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and superstrings inAdS5 × S5

Arkady Tseytlin

“Pohlmeyer reduction”:

reformulation of gauge-fixedAdS5 × S5 superstring

in terms of current-type variables

preserving 2d Lorentz invariance:

way towards exact solution of quantumAdS5 × S5 superstring?



Some history

K. Pohlmeyer

Integrable Hamiltonian Systems

and Interactions through Quadratic Constraints.

Commun.Math.Phys. 46, 207 (1976)

[Cited 405 times in Spires]

Abstract: O(n)-invariant classical relativistic field theories in one
time and one space dimension with interactions that are entirely due
to quadratic constraints are shown to be closely related to integrable
Hamiltonian systems.

Discovery of integrability (existence of infinite number ofcon-
servation laws) ofclassical O(3) sigma model via relation to sine-
Gordon theory. Generalization to O(4) sigma model related to com-
plex sine-Gordon theory. Integrability of O(n) model: Backlund
transformations to generate solutions and higher conserved charges.



Extensions and generalizations:
• M. Luscher, K. Pohlmeyer, “Scattering of Massless Lumps andNon-

local Charges in the Two-Dimensional Classical Nonlinear Sigma Model.”
Nucl.Phys. B137, 46 (1978) [Cited 246 times in Spires]

Finite-energy solutions of the field equations of the non-linear sigma-
model are shown to decay asymptotically into massless lumps. By means
of a linear eigenvalue problem connected with the field equations we then
find an infinite set of dynamical conserved charges.

• K. Pohlmeyer and K. H. Rehren, “Reduction Of The Two-Dimensional
O(N) Nonlinear Sigma Model,” J. Math. Phys. 20, 2628 (1979).

We reduce the field equations of the two-dimensional O(n) nonlinear
sigma-model to relativistic O(n) covariant differential equations involving
n scalar fields.

• H. Eichenherr and K. Pohlmeyer, “Lax Pairs For Certain Generaliza-
tions Of The Sine-Gordon Equation,” Phys. Lett. B 89, 76 (1979).

We derive the one-parameter family of isospectral linear eigenvalue prob-
lems which is the basic tool for treating certain generalized sine-Gordon
equations by the inverse scattering method.



But why reduction relevant? Assumed classical 2d conformal
invariance which is broken at quantum level.

• “The existence of an infinite number of conservation laws forclassical
O(N) model has been discovered by Pohlmeyer. However, sincethe quan-
tum vacuum of the model appears to be crucially different from the classi-
cal one, the relation between the classical conservation laws and quantum
ones cannot be straightforward. In particular, the conformal invariance of
the classical theory which is of essential use in Pohlmeyer’s derivation is
surely broken in a quantum case due to coupling constant renormalization.
The presence of higher conservation laws in quantum O(N) model has been
shown by Polyakov. Here we present briefly Polyakov’s derivation.”

[A. B. Zamolodchikov and A. B. Zamolodchikov, “Factorized S-matrices
in two dimensions as the exact solutions of certain relativistic quantum field
models,” Annals Phys. 120, 253 (1979).]

• “It has been shown by Pohlmeyer that on the classical level the theory is
completely integrable by the inverse scattering method. Weshall show that
this result has its non-trivial quantum counterpart.”

[A. M. Polyakov,“Hidden Symmetry Of The Two-Dimensional Chiral
Fields,” Phys. Lett. B 72 (1977) 224.]



Pohlmeyer reduction (PR) was not used much in the next 20 years...

Technical issue:

equations of dim higher dim> 3 reduced models

(e.g. forSn = SO(n+ 1)/SO(n), n > 2)

were apparently non-Lagrangian

Resolution suggested in:

[K. Bakas, Q. Park and I. Shin, “Lagrangian Formulation

of Symmetric Space sine-Gordon Models,” 1996]

Sn = SO(n+ 1)/SO(n) sigma model is classically equivalent

to an integrable massive theory:

G/H = SO(n)/SO(n−1) gauged WZW model + potential term

Fully justified/generalized recently:

[M. Grigoriev and A.T., “Pohlmeyer reduction ofAdS5 × S5

superstring sigma model.” (2008);

J. Miramontes, “Pohlmeyer reduction revisited,” 2008]



PR became important in the context ofstring theory:

Technical tool: classical string solutions

• construction ofclassical string solutions in constant-curvature

spaces like de Sitter and anti de Sitter

[Barbashov, Nesterenko, 1981; de Vega, Sanchez, 1993]

• construction ofclassical string solutions inAdS5 × S5

representing semiclassical closed string states in AdS/CFT context

[Hofman, Maldacena, 2006; Dorey et al, 2006; Jevicki, Spradlin,

Volovich et al, 2007; ..., Hoare, Iwashita, AT, 2009;

Hollowood, Miramontes, 2009; ...]

