On the active region cores

Giulio Del Zanna

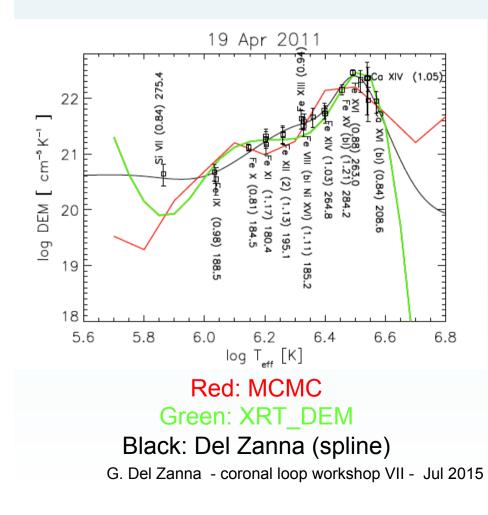
Helen Mason

DAMTP, CMS, University of Cambridge

With contributions from D. Tripathi, B. O'Dwyer, S. Subramanian

Slope of EM at 1-3 MK from AIA and EIS

Provides in principle a way to distinguish if the heating is high-frequency or lowfrequency. Second rotation


AIA 193 Å AIA 171 Å AIA 171 A AIA 193 A -100-100-100-100AIA 211 Å AIA 335 Å AIA 211 A AIA 335 A 200 E -100-100n -100 -100

Del Zanna et al. (2014)

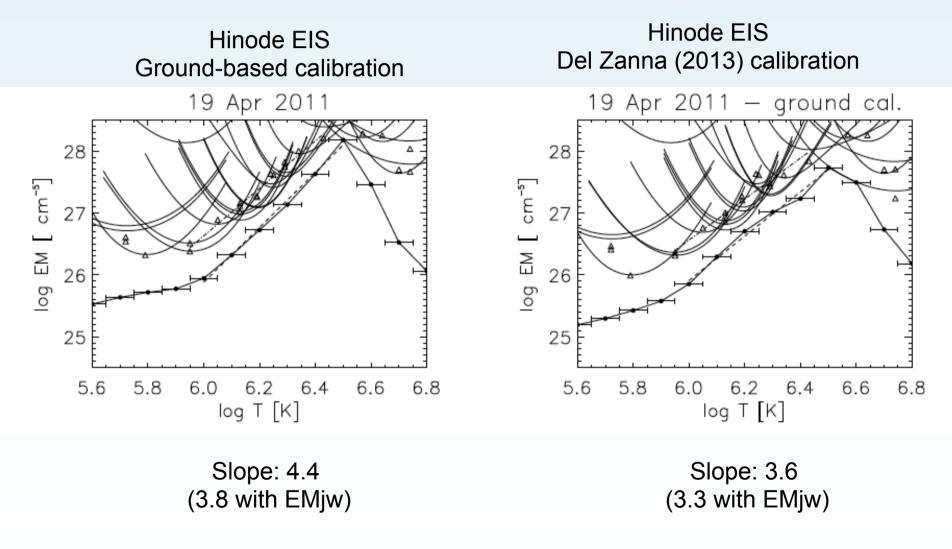
G. Del Zanna - coronal loop workshop VII - Jul 2015

