= kmkm

Linearising around the vacuum=1 (k; =1, k; = 0)

)Z—,LL2]€g, 522,...,77,.

0.0_ky + /12]% + O(k?) =0

massive spectrum: non-trivial S-matrix witth global symmetry?



F/G=850(n+1)/S0(n)= 5"
parametrization of in Euler angles (gauge fixing)
g = eln—20n—2  T1012T¢T101  oTn—20n—2

integrating outd = SO(n — 1) gauge field4
leads to reduced theory that generalizes SG and CSG

2
= 04 p0_p + Gpq(p,0)0+6070_607 + % cos 2

gWzZW for G/H = SO(n)/SO(n — 1):
ds®_, = dp? , ds?_s = dyp* + cot? p db?

db3

sin? 6,

ds? So_4 = = dp? + cot? ¢ (df; + cot 01 tan O dfy)? + tan® ¢

and similar forn = 5



Bosonic strings odsS,, x S"
straightforward generalization:

L = Tr(PAPA) — Te(PSPY),
Tr(PPPY) — Tr(PLPL) =0

fix conformal symmetry by

Tr(PLPE) = Te(PLPL) = —p°
direct sum PR systems f&f* and Ad.S,,
linked by Virasoro — commop

e. g for string inF'/G = Ad32 x S2:
= 01p0_p+ 04 p0_¢p + L (cos 2 — cosh 2¢)

for string in /G = AdS3 x S?:
L = (9p)° + cot® ¢ (90)° + (99)° + coth” ¢ (9x)’
+“72(cos 2 — cosh 2¢)



String Theory inAdS; x S°

: S0(2,4) _ SO(6)
bosonic cosetSO(lA) SO(5)

generalized to GS string: superco (f%i’?g)@

S = T/d20[Gmn(:E)8acm8:E” + 60(D + F5)00x

X

+ 00000x0x + ...,

tension?’ = in, — Q

Conformal invariance: B, = Rpn — (F5)2, =0
Classical integrability of coset model (Pohimeyer et al )
applies also to classicaldSs x S° superstring

Quantum integrability:

explicit 1- and 2-loop computations

and comparison to Bethe ansatz

[work of last 8 years]



Aims:

solve string theory iMdSs x S°

use conformal invariance,

global (super)symmetry and integrability

find S-matrix and justify Bethe Ansatz for the spectrum
from first principles

then understand the theory in finite volume:

spectrum of closed string theory from TBA

would constitute proof of AAS/CFT



Green-Schwarz superstring:

Superstring in curved type Il supergravity background

[d?0c Gun(2)0ZMozZN + ..., ZM = (2™,6))

m=20,1,...9, a=1,2...,16, I =1,2

Explicit form of action is generally hard to find

AdSs x S° : coset space symmetry facilitates explicit construction

Algebraic construction of unique-invariant action in flat space

R1,9 _ F __ Poincare
- G Lorentz

Flat superspace & = SuperPoincare

structure of action is fixed by superPoincare alggiitaM, Q)
P M| ~P, MM|~M, M, 9 ~Q, {Q,0}~P
fHf = TP + JLQT + T Mo

Supercoset actionf Tr(f—ldf)%/G + fermionic WZ-term

I = [do(J"T™ +aJ' T +0 [ J"NJT,J7 51,

Jm = dx™ — 0™, JL = do}

unitarity and right fermionic spectrum if = 0, b = +1




_50(2,4) _ SO(6)
AdSs x S° = 50E1,4) X 50(5)

Killing vectors and Killing spinors ofddSs x S° :
PSU(2,2[4) symmetry

replaceg = Bupertoincare jp fiat GS case by
F  PSU(2,2/4)

G SO(1,4) x SO(5)
generators(P,, M,,); (P., M.,); QL, m = (q,r)
[P,P] ~ Ma [PaM] ~ 7)7 [MaM] ~ Ma

[QaPQ] ~ 7qQ? [QvMpCI] ~ /VPCIQ
(0L, 07y~ (v - P+A P+ (y - M4+ - M)



PSU(2,2/4) invariant action
J Te(f~1df) ) + WZ-term

J = f7Ydf = J"P,, + JLOY + " M,

A _ _
I = \2/_[/612 (J™T™ +aJ' T +b/ J" NI J s1 5
T
as in flat space = 0, b = +1 required byx-symmetry

unique action with right symmetry and right flat-space limit

Formal argument for UV finiteness (2d conformal invariance)
1. global symmetry —

only overall coefficient of/? (radius) can run
2. non-renormalization of WZ term (homogeneous 3-form)
3. preservation ok-symmetry at the quantum level