• construction of euclidean open-string world-surfaces related to

N = 4 SYM scattering amplitudes at strong coupling

[Alday, Maldacena, 2009; Alday, Gaiotto, Maldacena, 2009;

Dorn et al, 2009; Jevicki, Jin, 2009, ...]



Essential idea: reformulation/solution of quantum string theory

QuantumAdS5 × S5 string theory is UV finite so PR

– reformulation in terms of integrable massive theory –

may lead to an equivalent theory also at quantum level

[Grigoriev and A.T, 2007; Mikhailov and Schafer-Nameki, 2007]

Advocated as a way toexact solutionof AdS5 × S5 superstring

• proof of UV finiteness of the reduced theory

[Roiban and A.T., 0902.2489]

• semiclassical expansion and relation between 1-loop

quantum partition functions of string theory and reduced theory

[Hoare, Iwashita and A.T., 0906.3800]

• derivation of tree-level S-matrix of reduced theory and its

similarity withAdS5 × S5 magnon S-matrix

[Hoare and A.T., 0912.2958]



Pohlmeyer reduction: bosonic coset models

Original example:S2-sigma model→ Sine-Gordon theory

L = ∂+X
m∂−X

m − Λ(XmXm − 1) , m = 1, 2, 3

Equations of motion:

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1

Stress tensor:T±± = ∂±Xm∂±Xm

T+− = 0 , ∂+T−− = 0 , ∂−T++ = 0

impliesT++ = f(σ+), T−− = h(σ−)

using the conformal transformationsσ± → F±(σ±) can set

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const .

3 unit vectors in 3-dimensional Euclidean space:

Xm , Xm
+ = µ−1∂+X

m , Xm
− = µ−1∂−X

m ,



Xm is orthogonal toXm
+ andXm

− (Xm∂±Xm = 0)

remainingSO(3) invariant quantity is scalar product

∂+X
m∂−X

m = µ2 cos 2ϕ

then ∂+∂−ϕ+ µ2

2 sin 2ϕ = 0

following from sine-Gordon action(Pohlmeyer, 1976)

L̃ = ∂+ϕ∂−ϕ+
µ2

2
cos 2ϕ

2d Lorentz invariant despite explicit constraints

Classical solutions and integrable structures

(Lax pair, Backlund transformations, etc) are directly related

e.g., SG soliton mapped into rotating string onS2:

“giant magnon” in theJ = ∞ limit (Hofman, Maldacena 06)



Analogous construction forS3 model gives

Complex sine-Gordon model(Pohlmeyer; Lund, Regge 76)

L̃ = ∂+ϕ∂−ϕ+ cot2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ

ϕ, θ areSO(4)-invariants:

µ2 cos 2ϕ = ∂+X
m∂−Xm

µ3 sin2 ϕ ∂±θ = ∓ 1
2ǫmnklX

m∂+X
n∂−Xk∂2

±X
l

In the case ofAdS2 orAdS3:

replacesinϕ→ sinhφ, etc.

Reduced eqs ford > 3 are non-Lagrangian (but see below)



String-theory interpretation: string onRt × Sn

conformal gauge plust = µτ to fix conformal diffeomorphisms:

∂±Xm∂±Xm = µ2 areVirasoroconstraints

e.g., reduced theory for string onRt × S3

L̃ = ∂+ϕ∂−ϕ+ cot2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ

Similar construction forAdSn case,

i.e. string onAdSn × S1
ψ with ψ = µτ

e.g., reduced theory for string onAdS3 × S1

L̃ = ∂+φ∂−φ+ coth2 ϕ ∂+χ∂−χ− µ2

2
cosh 2φ



Comments:

• Virasoro constraints are solved by a special choice of variables
related nonlocally to original coordinates

• Although the reduction is not explicitly Lorentz invariantthe
resulting Lagrangian turns out to be 2d Lorentz invariant

• The reduced theory is formulated in terms of manifestlySO(n)
invariant variables: “blind” to original global symmetry

• reduced theory is equivalent to the original theory as integrable
system: the respective Lax pairs are gauge-equivalent