Slope of EM emission: 1 - 3 MK

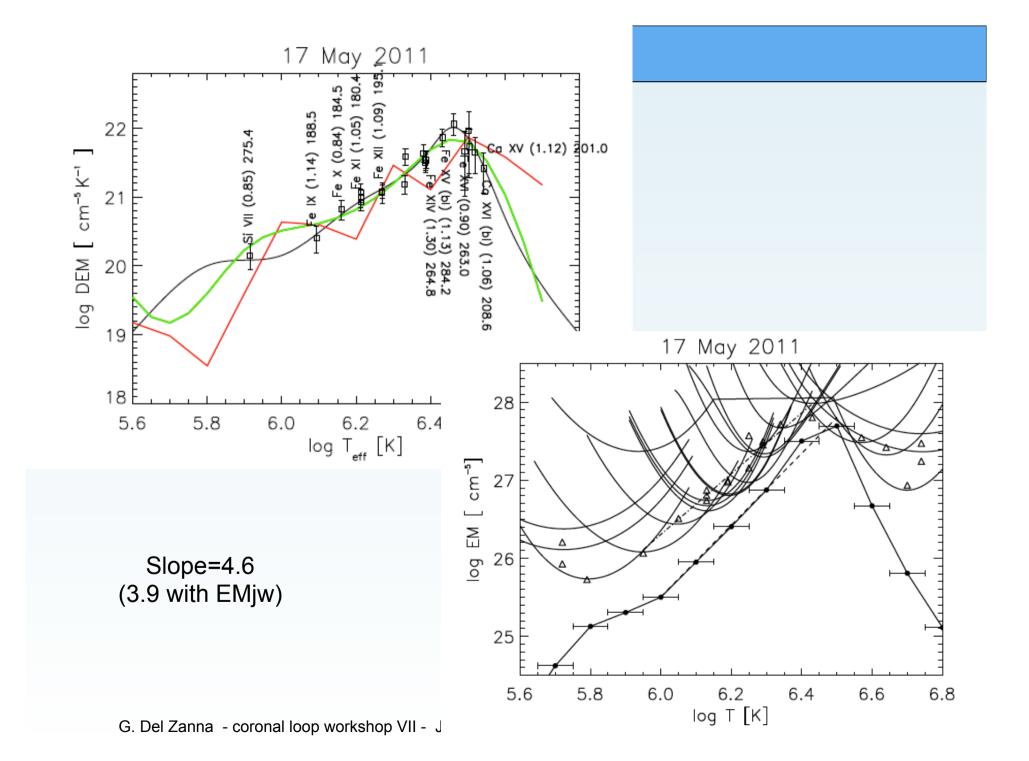
 $EM(T) \sim T^{b}$

1) Jordan & Wilson (1971) method:

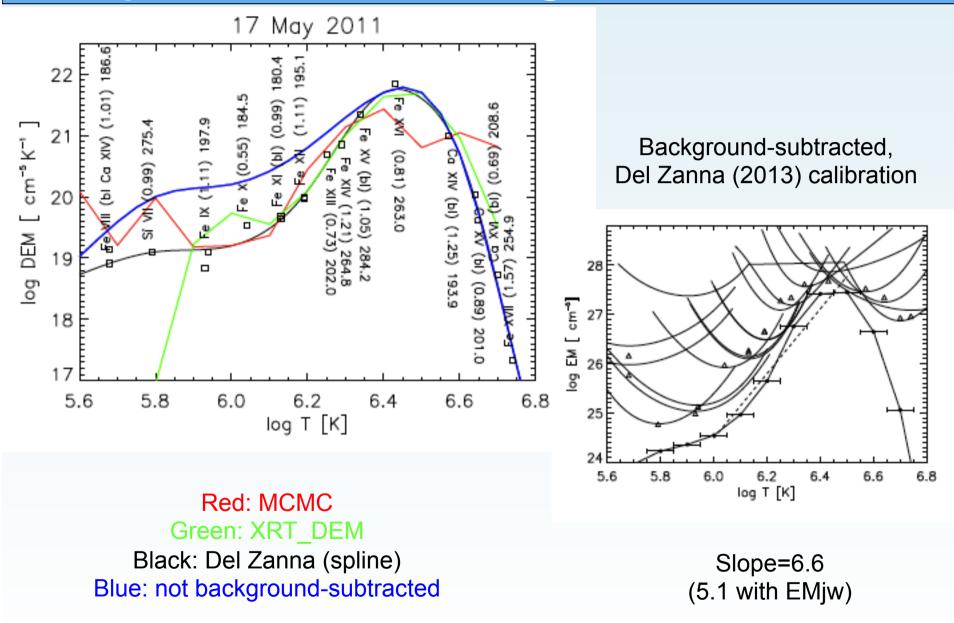
$$EM_{jw} = \frac{I_o}{Ab \ C_\lambda}$$