— relates coefficients of? and WZ terms



Equivalent form of the GS action:

SU (2,2 SU (4
G = AdSs x $° = ) X< i

generalized to
F __ PSU(2,2|4)

G — Sp(2,2)xSp(4)
basic superalgebﬁa: psu(2,2(4)
bosonic parf = su(2,2) & su(4) = so(2,4) & so(6)
admitsZ4-grading:

F=fo®h Bfa ®fs, i, §;] € Fitjmoda
fo=19=15p(2,2) ® sp(4)
fg — AdS5 X S5

currentJ = 10, f, f € F (notation changeJ, — A, etc)

Ja:f_laaf:Aa+Q1a+Pa+Q2a

AEfO) Qlefla P€f27 QZEfS'



GS Lagrangian:

1 a a
Lgs = 5 STr(v/—99** P, Py + *°Q14Qas) ,

fermionic currents in WZ term only
conformal gauge,/—gg®® = n®

Lags = STr[Py P_ + %(Q1+Q2— — Q1-Q24)]
STH(P, P,) =0, STH(P_P_) = 0

Equations of motion in terms of currents: 1-st order form

EOM: 0iP_ + A4, P_|+ [Q24,Q2-] =0,
O_Py + A, Pi|+[Q1-,Q1+] =0,
[Py, Q-] =0, P-, Q24| =0.

MC: O.Jp -0, +[J_,J]=0.




How to solve quantum string theory itidSs x S° ?

GS string on supercosgt&f%i’?éim

not of known solvable type (cf. free oscillators; WZW)
analogy with exact solution @ (»n) model (Zamolodchikovs) or
principal chiral model (Polyakov-Wiegmann, ...) ?

2d CFT — no guantum mass generation

one problem of direct approaches:

lack of manifest 2d Lorentz symmetry

S-matrix depends on two rapidities, not on their difference
symmetry constraints on it are not obvious...

An alternative approach?

Classically equivalen®d Lorentz invariantaction
describing same physical degrees of freedom?
formulation in terms of currents rather than coordinatedBél




“Pohlmeyer reduction”
Integrable + 2d conformally invariant (UV finite) model —
fermionic generalization of non-abelian Toda theory

e intimately related (at least classically) #01S5 x S° GS model
e contains fermions witlstandardkinetic terms

e has 2d Lorentz invariant S-matrix

for an equivalent set of 8+8 physical massive excitations

e remarkable UV finite massive integrable model:

exact solution?

e deserves study regardless possible relation

to AdSs x S° superstring at the quantum level



PR theory forAdSs x S° superstring

[Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07]

e start with GS equations in terms of currents

e solve conformal gauge constraints algebraically introoigic
new set of field variables directly related to the currents
e fiX k-Symmetry gauge

e reconstruct the action for resulting field equations

In terms of new current variables

e this implies classical equivalence

of original and “reduced” sets of equations

so the reduced theory is also integrable



GS action: start withf € F = PSU(2,2[4)
current] = f~1df

split according taZ, decomposition o? =alg F
Jo = f710af = Aa + Qra + Py + Qaa,

A € o, Q1,2 6?1,3, Pet,

A€ g=algG = Sp(2,2) x Sp(4)

conformal gauge

L = Str |:P-|—P— +5(Q11 Q2 — Ql—QQ—I—)}

StI'(P+P_|_) :O, StI’(P_P_) =0

solve Virasoro algebraically; fix-symmetry gauge;

find action for new current variables

Virasoro can be solved by fixing a special

(z-gauge and residual conformal diffeomorpism gauge

P, = uT, P.= png 'Tg, u=const



g € G=5p(2,2) x Sp(4)

p= arbitary scale parameter — remnant of fixing

residual conformal diffeomorphisms, eff in l.c. gauge

T is a fixed constant matrix, e.g., didg—1,1, —I), Str7? =0
H € G that commutes witll’, [T, h] =0, h € H:

H=5U(2) x SU(2) x SU(2) x SU(2)
P_isinvariantundey — hgif h € H

Implies extraH gauge invariance of e.o.m. for

g€ G=5p(2,2) x Sp(4)

Ay, A_Inh = su(2) @ su(2) ® su(2) @ su(2)

as newindependenbosonic variables



Impose partiak-symmetry gauge
Ql— =0 ) Q2+ =0 )

define independent fermionic variables

AN

U =@+ 6?1 : Uy =gQa_g ' €13

residuals-symmetry fixed by W, 5T = TV,
define new fermionic variables

v, =-Lul, v, =Ll

R \/_ L

3

expressed in terms of real Grassmann
2 x 2 matricest g ;, andnp, 1,: 8+8=16 components