• PR may be thought of as a formulation in terms of physical
d.o.f. – coset space analog of flat-space l.c. gauge (where 2d
Lorentz symmetry is unbroken, but broken in curved space)



PR for string inAdSd

solve Virasoro just forAdSd stress tensor – no extraS1

[de Vega, Sanchez 93; Jevicki et al 07]

string inAdSd (in conformal gauge)

Y · Y = −Y 2
−1 − Y 2

0 + Y 2
1 + ...+ Y 2

d−1 = −1

S =

√
λ

4π

∫
dτdσ

[
∂Y · ∂̄Y + Λ(σ, τ)(Y · Y + 1)

]

∂∂̄Y − (∂Y · ∂̄Y )Y = 0

z = 1
2 (σ − τ), z̄ = 1

2 (σ + τ), ∂ = ∂σ − ∂τ , ∂̄ = ∂σ + ∂τ

∂Y · ∂Y = ∂̄Y · ∂̄Y = 0

NewSO(2, d−1) invariant variables to solve Virasoro algebraically:
introduce basis vectors

ei = (Y, ∂Y, ∂̄Y, B4, · · · , Bd+1), i = 1, 2, ..., d+ 1,



Bi ·Bj = δij , Bi · Y = Bi · ∂Y = Bi · ∂̄Y = 0

Then define the scalarα and two sets of auxiliary fields

α(z, z̄) ≡ ln(∂Y · ∂̄Y ), ui ≡ Bi · ∂̄2Y, vi ≡ Bi · ∂2Y

get new form of equations of motion

∂∂̄α− eα − e−α
d+1∑

i=4

uivi = 0,

∂ui =
∑

j 6=i
(Bj · ∂Bi)uj , ∂̄vi =

∑

j 6=i
(Bj · ∂̄Bi)vj

case ofAdS3: one vectorB4, i.e. ∂u = 0, ∂̄v = 0 and

∂∂̄α− eα − e−αu(z̄)v(z) = 0

get standard sinh-Gordon eq.∂∂̄α̂− sinh α̂ = 0 by

α(z, z̄) = α̂(z, z̄) + ln
√
−u(z̄)v(z)

dz̄′ =
√

2u(z̄)dz̄, dz′ =
√
−2v(z)dz



higher-dim cases: related to Toda-type equations

useful for constructing various classical string solutions

employing inverse scattering method

(spiky strings; euclidean open-string surfaces, etc.)

AdS4: eqs can be reduced toB2 Toda system

∂∂̄α̂− ebα + e−bα cosβ = 0, ∂∂̄β − e−bα sinβ = 0



PR for bosonicF/G-coset model

PR theory for string onF/G×Rt:

G/H gauged WZW model + integrable potential

F/G-coset sigma model:symmetric space

f = p ⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g

J = f−1df = A + P , A ∈ g , P ∈ p .

L = −Tr(P+P−) , f ∈ F

G gauge transformationsf → fg;

globalF -symmetry:f → f0f , f0 ∈ F ;

classical conformal invariance

J = A + P as fundamental variables

D+P− = 0 , D−P+ = 0 , D = d+ [A, ] – EOM

D−P+ −D+P− + [P+, P−] + F+− = 0 – Maurer-Cartan

Tr(P+P+) = −µ2 , Tr(P−P−) = −µ2 – Virasoro



Main idea: first solve EOM and Virasoro and then MC

special choice ofG gauge condition and conformal diffs.→
find reduced action giving eqs. resulting from MC

gauge fixing that solves the first Virasoro constraint

P+ = µ T = const , T ∈ p = f ⊖ g, Tr(TT ) = −1

choice of special elementT → decomposition of algebra ofF :

f = p ⊕ g , p = T ⊕ n , g = m ⊕ h , [T, h] = 0 ,

h is a centraliser ofT in g

second Virasoro constraint is solved by

P− = µ g−1Tg , g ∈ G

EOMD−P+ = 0 is solved byA− = (A−)h ≡ A−
EOM D+P− = 0 is solved byA+ = g−1∂+g + g−1A+g

Thus new dynamical variables

G-valuedg , h-valued A+, A−, [T,A±] = 0



remaining Maurer-Cartan eqs ong, A± follow from

G/H gWZW action with potential:

L = −1

2
Tr(g−1∂+gg

−1∂−g) + WZ term

−Tr
(
A+ ∂−gg

−1 −A− g
−1∂+g − g−1A+gA− + A+A−

)