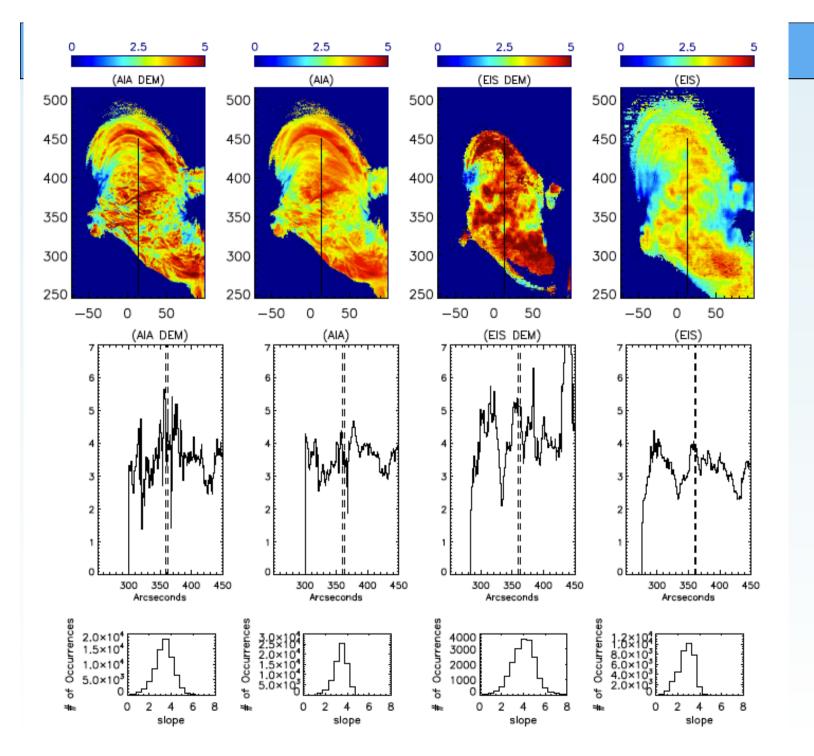

$$C_{\lambda} = \frac{\int G_{\lambda}(T)dT}{T_{\text{mem}}(10^{0.15} - 10^{-0.15})}.$$

Estimate of the slope in the 1-3 MK range is obtained from the EMjw of Fe IX and Fe XVI.

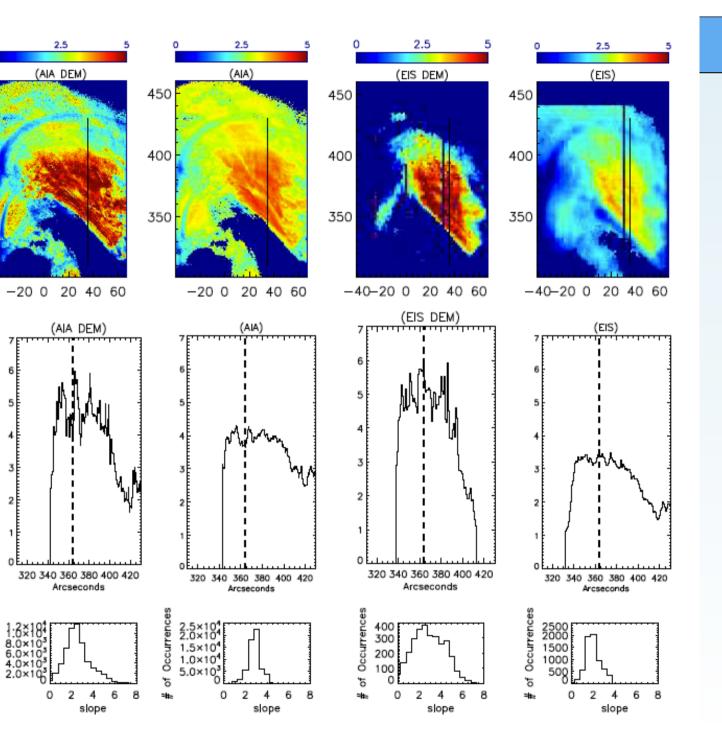

Similar slopes are obtained from AIA.

