What Hi-C told us about the structure and dynamics of an AR transition region

Loops 7 July 2015

Richard J Morton Northumbria University Newcastle Upon Tyne, UK

Also contributed: J. McLaughlin, A. Winebarger, H. Warren, A. Bagley

The Leverhulme Trust

Moss variability could provide a good indicator for the pattern of heating events in the corona (*Martens et al. 2000*).

Moss variability could provide a good indicator for the pattern of heating events in the corona (*Martens et al. 2000*).

Low Moss variability: Intensity (TRACE - Antiochos et al 2003) Doppler velocity and non-thermal widths (EIS - Brooks & Warren 2009).

Heating must be quasi-steady.

Moss variability could provide a good indicator for the pattern of heating events in the corona (*Martens et al. 2000*).

Low Moss variability: Intensity (TRACE - Antiochos et al 2003) Doppler velocity and non-thermal widths (EIS - Brooks & Warren 2009).

Heating must be quasi-steady.

Higher resolution needed - spatial/temporal....Hi-C!

Moss variability could provide a good indicator for the pattern of heating events in the corona (*Martens et al. 2000*).

Low Moss variability: Intensity (TRACE - Antiochos et al 2003) Doppler velocity and non-thermal widths (EIS - Brooks & Warren 2009).

Heating must be quasi-steady.

Higher resolution needed - spatial/temporal....Hi-C!

Evidence for rapid variability in certain moss elements - Testa et al. (2013)

Brightening's lasting for 20 s - suggestive of coronal energy deposition and conductive cooling of plasma.

Cartoon of moss fine structure

Dark inclusion or Edge of moss region

Cartoon of moss fine structure

Filling factor comparison with Hinode/EIS

Winebarger et al., In Prep.

Filling factor comparison with Hinode/EIS

Find moss patches in both EIS & Hi-C.

Fit Gaussians to moss features in Hi-C to measure widths - calculate filling factor over I".

EIS filling factor derived from Fe XII line ratio (Warren et al., 2008)

Winebarger et al., In Prep.

Filling factor comparison with Hinode/EIS

Find moss patches in both EIS & Hi-C.

Fit Gaussians to moss features in Hi-C to measure widths - calculate filling factor over 1".

EIS filling factor derived from Fe XII line ratio (Warren et al., 2008)

Winebarger et al., In Prep.

Moss dynamics

Moss dynamics

Moss dynamics

- Create time-distance diagrams.
- Weighted fit cross-sectional flux profile with a Gaussian.
- Fit Gaussian centroids with sinusoid

- Create time-distance diagrams.
- Weighted fit cross-sectional flux profile with a Gaussian.
- Fit Gaussian centroids with sinusoid

Displacement - 55 ± 37 km Velocity - 4.7 ± 2.5 km/s Period - 77 ± 33 s

Displacement - 55 ± 37 km Velocity - 4.7 ± 2.5 km/s Period - 77 ± 33 s

Consistent with Doppler velocities measured by Brooks & Warren (2009), Tripathi et al (2012) v < 6 km/s.

Larger than those of oscillatory signal in Kitagawa et al. (2010) v < 1 km/s with periods of 250-500 s.

Wave energy

$$F_{\rm obs} = \frac{1}{2} f(\rho_{\rm i} + \rho_{\rm e}) \left(\frac{2\pi}{P_{\rm obs}}\right)^2 \xi_{\rm obs}^2 v_{\rm gr}.$$

van Doorsselaere et al. (2014)

n ~ 10¹⁰ cm⁻³ (*Tripathi et al* 2010 - Fe XII) P - 77 s ξ - 55 km v_{gr} - 200 km/s (*McIntosh et al.*, 2011)

Wave energy

$$F_{\rm obs} = \frac{1}{2} f(\rho_{\rm i} + \rho_{\rm e}) \left(\frac{2\pi}{P_{\rm obs}}\right)^2 \xi_{\rm obs}^2 v_{\rm gr}.$$

n ~ 10¹⁰ cm⁻³ (*Tripathi et al 2010* - Fe XII) P - 77 s ξ - 55 km v_{gr} - 200 km/s (*McIntosh et al.*, 2011)

van Doorsselaere et al. (2014)

 $F \sim 410$ *f W m⁻² = 100 W m⁻²

Wave energy

$$F_{\rm obs} = \frac{1}{2} f(\rho_{\rm i} + \rho_{\rm e}) \left(\frac{2\pi}{P_{\rm obs}}\right)^2 \xi_{\rm obs}^2 v_{\rm gr}.$$

n ~ 10¹⁰ cm⁻³ (*Tripathi et al 2010* - Fe XII) P - 77 s ξ - 55 km v_{gr} - 200 km/s (*McIntosh et al.*, 2011)

van Doorsselaere et al. (2014)

$F \sim 410^{*} f W m^{-2} = 100 W m^{-2}$

Bulk of wave energy is propagating along the density enhancement!

<u>Loop plasma only</u> - possible significant wave contribution.

<u>Heating of external plasma</u> - spatially averaged wave energy flux is too low.

Conclusions

- <u>Hi-C revealed fine-structure of moss</u> appears as a collection of inclined flux tubes?
- <u>Typical transverse scale of moss ~400 km</u> similar to EUV loops (Brooks et al., 2013).
- Motions of moss reveal presence of MHD kink waves
 (v~ 4 km/s) that could contribute to heating of hot loops a quasi-static component?
- Hi-C has clarified details of the moss and it's dynamics obtained from previous Hinode/EIS observations of moss.