−µ2Tr(Tg−1Tg)

Pohlmeyer-reduced theory forF/G coset sigma model

[Bakas, Park, Shin 95; Grigoriev, AT 07]

≡ PR theory for string onRt × F/G or F/G× S1
ψ

equivalent eqs of motion; equivalent integrable structure(Lax pairs)

special case of non-abelian Toda theory:

“symmetric space Sine-Gordon model”

[Hollowood, Miramontes et al 96]

A+, A−: integrate out or gauge fix



Reduced equation of motion in the “on-shell” gaugeA± = 0:

Non-abelian Toda equations:

∂−(g−1∂+g) − µ2[T, g−1Tg] = 0 ,

(g−1∂+g)h = 0 , (∂−gg
−1)h = 0 .

F/G = SO(n+1)/SO(n) = Sn : G/H = SO(n)/SO(n−1)

parametrizeg by km,
∑n

1=1 klkl = 1

get (in general non-Lagrangian) EOM forkm

∂−(
∂+kℓ√

1 − ∑n
m=2 kmkm

) = −µ2kℓ , ℓ = 2, . . . , n .

Linearising around the vacuumg = 1 (k1 = 1, kℓ = 0)

∂+∂−kℓ + µ2kℓ +O(k2
ℓ ) = 0

massive spectrum: non-trivial S-matrix withH global symmetry?



F/G = SO(n+ 1)/SO(n) = Sn:

parametrization ofg in Euler angles (gauge fixing)

g = eTn−2θn−2 ...eT1θ1e2TϕeT1θ1 ...eTn−2θn−2

integrating outH = SO(n− 1) gauge fieldA±
leads to reduced theory that generalizes SG and CSG

L̃ = ∂+ϕ∂−ϕ+Gpq(ϕ, θ)∂+θ
p∂−θ

q +
µ2

2
cos 2ϕ

gWZW forG/H = SO(n)/SO(n− 1):

ds2n=2 = dϕ2 , ds2n=3 = dϕ2 + cot2 ϕ dθ2

ds2n=4 = dϕ2 + cot2 ϕ (dθ1 + cot θ1 tan θ2 dθ2)
2 + tan2 ϕ

dθ2
2

sin2 θ1

and similar forn = 5



Bosonic strings onAdSn × Sn

straightforward generalization:

L = Tr(PA+P
A
− ) − Tr(PS+P

S
−) ,

Tr(PS±P
S
±) − Tr(PA±P

A
± ) = 0

fix conformal symmetry by

Tr(PS±P
S
±) = Tr(PA±P

A
± ) = −µ2

direct sum PR systems forSn andAdSn
linked by Virasoro – commonµ

e.g. for string inF/G = AdS2 × S2:

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+ µ2

2 (cos 2ϕ− cosh 2φ)

for string inF/G = AdS3 × S3:

L̃ = (∂ϕ)2 + cot2 ϕ (∂θ)2 + (∂φ)2 + coth2 φ (∂χ)2

+µ2

2 (cos 2ϕ− cosh 2φ)



String Theory inAdS5 × S5

bosonic cosetSO(2,4)
SO(1,4) ×

SO(6)
SO(5)

generalized to GS string: supercosetPSU(2,2|4)
SO(1,4)×SO(5)

S = T

∫
d2σ

[
Gmn(x)∂x

m∂xn + θ̄(D + F5)θ∂x

+ θ̄θθ̄θ∂x∂x+ ...
]
,

tensionT = R2

2πα′
=

√
λ

2π

Conformal invariance: βmn = Rmn − (F5)
2
mn = 0

Classical integrability of coset model (Pohlmeyer et al )

applies also to classicalAdS5 × S5 superstring

Quantum integrability:

explicit 1- and 2-loop computations

and comparison to Bethe ansatz

[work of last 8 years]



Aims:

solve string theory inAdS5 × S5

use conformal invariance,

global (super)symmetry and integrability

find S-matrix and justify Bethe Ansatz for the spectrum

from first principles

then understand the theory in finite volume:

spectrum of closed string theory from TBA

would constitute proof of AdS/CFT



Green-Schwarz superstring:

Superstring in curved type II supergravity background∫
d2σ GMN (Z)∂ZM∂ZN + ... , ZM = (xm, θIα)

m = 0, 1, ...9, α = 1, 2..., 16, I = 1, 2

Explicit form of action is generally hard to find

AdS5×S5 : coset space symmetry facilitates explicit construction

Algebraic construction of uniqueκ-invariant action in flat space

R1,9 = F
G = Poincare

Lorentz

Flat superspace =
bF
G= SuperPoincare

Lorentz

structure of action is fixed by superPoincare algebra(P,M,Q)