2) EM from the DEM


Slope of emission – first rotation


G. Del Zanna - coronal loop workshop VII - Jul 2015

Slope of emission – background subtraction



G. Del Zanna - coronal loop workshop VII - Jul 2015

First rotation

of Occurrences

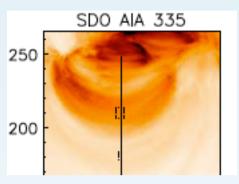
*#≥

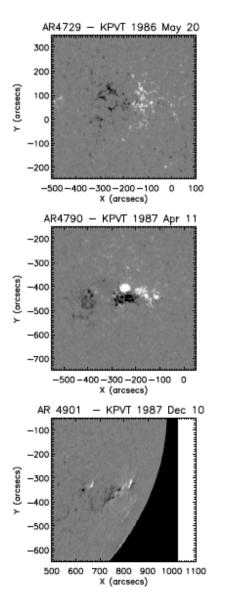
Del Zanna abundances for AR core loops

Hinode EIS measurements of 3 MK emission allows measurements of the FIP bias (see poster from Vitti et al.)

1) FIP bias of π.

2) Fe must be enhanced by at least a factor of 33) FIP bias is about 2 in AR 1-3 MK plasma (Del Zanna 2013)



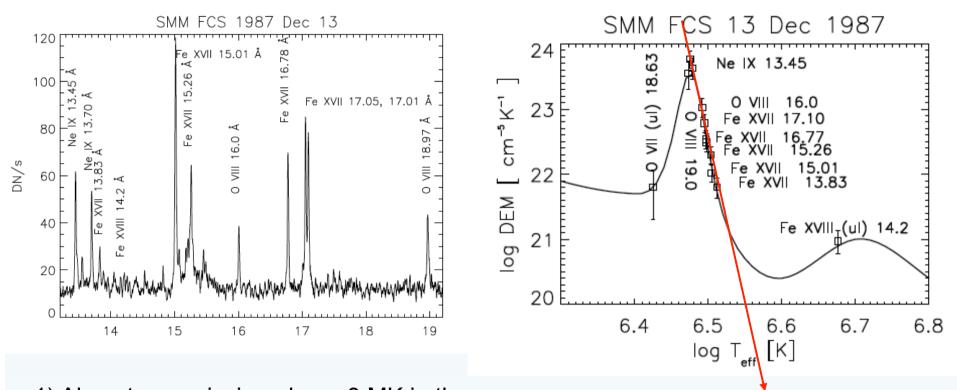

Table 1. Abundance measurements relative to iron (Del Zanna 2013; Del Zanna & Mason 2014)

E1.	FIP (eV)	AR core	"Photospheric"	Ratio	
Fe/Ne	7.9/21.5	1.2	0.34 (G), 0.37 (QS), 0.8 (SW)	3.5 (G), 3.2 (QS), 1.5 (SW)	X-ray
Fe/Ar	7.9/15.8	50	7.4 (G) - 33 (SW)	6.8 (G), 1.5 (SW)	EUV
Fe/O	7.9/13.6	0.2	0.065 (A)	3.1	X-ray
Fe/S	7.9/10.4	6.8	2.4 (A)	2.8	EUV
Fe/Si	7.9/8.1	1.0	1.0 (A)	1.0	EUV
Fe/Ni	7.9/7.6	29.5	19.1 (A)	1.5	EUV
Fe/Ca	7.9/6.1	13.5	14.5 (A)	0.93	EUV

Notes. QS: quiet - Sun EUV measurements of neon (Del Zanna, in prep.). SW: fast solar wind observations from Gloecker and Geiss (2007). G: Galactic, for neon, Morel and Butler (2008) from Ne I and Ne II lines in nearby, early B-type stars argon: Lanz et al. (2008), from B main-sequence stars in the Orion association ; A: (Asplund+2009)

SMM FCS and BCS

Re-analysed, with recent atomic data, X-ray spectra of quiescent active region cores from SMM FCS (Del Zanna & Mason 2014, A&A).

