Mathematical Tripos Part III Lent 2017
Distributions, hand out 3: fundamental solutions Dr A.C.L. Ashton

We claimed that the locally integrable function
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is a fundamental solution to the Heat Operator P(D) = 0, — A, in the coordinates (z,t) €
R" x R. Since F is locally integrable it certainly defines an element of D’(R™*!). In addition,
a routine computation shows that for each ¢ > 0
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According to the definition of the distributional derivative
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Since F is locally integrable, we can write the latter integral as
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where the limit is taken from above. A note for intuition: we did this so we could integrate
over a region t > € > 0 in which P(D)E = 0. On integrating by parts we see that
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The latter integral vanishes, from the observation in (), and the former integral is
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by the fundamental theorem of calculus. In summary
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On making the substitution = 2./ey and applying the dominated convergence theorem,
we find (P(D)E,¢) = (0,0) for each ¢ € D(R"™). Hence P(D)E = &y, i.e. E is a
fundamental solution to the Heat operator, as claimed.