[P,M] ∼ P, [M,M] ∼ M, [M,Q] ∼ Q, {Q,Q} ∼ P
f−1df = JmPm + JIαQα

I + JmnMmn

Supercoset action=
∫

Tr(f−1df)2F/G + fermionic WZ-term

I =
∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJJsIJ

Jm = dxm − iθ̄IΓmθI , JIα = dθIα
unitarity and right fermionic spectrum iffa = 0, b = ±1



AdS5 × S5 = SO(2,4)
SO(1,4) ×

SO(6)
SO(5)

Killing vectors and Killing spinors ofAdS5 × S5 :

PSU(2, 2|4) symmetry

replace
bF
G = SuperPoincare

Lorentz in flat GS case by

F̂

G
=

PSU(2, 2|4)
SO(1, 4) × SO(5)

generators:(Pq,Mpq); (P ′
r,M′

rs);QI
α, m = (q, r)

[P,P] ∼ M, [P,M] ∼ P, [M,M] ∼ M,

[Q,Pq] ∼ γqQ, [Q,Mpq] ∼ γpqQ
{QI ,QJ} ∼ δIJ(γ · P + γ′ · P ′) + ǫIJ(γ ·M + γ′ ·M′)



PSU(2, 2|4) invariant action:∫
Tr(f−1df)2F/G + WZ-term

J = f−1df = JmPm + JIαQα
I + JmnMmn

I =

√
λ

2π

[ ∫
d2σ(JmJm + aJ̄IJI) + b

∫
Jm ∧ J̄IΓmJJsIJ

]

as in flat spacea = 0, b = ±1 required byκ-symmetry

unique action with right symmetry and right flat-space limit

Formal argument for UV finiteness (2d conformal invariance):

1. global symmetry –

only overall coefficient ofJ2 (radius) can run

2. non-renormalization of WZ term (homogeneous 3-form)

3. preservation ofκ-symmetry at the quantum level

– relates coefficients ofJ2 and WZ terms



Equivalent form of the GS action:
F
G = AdS5 × S5 = SU(2,2)

Sp(2,2) × SU(4)
Sp(4)

generalized to
bF
G = PSU(2,2|4)

Sp(2,2)×Sp(4)

basic superalgebrâf = psu(2, 2|4)
bosonic partf = su(2, 2) ⊕ su(4) ∼= so(2, 4) ⊕ so(6)

admitsZ4-grading:

f̂ = f0 ⊕ f1 ⊕ f2 ⊕ f3 , [fi, fj ] ⊂ fi+jmod 4

f0 = g = sp(2, 2) ⊕ sp(4)

f2 = AdS5 × S5

currentJ = f−1∂af, f ∈ F̂ (notation change:J0 → A, etc)

Ja = f−1∂af = Aa +Q1a + Pa +Q2a

A ∈ f0, Q1 ∈ f1, P ∈ f2, Q2 ∈ f3 .



GS Lagrangian:

LGS =
1

2
STr(

√−ggabPaPb + εabQ1aQ2b) ,

fermionic currents in WZ term only

conformal gauge:
√−ggab = ηab

LGS = STr[P+P− +
1

2
(Q1+Q2− −Q1−Q2+)]

STr(P+P+) = 0 , STr(P−P−) = 0

Equations of motion in terms of currents: 1-st order form

EOM : ∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

MC : ∂−J+ − ∂+J− + [J−, J+] = 0 .



How to solve quantum string theory inAdS5 × S5 ?

GS string on supercosetPSU(2,2|4)
SO(1,4)×SO(5)

not of known solvable type (cf. free oscillators; WZW)

analogy with exact solution ofO(n) model (Zamolodchikovs) or

principal chiral model (Polyakov-Wiegmann, ...) ?

2d CFT – no quantum mass generation

one problem of direct approaches:

lack of manifest 2d Lorentz symmetry

S-matrix depends on two rapidities, not on their difference,

symmetry constraints on it are not obvious...

An alternative approach?

Classically equivalent2d Lorentz invariantaction

describing same physical degrees of freedom?

formulation in terms of currents rather than coordinate fields!