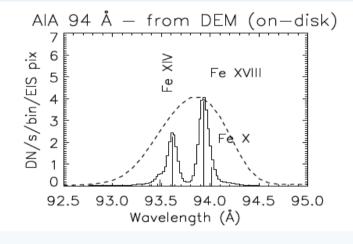


	AR4731	— KPVT 1986 May 21					
Y (drcsecs)	400						
	300						
	200	and the second					
	100	Mar - Lo					
	0						
	-100						
	-200						
	-1000-900 -800 -700 -600 -500 -400 X (arcsecs)						
	AR4891	- KPVT 1987 Nov 27					
	-100						
	-200						
secs)	-300						
Y (drosecs)	-400	S. A. M.					
-	-500						
	-600						
	500 600	700 800 900 1000 1100 X (arcsecs)					
	AR 4906	- KPVT 1987 Dec 15					
	-200						
Y (arcsecs)	-300	1.1					
	-400	125					
	-500	100					
	-600	1 4 2					
	-700						
	-800						

-900-800-700-600-500-400-300 X (grcsecs)

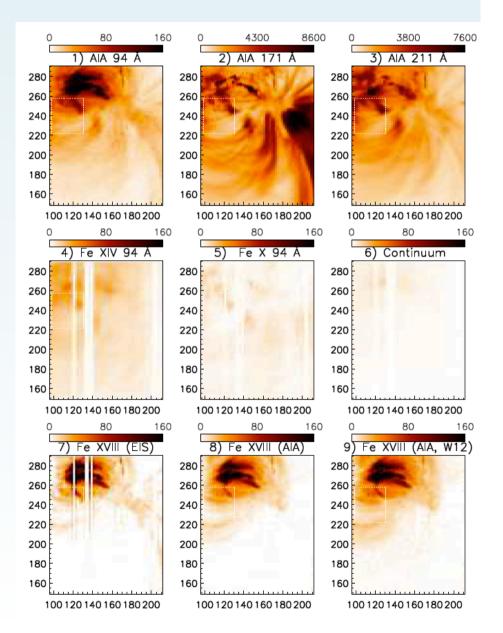
Date	NOAA	Times (UT)	BCS	Neon	FIP
1986 Feb 14	4713		variable		
1986 May 20	4729	00:33, 00:43, 00:53	quiet	High	3.2
1986 May 18 1986 May 21 1986 May 23 1986 May 24	4731 4731 4731 4731	14:16, 14:26, 14:35 05:03,05:13,05:22,05:32	variable quiet quiet quiet	Low Low	5? 3.2
1986 Jul 13 1986 Jul 14	4736 4736		no variable		
1987 Apr 9 1987 Apr 11 1987 Apr 13 1987 Apr 14 1987 Apr 15 1987 Apr 16 1987 Apr 17 1987 Apr 18 1987 Apr 19	4790 4790 4790 4790 4790 4790 4790 4790	22:32, 22:41, 22:51 01:14,01:24,01:33,01:43 14:56,15:06,15:15	variable quiet quiet quiet variable no/variable variable variable variable variable	Std. Std. Std.	3.2 3.2 3.2
1987 May 22 1987 May 26 1987 May 29	4811 4811 4811		variable variable variable		
1987 Nov 27 1987 Nov 29	4891 4891	16:25,16:35,16:45,16:54	quiet variable	Low	5
1987 Dec 6 1987 Dec 7 1987 Dec 8 1987 Dec 9 1987 Dec 10	4901 4901 4901 4901 4901		variable no no no no		
1987 Dec 11 1987 Dec 11	4901 4901	2:18,2:28,2:38,2:48,2:58 (10:04–11:04) [†]	quiet variable	?	3.2
1987 Dec 13 1987 Dec 15 1987 Dec 16 1987 Dec 18 1987 Dec 20	4906 4906 4906 4906 4906	09:16, 09:26, 09:36,09:46	quiet variable variable variable no	Std.	3.2

X-ray spectroscopy from SMM FCS

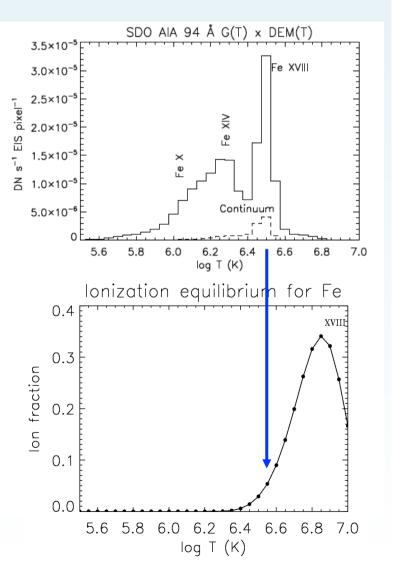

Almost no emission above 3 MK in the cores.
> EM Slope=-14
Increased FIP=π (Fe/O and Fe/Ne) for most ARs, in agreement with Hinode/EIS results (Del Zanna 2013, A&A), but disagreement with previous literature.

