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Figure 2. Left: three color image combining Hi-C data (blue), SDO/AIA 94 Å data (green), and a mask highlighting regions with high level of variability in the Hi-C
time series (red; see the text for details). The white crosses mark moss locations outside high variability areas which we select for comparison with the rapidly varying
moss (Figure 4). Right: 193 Å Hi-C (top; ∼0.′′1 pixel−1) and AIA (bottom; ∼0.′′6 pixel−1) images of the rapid variability moss region M1 (white box in left panel),
clearly showing the significantly different spatial resolution of the two instruments.

(An animation and a color version of this figure are available in the online journal.)

are impacted by emerging flux, as evidenced by the brightening
of the loops connecting the right-end area of M2 to this emerging
flux region. These hot loops are rapidly evolving, and the
apparent displacement of their footpoints toward M1 supports
a slipping reconnection scenario as in Aulanier et al. (2007).
This reconnection process might explain the brightening of all
hot loops anchored to the moss region M2, which is observed
simultaneously with the apparent footpoint motion. We discuss
in the following the possible implications of these findings.

4. DISCUSSION AND CONCLUSIONS

In this Letter we have presented observations of AR
moss with the Hi-C narrowband EUV imager. The unprece-
dented combination of high spatial and temporal resolution of
Hi-C shows that the moss is structured down to small spatial
scales, like the chromosphere (De Pontieu et al. 2003b), and it
reveals high levels of temporal variability. This challenges pre-
vious findings of moss steady emission (Antiochos et al. 2003;
Brooks et al. 2009). Hi-C shows moss areas characterized by

slow variability, on typical timescales of minutes, analogous to
previous findings (De Pontieu et al. 2003a, 2003b), but it also
shows moss locations with high-intensity brightenings on very
short timescales (down to ∼15 s).

We investigated the characteristics of these rapid variability
regions which might explain their distinctively higher temporal
variability compared to other moss. We found that these rapid
variability regions show an intriguing correlation with the
brightest 304 Å emission, and they occur at the footpoints of
the hottest loops (∼6 MK), which are brightening after flux
emergence is observed. As shown in Section 3, the evolution
of the coronal configuration of these hot loops is suggestive of
slipping reconnection. Even if we cannot exclude heating in the
TR region, these observed correlations with the magnetic and
coronal features suggest that the rapid moss variability is due
to reconnection events and resulting energy release occurring in
the corona, i.e., to coronal nanoflares. The energy transport to
the TR layers can be due to either thermal conduction and/or
beams of non-thermal particles accelerated at the reconnection
site (e.g., Brosius 2012; Brosius & Holman 2012). We note that
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Evidence for rapid variability in certain moss 
elements - Testa et al. (2013) 

Brightening's lasting for 20 s - suggestive of coronal 
energy deposition and conductive cooling of plasma.
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MHD kink waves

• Create time-distance diagrams.
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MHD kink waves

0 50 100 150 200 250 300
Transverse Displacement (km)

0

10

20

30

40
N

o
. 

O
cc

u
rr

e
n

ce
s

0 50 100 150 200 250 300
Transverse Displacement (km)

0

10

20

30

40
N

o
. 

O
cc

u
rr

e
n

ce
s

0 50 100 150 200 250 300
Period (s)

0

5

10

15

20

25

N
o

. 
O

cc
u

rr
e

n
ce

s

0 2 4 6 8 10 12 14
Velocity Amplitude (km/s)

0

5

10

15

20

N
o

. 
O

cc
u

rr
e

n
ce

s

Displacement - 55 ± 37 km 
Velocity - 4.7 ± 2.5 km/s
Period - 77 ± 33 s

Morton & McLaughlin (2014)



MHD kink waves

0 50 100 150 200 250 300
Transverse Displacement (km)

0

10

20

30

40
N

o
. 

O
cc

u
rr

e
n

ce
s

0 50 100 150 200 250 300
Transverse Displacement (km)

0

10

20

30

40
N

o
. 

O
cc

u
rr

e
n

ce
s

0 50 100 150 200 250 300
Period (s)

0

5

10

15

20

25

N
o

. 
O

cc
u

rr
e

n
ce

s

0 2 4 6 8 10 12 14
Velocity Amplitude (km/s)

0

5

10

15

20

N
o

. 
O

cc
u

rr
e

n
ce

s

Displacement - 55 ± 37 km 
Velocity - 4.7 ± 2.5 km/s
Period - 77 ± 33 s

Consistent with Doppler velocities measured by Brooks & Warren (2009),  
Tripathi et al (2012)   v < 6 km/s.

Larger than those of oscillatory signal in Kitagawa et al. (2010) 
 v <1 km/s with periods of 250-500 s.

Morton & McLaughlin (2014)



Wave energy
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The rightmost term (which is proportional to f) in the
above equation will be dropped from further analysis.
This term is the energy contained outside of the cylinder
with radius df . This term will be of the same magni-
tude as the additional energy (that is not included in our
model) due to the interaction of neighbouring loops. In-
deed, we have just assumed that there is a cylinder of ra-
dius df around each structure where the wave behaviour
is only determined by that plasma structure. Taking
into account the interaction (see e.g. Luna et al. 2008;
Van Doorsselaere et al. 2008c; Gijsen & Van Doorsse-
laere 2014) would change the eigenfunction near r = df ,
where the solution would change from an “exponential
decay” into a “hyperbolic cosine” (of course modified by
the geometry). This correction is also of the order of the
filling factor f and would be of comparable size to the
additional term in Eq. 10. In conclusion, we can safely
neglect the higher order term in Eq. 10, because it is
of the same magnitude as effects that have not been in-
cluded in our model. In practice, this means that we are
restricted to loop ensembles with low filling factors.

