We claimed that the locally integrable function
\[E(x, t) = \begin{cases} (4\pi t)^{-n/2} \exp(-|x|^2/4t), & t > 0, \\ 0, & t \leq 0, \end{cases} \]
is a fundamental solution to the Heat Operator \(P(D) = \partial_t - \Delta_x \) in the coordinates \((x, t) \in \mathbb{R}^n \times \mathbb{R}\). Since \(E \) is locally integrable it certainly defines an element of \(\mathcal{D}'(\mathbb{R}^{n+1}) \). In addition, a routine computation shows that for each \(t > 0 \)
\[\frac{\partial E}{\partial t} - \Delta_x E = 0. \] (\(\star \))

According to the definition of the distributional derivative
\[\langle P(D)E, \varphi \rangle = \langle E, P(-D)\varphi \rangle = -\int_0^\infty \left(\int E(x, t)(\varphi_t + \Delta_x \varphi) \, dx \right) \, dt \]
Since \(E \) is locally integrable, we can write the latter integral as
\[-\lim_{\epsilon \to 0} \int_\epsilon^\infty \left(\int E(x, t)(\varphi_t + \Delta_x \varphi) \, dx \right) \, dt, \]
where the limit is taken from above. A note for intuition: we did this so we could integrate over a region \(t \geq \epsilon > 0 \) in which \(P(D)E = 0 \). On integrating by parts we see that
\[\int_\epsilon^\infty \left(\int E(x, t)(\varphi_t + \Delta_x \varphi) \, dx \right) \, dt = \int_\epsilon^\infty \int \partial_t(E \varphi) \, dx \, dt - \int_\epsilon^\infty \left(\int \varphi(\partial_t - \Delta_x E) \, dx \right) \, dt. \]
The latter integral vanishes, from the observation in (\(\star \)), and the former integral is
\[-\int E(x, \epsilon)\varphi(x, \epsilon) \, dx \]
by the fundamental theorem of calculus. In summary
\[\langle P(D)E, \varphi \rangle = \lim_{\epsilon \to 0} \int E(x, \epsilon)\varphi(x, \epsilon) \, dx = \lim_{\epsilon \to 0} \frac{1}{(4\pi \epsilon)^{n/2}} \int e^{-|x|^2/4\epsilon} \varphi(x, \epsilon) \, dx. \]
On making the substitution \(x = 2\sqrt{\epsilon} y \) and applying the dominated convergence theorem, we find \(\langle P(D)E, \varphi \rangle = \varphi(0, 0) \) for each \(\varphi \in \mathcal{D}(\mathbb{R}^{n+1}) \). Hence \(P(D)E = \delta_0 \), i.e. \(E \) is a fundamental solution to the Heat operator, as claimed.