Remarkably, exists local Lagrangian reproducing
resulting classical superstring equations:



gauged WZW moddior
G 5p(2,2) Sp(4)

H ™~ SU@2)xSU@2) " SU@2) x SU(2)

with integrable potentiahnd coupled tdermions
Liot = Lp + Lp = Lgwzw (g, A) + p° Str(g™ ' TgT)
+Str (¥, 7DV, + U, TD_V, + ug 'V, q¥,)

fields are represented Byx 8 supermatrices, e.g.,

g = diag(a,b) , a € Sp(2,2), be Sp(4)

DV =0.V+[AL, V], Arebh=su2)d..osu(2)
T = tdiag(1,1,-1,-1,1,1,—1,-1);

[T,h] =0,h € H=[SU(2)]%,

Invariant underd gauge transformations

g =h7lgh, Ay =hT'Aih+hTOh, V. =hTM, h

T,h] =0, heH=[SU(2)*



Integrable model
classically equivalent to GS theory:
Lax pair encoding equations of motion

L o=0_+A 42 /ug 'V, g+z2"2ug Ty,
Li=0,+9 '0,g+9 "Arg+2y/n¥, +2°uT



Comments:

e gWZW model coupled to the fermions interacting
minimally and through the “Yukawa” term

e 2d Lorentz invariant action witlv ., ¥, as 2d Majorana spinors
with standardkinetic terms

e 8 real bosonic and 16 real fermionic independent variables;
fermions link bosons fronyp(2, 2) x Sp(4):
transform under both groups

e 2d supersymmetry? yes, at least at quadratic level and in
AdS, x S? truncation limit:n = 2 super sine-Gordon model

e ;-dependent interactions are equal to GS Lagrangian;
gWZW produces MC egs.: path integral derivation
via change from fields to currents?

e linearisation of e.o.m. in the gaugé. = 0 aroundg = 1:
gives 8+8 bosonic and fermionic d.o.f. with mass same as
in BMN limit



H gauge field4d,. can be gauged away on e.o.m. —
fermionic generalization of non-abelian Toda equations

O (97 0rg) +p’lg™ Ty, T + plg™ 0,9, ¥,] =0,
TO_V,, +5u(g ¥, 9) =0,
TOLV, + 51(9¥,9 1) =0,
(971059 — BT, 0,0, 9, ])y = 0.
(g0-g~" = 3[T,¥,],¥,])y =0

fermions carry representations of bailp(2, 2) and.Sp(4):
“Intertwine” the two bosonic reduced sub-theories

Model resembles WZW models based on supergroups
rather than 2d supersymmetric WZW model

but fermions here have 1-st order kinetic term — a “hybrid”



Example: superstring oAd S, x S*

PR Lagrangian: same as= 2 supersymmetric sine-Gordon!

- 2
L=0,00_©o+ 0,.¢p0_¢ + %(cos 2¢p — cosh 2¢)

-+ Ba_ﬂ + ’78_”7 —+ Va_|_V + ,08+,0
— 2u [cosh ¢ cosp (Bv + vp) + sinh ¢ sinp (Bp — yv)] .

equivalent to
= 04 P0_9" — ‘W/((I))P + ¢* O+, + W 0y
+ W), b, + W (2M)Yr 7 |

bosonic part is 0fAdSs x S? bosonic reduced model if

2
W(®) = pcos®, W (®)]? = %(cosh 2¢ — cos2¢) .

¢L:V—|—i107 wR:_B+Z77



UV finiteness of reduced theory

[R. Roiban, A.T., 2009]

Reduction procedure may work at quantum level

only in conformally invariant case (likddSs x S° case)
Consistency requires that reduced theory is also UV finite
gWZW+ free fermions is finitej.-terms may renormalize;
fermions shouldancelbosonic renormalization

indeed true indd S, x S? case f = 2 sine-Gordon)

true also in general:

STr(¢~'T¢T) = Tr(a *TaT) — Tr(b=1THT)

— c0s 2 — cosh 2¢

cos 2¢p Is “relevant”, cosh 2¢ - “irrelevant”

bosonic 1-loop correction (cos2¢ + cosh 2¢)

but fermions cancel this divergence

directly verified at 1-loop and 2-loop order

Thusy is not renormalized, remains arbitrary

conformal symmetry gauge fixing parameter at quantum level



Some of open questions

Quantum equivalence of reduced theory and GS theory?
Path integral argument for equivalence?