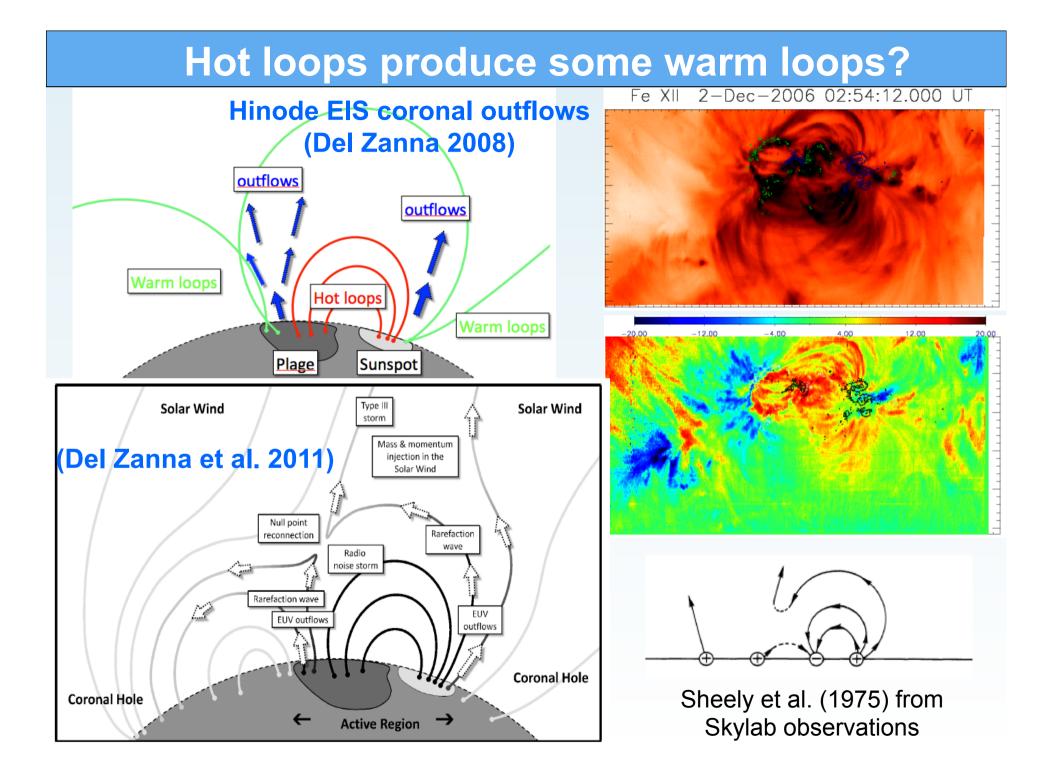
Fe XVII is formed at 3 MK. How much plasma is there above 3 MK is constrained by Fe XVIII and higher stages.

MAGIXS will observe the same spectral region with spatial resolution


Fe XVIII and AIA 94 A

AIA 94 images show ubiquitous presence of Fe XVIII


New Fe XIV identification (Del Zanna 2012): strong contribution to AIA 94 A


It is possible to estimate the Fe XVIII contribution (Del Zanna 2013)

Fe XVIII and AIA 94 A

Some Fe XVIII is often present, but in many regions it is formed at 3 MK and not 7 MK! (Del Zanna 2013)

EUV and X-ray observations of hot core loops in different ARs have similar near-isothermal distributions around 3 MK, and an FIP bias of π

Spatially-resolved X-ray spectroscopy is really needed to study the heating in AR cores.

MAGIXS, the first X-ray spectrometer since 1980's, will provide important constraints above 3 MK. See the poster.