“Pohlmeyer reduction”

Integrable + 2d conformally invariant (UV finite) model –

fermionic generalization of non-abelian Toda theory

• intimately related (at least classically) toAdS5 × S5 GS model

• contains fermions withstandardkinetic terms

• has 2d Lorentz invariant S-matrix

for an equivalent set of 8+8 physical massive excitations

• remarkable UV finite massive integrable model:

exact solution?

• deserves study regardless possible relation

toAdS5 × S5 superstring at the quantum level



PR theory forAdS5 × S5 superstring

[Grigoriev, AT 07; Mikhailov, Schafer-Nameki 07]

• start with GS equations in terms of currents

• solve conformal gauge constraints algebraically introducing

new set of field variables directly related to the currents

• fix κ-symmetry gauge

• reconstruct the action for resulting field equations

in terms of new current variables

• this implies classical equivalence

of original and “reduced” sets of equations

so the reduced theory is also integrable



GS action: start withf ∈ F̂ = PSU(2, 2|4)
currentJ ≡ f−1df

split according toZ4 decomposition of̂f =alg F̂

Ja = f−1∂af = Aa +Q1a + Pa +Q2a,

A ∈ f̂0, Q1,2 ∈ f̂1,3, P ∈ f̂2

A ∈ g= algG = Sp(2, 2) × Sp(4)

conformal gauge

L = Str
[
P+P− + 1

2 (Q1+Q2− −Q1−Q2+)
]

Str(P+P+) = 0 , Str(P−P−) = 0

solve Virasoro algebraically; fixκ-symmetry gauge;

find action for new current variables

Virasoro can be solved by fixing a special

G-gauge and residual conformal diffeomorpism gauge

P+ = µ T , P− = µ g−1Tg , µ = const



g ∈ G = Sp(2, 2) × Sp(4)

µ= arbitary scale parameter – remnant of fixing

residual conformal diffeomorphisms, cf.p+ in l.c. gauge

T is a fixed constant matrix, e.g., diag(I,−I, I,−I), Str T 2 = 0

H ∈ G that commutes withT , [T, h] = 0, h ∈ H:

H = SU(2) × SU(2) × SU(2) × SU(2)

P− is invariant underg → hg if h ∈ H

implies extraH gauge invariance of e.o.m. forg

g ∈ G = Sp(2, 2) × Sp(4)

A+, A− in h = su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2)

as newindependentbosonic variables



impose partialκ-symmetry gauge

Q1− = 0 , Q2+ = 0 ,

define independent fermionic variables

Ψ1 = Q1+ ∈ f̂1 , Ψ2 = gQ2−g
−1 ∈ f̂3

residualκ-symmetry fixed by Ψ1,2T = −TΨ1,2

define new fermionic variables

Ψ
R

= 1√
µΨ

‖
1 , Ψ

L
= 1√

µΨ
‖
2

expressed in terms of real Grassmann

2 × 2 matricesξR,L andηR,L: 8+8=16 components

Remarkably, exists local Lagrangian reproducing

resulting classical superstring equations:



gauged WZW modelfor

G

H
=

Sp(2, 2)

SU(2) × SU(2)
× Sp(4)

SU(2) × SU(2)

with integrable potentialand coupled tofermions:

Ltot = LB + LF = LgWZW(g, A) + µ2 Str(g−1TgT )

+ Str
(
Ψ

L
TD+Ψ

L
+ Ψ

R
TD−Ψ

R
+ µ g−1Ψ

L
gΨ

R

)

fields are represented by8 × 8 supermatrices, e.g.,

g = diag(a, b) , a ∈ Sp(2, 2), b ∈ Sp(4)

D±Ψ = ∂±Ψ + [A±,Ψ], A± ∈ h = su(2) ⊕ ...⊕ su(2)

T = i
2diag(1, 1,−1,−1, 1, 1,−1,−1);

[T, h] = 0, h ∈ H = [SU(2)]4,

invariant underH gauge transformations

g′ = h−1gh, A′
± = h−1A±h+ h−1∂±h, Ψ′

L,R
= h−1Ψ

L,R
h

[T, h] = 0, h ∈ H = [SU(2)]4



integrable model

classically equivalent to GS theory:

Lax pair encoding equations of motion

L− = ∂− +A− + z−1√µg−1Ψ
L
g + z−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + z
√
µΨ

R
+ z2µT



Comments:

• gWZW model coupled to the fermions interacting
minimally and through the “Yukawa” term

• 2d Lorentz invariant action withΨ
R
,Ψ

L
as 2d Majorana spinors

with standardkinetic terms

• 8 real bosonic and 16 real fermionic independent variables;
fermions link bosons fromSp(2, 2) × Sp(4):
transform under both groups

• 2d supersymmetry? yes, at least at quadratic level and in
AdS2 × S2 truncation limit:n = 2 super sine-Gordon model

• µ-dependent interactions are equal to GS Lagrangian;
gWZW produces MC eqs.: path integral derivation
via change from fields to currents?