Transformation may work only in quantum-conformal
case likeAdSs x S°

Indication of equivalence: semiclassical expansion
near counterparts of rigid strings iS5 x S°

leads to same characteristic frequencies

— same 1-loop partition function

Tree-level S-matrix for elementary excitations?
[Hoare, AT, 09]
Relation to magnon S-matrix in BA?

Quantum integrability? Exact solution?

Solve reduced theony: solve AdSs x S° superstring



Step towards exact solution: S-matrix
Integrable theory — determined by 2-particle S-matrix
superstring:

F  PSU(2,2/4)
G Sp(2,2) x Sp(4)

reduced theory

G Sp(2,2) 9 Sp(4)
H SU(2)x SU(2) = SU(2) x SU(2)

fields may be represented Byx 8 supermatrices

in fundamental representation B1SU (2, 2|4)

diagonal4 x 4 blocks bosonic

and off-diagonall x 4 blocks being fermionic

gin G = Sp(2,2) x Sp(4) and A~ in algebra ofH = [SU(2)]4
fermionic fieldsy, , 1/, from particular components

of the fermionicpsu(2, 2|4) superstring currents



expand the action around the trivial vacuum

g:17 A:l::OJwR:wL =0

find the tree-level two-particle scattering amplitude
for the 8+8 massive elementary excitations



Resulting 2-particleS-matrix (S =1+ £T)

generic integrable theory with non-simplg x G, symmetry
and with fields in bi-fundamental representation:

S-matrix should exhibit group factorization property

happens in the light-cone gaugelSs x S° superstring S-matrix
IS invariant under the product supergroBp'U (2|2) x PSU (2|2)
|[Kloze,MacLoughlin,Roiban,Zarembo; Arutyunov,FroloamaklarO6]
field contents of the light-cone superstring and reducedrthe
are identical in how they transform under

the bosonic symmetry groysU (2)]*

Remarkably, here get exactly the same factorisation strect

as in the superstring case

S-matrix group factorisation property

S=S®S, T=IT+T®I,



fields ared , ;, with A = (a|a), A = (a|@), i.e. factorization

SZZSE — (—1)HA [BH[CHDlsggsig |
1

T1® 44 (p1) @ (p2)) = oo | (— ) AIIPHIPDTER6 6

+ () (HENIPISCSRTCL] @6 (1) D (p2))

la] = |a] =0and|a] = |¢] =1
explicit form of (L’ can be written in terms of 10 functiors;

T = K1 6568 + Ky 695¢,

175 = K3 616% + Ky 8367,

(0%
chb(s = K5 6a5676 , Té% — K6 eaBECdv
TYS = Kr 0267, Teh = Ks 6565,
d
TS = Ko 6565, Ty = Kio 6107 .



Pohlmeyer reduced theory is 2-d Lorentz-invariant:
K; depend only on difference of two rapiditiéds= 6, — 65

v
K = —K3 = sinh? 5

Ky = —K4 = —cosh,
Y

Ky = Kg = —sinh§,
Y

K- = Kg = —cosh 5

Kg=—-Ki90=0.



in the light-cone superstringj-matrix
K,; depend separately on the two rapidities

Kl = —K3 = (sinh91 — sinh92)2
K2 — —K4 — 4 sinh 91 sinh (92

0 —0
K5 = K6 = 4 sinh 91 sinh 92 sinh ! 2

0, — 0
K+ = Kg = 4sinh 0, sinh 65 cosh L 2

Kg = —K10 = — sinh2 91 -+ Sinh2 92 .

vanishing of Ky and K reflects the fact that the bosonic part of
the reduced theory is the direct sum of the “AdS” and “sph@aa’ts
(which separate as in the conformal gauge) while in the {aginte

gauge superstring action the corresponding sets of thenboBelds
were coupled



Comments:

eMain conclusion: exists special 2d Lorentz covariant Srixat
corresponding to the reduced theory —

local UV finite massive integrable theory

whose algebraic structure is very similar to that of the Srixa
of the AdS5 x S° superstring theory in th8° light-cone gauge
ereduced theory S-matrix has same type of group factorisatio
as the superstring theory S-matrix —

suggests extra hidden fermionic symmetry

(like extension taPSU (2|2) x PSU(2|2))

erelation between the two S-matrices?

ehidden 2d supersymmetry? (presentddS,; x S* case)
eYang-Baxter equation: satisfied modulo similarity transf.

or twisting (due to gauge symmetry factorization)

etowards exact quantum solution of the reduced theory:
draw lessons from examples of massive integrable



deformations of coset CFT’s studied in literature
eneed to generalize to the case of non-abehlan
Issues of vacua and topological (?) solitons....
many open questions...



Conclusion

Pohlmeyer reduction is a very fruitful idea



