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Braiding? Reconnection?

Parker 1983

Klimchuk 2015



Complexity in the field line mapping

Consequences
• Supercharged phase-mixing.
• 3D finite-B reconnection,

from voltage gradients.
• Dynamics, topology, waves and 

reconnection are inseparable. 

Also see van Ballegooijen 1988, Wilmot-Smith et al. 
2009, Yeates et al. 2012,  and Pontin & Hornig 2015.



Turbulent 3D reconnection



Robust end state



Taylor relaxation

ZETA• Taylor 1974 (also see 1986 and 2000 papers):

• Lowest energy 𝐁 with a given total helicity is a 
linear force free field (Woltjer 1958):

𝐉 = λ𝐁 where λ is constant everywhere 

• λ determined from the helicity.

• For application to twisted loops in the corona 
see Bareford, Hood & Browning 2013 and refs.

“Some departure from perfect conductivity 
will bring about relaxation of the 
topological constraints … However [total 
helicity] will be almost unchanged.”

“The final state of relaxation, therefore, will 
now be the state of minimum energy 
subject only to the single invariant.”



Beyond Taylor relaxation

• Our braid relaxes to smooth field, following more reconnection than 
required to reach Taylor state (Pontin et al. 2011, A&A).

• But, L.F.F.F. would be uniform B.  Don’t get the Taylor state!

• Helicity has been conserved but there are additional constraints.

λ =
𝐣 ∙ 𝐁

𝐵2



Field line helicity
In ideal MHD, every field line has 
its own helicity invariant:

A = 
𝐹

𝐀 ∙ 𝑑𝐥

where 𝐀 is the vector potential:
𝐁 = 𝛁 × 𝐀.

Measures average winding of 
magnetic flux around the field 
line of interest (Berger 1988, 
Prior & Yeates 2014). 

Distinguishes between fields with 
same total helicity (Yeates & 
Hornig 2014).

 
𝐶

𝐀 ∙ d𝐥 =  
𝑆

𝐁 ∙ d𝐒



Dominant evolution in complex fields

• We have an evolution equation forA
(Russell, Yeates & Hornig, PoP, 2015)

• Simplified Eulerian form:
𝜕A
𝜕𝑡
= −𝐰 ∙ 𝛁A + 𝐰 ∙ 𝐀 base

top
−  − 

• Two length scales:
– 𝐿, global scale of system.
– 𝑙, perpendicular scale of quantities 

integrated through domain. 
– 𝑙 ≪ 𝐿 for complex field mappings.

• Scaling of terms:

𝐰× 𝐁 = 𝛁 − 𝐄  𝑤 ~ (𝐿/𝑙)(/A)

𝐰 ∙ 𝐀 ~ (𝐿/𝑙)

𝐰 ∙ 𝛁A ~ (𝐿/𝑙)𝟐

Dominant behaviour is advection 

 
𝐹

𝐉 ∙ 𝑑𝐥

A



New relaxation hypothesis

The magnetic field relaxes to the lowest energy state 
consistent with rearrangement of field line helicity.  

To first order, the magnetic fluxes of field line helicities 
are preserved.  Second order effects come from the 
work-like 𝐰 ∙ 𝐀 term and seem to reduce the extremes 
and make them more uniform.



Predictive ability

• Two tubes expected from the topological degree (Yeates et al. 2015).

• Periodic end boundaries lead to two cylinder symmetric flux tubes.

MHD relaxation

A𝐵



Predictive ability

• Two tubes expected from the topological degree (Yeates et al. 2015).

• Rearrange initial A into two tubes, then solve for steady state B:

Predicted

A𝐵



Summary

• Braiding’s secret ingredient: extremely rapid growth of 
complexity & reduction of scales with composition of braiding.

• Reconnection: fully 3D, finite-B, typically turbulent.

• Surviving B & energy released determined by energy 
minimisation under fundamental constraints (relaxation).

• Progress by considering field line helicity, A.  To 1st approx, 
relaxation rearranges A while preserving its distribution.

http://www.maths.dundee.ac.uk/mhd/pubs.shtml
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