• linearisation of e.o.m. in the gaugeA± = 0 aroundg = 1:
gives 8+8 bosonic and fermionic d.o.f. with massµ – same as
in BMN limit



H gauge fieldA± can be gauged away on e.o.m. –

fermionic generalization of non-abelian Toda equations:

∂−(g−1∂+g) + µ2[g−1Tg, T ] + µ[g−1Ψ
L
g,Ψ

R
] = 0,

T∂−Ψ
R

+ 1
2µ(g−1Ψ

L
g)‖ = 0 ,

T∂+Ψ
L

+ 1
2µ(gΨ

R
g−1)‖ = 0 ,

(g−1∂+g − 1
2 [[T,Ψ

R
],Ψ

R
])h = 0 ,

(g∂−g
−1 − 1

2 [[T,Ψ
L
],Ψ

L
])h = 0

fermions carry representations of bothSp(2, 2) andSp(4):

“intertwine” the two bosonic reduced sub-theories

Model resembles WZW models based on supergroups

rather than 2d supersymmetric WZW model

but fermions here have 1-st order kinetic term – a “hybrid”



Example: superstring onAdS2 × S2

PR Lagrangian: same asn = 2 supersymmetric sine-Gordon!

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [coshφ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] .

equivalent to

L̃ = ∂+Φ∂−Φ∗ − |W ′(Φ)|2 + ψ∗
L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
.

bosonic part is ofAdS2 × S2 bosonic reduced model if

W (Φ) = µ cosΦ , |W ′(Φ)|2 =
µ2

2
(cosh 2φ− cos 2ϕ) .

ψ
L

= ν + iρ , ψ
R

= −β + iγ ,



UV finiteness of reduced theory

[R. Roiban, A.T., 2009]

Reduction procedure may work at quantum level

only in conformally invariant case (likeAdS5 × S5 case)

Consistency requires that reduced theory is also UV finite

gWZW+ free fermions is finite;µ-terms may renormalize;

fermions shouldcancelbosonic renormalization

indeed true inAdS2 × S2 case (n = 2 sine-Gordon)

true also in general:

STr(g−1TgT ) = Tr(a−1TaT ) − Tr(b−1TbT )

→ cos 2ϕ− cosh 2φ

cos 2ϕ is “relevant”,cosh 2φ - “irrelevant”

bosonic 1-loop correction∼ (cos 2ϕ+ cosh 2φ)

but fermions cancel this divergence

directly verified at 1-loop and 2-loop order

Thusµ is not renormalized, remains arbitrary

conformal symmetry gauge fixing parameter at quantum level



Some of open questions

• Quantum equivalence of reduced theory and GS theory?

Path integral argument for equivalence?

Transformation may work only in quantum-conformal

case likeAdS5 × S5

• Indication of equivalence: semiclassical expansion

near counterparts of rigid strings inAdS5 × S5

leads to same characteristic frequencies

– same 1-loop partition function

• Tree-level S-matrix for elementary excitations?

[Hoare, AT, 09]

Relation to magnon S-matrix in BA?

• Quantum integrability? Exact solution?

• Solve reduced theory→ solveAdS5 × S5 superstring



Step towards exact solution: S-matrix

Integrable theory – determined by 2-particle S-matrix

superstring:
F̂

G
=

PSU(2, 2|4)
Sp(2, 2) × Sp(4)

reduced theory

G

H
=

Sp(2, 2)

SU(2) × SU(2)
× Sp(4)

SU(2) × SU(2)

fields may be represented by8 × 8 supermatrices

in fundamental representation ofPSU(2, 2|4)
diagonal4 × 4 blocks bosonic

and off-diagonal4 × 4 blocks being fermionic

g in G = Sp(2, 2) × Sp(4) andA± in algebra ofH = [SU(2)]4

fermionic fieldsψ
L
, ψ

R
from particular components

of the fermionicpsu(2, 2|4) superstring currents



expand the action around the trivial vacuum

g = 1, A± = 0, ψ
R

= ψ
L

= 0

find the tree-level two-particle scattering amplitude

for the 8+8 massive elementary excitations



Resulting 2-particleS-matrix (S = 1 + i
kT)

generic integrable theory with non-simpleG1 ×G2 symmetry

and with fields in bi-fundamental representation:

S-matrix should exhibit group factorization property

happens in the light-cone gaugeAdS5 × S5 superstring S-matrix

is invariant under the product supergroupPSU(2|2)×PSU(2|2)
[Kloze,MacLoughlin,Roiban,Zarembo; Arutyunov,Frolov,Zamaklar06]

field contents of the light-cone superstring and reduced theory

are identical in how they transform under

the bosonic symmetry group[SU(2)]4

Remarkably, here get exactly the same factorisation structure

as in the superstring case

S-matrix group factorisation property

S = S̃ ⊗ S̃ , T = I ⊗ T̃ + T̃ ⊗ I ,



fields areΦAȦ, with A = (a|α), Ȧ = (ȧ|α̇) , i.e. factorization

SCĊ,DḊ
AȦ,BḂ

= (−1)[Ȧ][B]+[Ċ][D]SCDABSĊḊ
ȦḂ

,

T|ΦAȦ(p1)ΦBḂ(p2)〉 =
1

4 sinhϑ

[
(−1)[Ȧ]([B]+[D])TCDAB δ

Ċ
Ȧ
δḊ
Ḃ

+ (−1)([Ȧ]+[Ċ])[D]δCAδ
D
BT

ĊḊ
ȦḂ

]
|ΦCĊ(p1)ΦDḊ(p2)〉

[a] = [ȧ] = 0 and[α] = [α̇] = 1

explicit form ofTCDAB can be written in terms of 10 functionsKi

T cdab = K1 δ
c
aδ
d
b +K2 δ

d
aδ
c
b ,

T γδαβ = K3 δ
γ
αδ

δ
β +K4 δ

δ
αδ

γ
β ,

T γδab = K5 ǫabǫ
γδ , T cdαβ = K6 ǫαβǫ

cd ,

T γdaβ = K7 δ
d
aδ
γ
β , T cδαb = K8 δ

δ
αδ
c
b ,

T cδaβ = K9 δ
c
aδ
δ
β , T

γd
αb = K10 δ

γ
αδ
d
b .



Pohlmeyer reduced theory is 2-d Lorentz-invariant:

Ki depend only on difference of two rapiditiesϑ = θ1 − θ2

K1 = −K3 = sinh2 ϑ

2
,

K2 = −K4 = − coshϑ,

K5 = K6 = − sinh
ϑ

2
,

K7 = K8 = − cosh
ϑ

2
,

K9 = −K10 = 0 .



in the light-cone superstringT-matrix

Ki depend separately on the two rapidities

K1 = −K3 = (sinh θ1 − sinh θ2)
2

K2 = −K4 = 4 sinh θ1 sinh θ2

K5 = K6 = 4 sinh θ1 sinh θ2 sinh
θ1 − θ2

2

K7 = K8 = 4 sinh θ1 sinh θ2 cosh
θ1 − θ2

2

K9 = −K10 = − sinh2 θ1 + sinh2 θ2 .

vanishing ofK9 andK10 reflects the fact that the bosonic part of
the reduced theory is the direct sum of the “AdS” and “sphere”parts
(which separate as in the conformal gauge) while in the light-cone
gauge superstring action the corresponding sets of the bosonic fields
were coupled



Comments:
•Main conclusion: exists special 2d Lorentz covariant S-matrix

corresponding to the reduced theory –

local UV finite massive integrable theory

whose algebraic structure is very similar to that of the S-matrix

of theAdS5 × S5 superstring theory in theS5 light-cone gauge

•reduced theory S-matrix has same type of group factorisation

as the superstring theory S-matrix –

suggests extra hidden fermionic symmetry

(like extension toPSU(2|2) × PSU(2|2))
•relation between the two S-matrices?

•hidden 2d supersymmetry? (present inAdS2 × S2 case)

•Yang-Baxter equation: satisfied modulo similarity transf.

or twisting (due to gauge symmetry factorization)

•towards exact quantum solution of the reduced theory:

draw lessons from examples of massive integrable



deformations of coset CFT’s studied in literature

•need to generalize to the case of non-abelianH

issues of vacua and topological (?) solitons....

many open questions...



Conclusion

Pohlmeyer reduction is a very fruitful idea