Let us thus assume that the filling factor f is much
smaller than 1 (f ≪ 1, say f ! 10%). In the first order
approximation (for small f), we have thus obtained that
the total energy in the kink wave is given by

EKw =
(

πR2L
) 1

2
(ρi + ρe)w

2. (11)

By using Eq. 2 for df in Eq. 6, we thus find

EbAw =
1

f

ρ

ρi + ρe
EKw (12)

as a direct relation between the total energy of the bulk
Alfvén wave and the kink wave in the same cross-section
of the cylindrical volume. In this equation, it is under-
stood that w is the same (observed) amplitude for both
the Alfvén and kink wave models.

4. OBSERVATIONS

4.1. Connecting the energy flux to the filling factor

When observing transverse waves in the corona, the
energy flux F (with physical units of W/m2) can be esti-
mated from the fact that energy ε (energy density J/m3)
is propagated at the group speed (vgr):

F = εvgr. (13)

In this expression both the energy flux F and the energy
density ε are in general functions of position (in particu-
lar in the cross-sectional plane). In an interpretation in
terms of Alfvén waves, Eq. 5 shows a uniform energy den-
sity εbAw and consequently a uniform energy flux FbAw.
With the use of that equation, one immediately arrives
at the relation:

FbAw =
1

2
ρw2

obsvgr. (14)

When observing transverse waves in the corona, the ob-
served energy flux Fobs is usually estimated with this
classic formula.

In obtaining Eq. 5 and Eq. 14 it was implicitly assumed
that the wave amplitude wobs and the plasma density ρ
are constant throughout the whole volume. For a kink
wave this is not a good approximation. Instead we should

use Eq. 11 to estimate the energy in the kink wave, be-
cause the energy density is localised in that case. Thus,
to allow comparison between the kink wave and Alfvén
wave description, we must obtain an equivalent relation
to Eq. 14 for kink waves, replacing energy flux and energy
density with spatially averaged values. The appropriate
average energy density ⟨εKw⟩ is obtained by considering
the total energy EKw (Eq. 11) normalised by the occu-
pied (on average) volume V = πd2

f L = πR2L/f , result-
ing in

⟨εKw⟩ =
1

2
f(ρi + ρe)w

2
obs. (15)

Using this expression in Eq. 13 yields the desired formula
expressing the energy propagating in kink modes in a
bundle of loops with density filling factor f :

Fobs =
1

2
f(ρi + ρe)w

2
obsvgr. (16)

This assumes that the observed amplitudes wobs are the
peak amplitudes at the loop cores. Thus, from Eq. 14
and Eq. 16 the energy flux according to the kink mode
interpretation as compared to the Alfvén mode interpre-
tation follows the same rule as the energy (Eq. 12):

FKw = f
ρi + ρe

ρ
FbAw. (17)

The group speed in expressions 14 and 16 can be approx-
imated by the observed phase speed. This is exact for
the bulk Alfvén wave, but is also sufficiently accurate for
kink waves because they are only weakly dispersive.

Equation 16 is a simple formula for the energy flux (in
W/m2) for the kink wave that can serve as a drop-in re-
placement for the classic formula (Eq. 14) to estimate the
energy flux by transverse kink waves in structured me-
dia, i.e. with multi-stranded loops or systems containing
multiple flux tubes.

For spectroscopic observations, we can measure the ve-
locity amplitude wobs accurately. For imaging observa-
tions, however, the velocity amplitude wobs is not a di-
rect observable, but one rather observes the transverse
displacement amplitude ξobs. From theory we know that
the velocity amplitude wKw is related to the displacement
amplitude ξKw by

wKw = ωKwξKw =
2π

PKw
ξKw, (18)

where P is the period of the studied wave, and ω the fre-
quency. Substituting those expressions into Eq. 16, we
obtain an expression for the energy in propagating trans-
verse waves that we can use for imaging observations:

Fobs =
1

2
f(ρi + ρe)

(

2π

Pobs

)2

ξ2
obsvgr. (19)

Because the solar atmosphere is mostly optically thin, it
is unfortunately not easy to measure the internal density
of the strands ρi and the surrounding density ρe indepen-
dently or accurately. However, if one tries to observa-
tionally estimate a density ρ, it is usually safe to assume
that is associated with a solar atmospheric structure that
stands out from the background (due to the presence of

n ~ 1010 cm-3 (Tripathi et al 2010 - Fe XII)
P - 77 s
ξ - 55 km
vgr - 200 km/s (McIntosh et al., 2011)

van Doorsselaere et al. (2014)

Morton & McLaughlin (2014)
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The rightmost term (which is proportional to f) in the
above equation will be dropped from further analysis.
This term is the energy contained outside of the cylinder
with radius df . This term will be of the same magni-
tude as the additional energy (that is not included in our
model) due to the interaction of neighbouring loops. In-
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dius df around each structure where the wave behaviour
is only determined by that plasma structure. Taking
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mated from the fact that energy ε (energy density J/m3)
is propagated at the group speed (vgr):

F = εvgr. (13)

In this expression both the energy flux F and the energy
density ε are in general functions of position (in particu-
lar in the cross-sectional plane). In an interpretation in
terms of Alfvén waves, Eq. 5 shows a uniform energy den-
sity εbAw and consequently a uniform energy flux FbAw.
With the use of that equation, one immediately arrives
at the relation:
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2
ρw2
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When observing transverse waves in the corona, the ob-
served energy flux Fobs is usually estimated with this
classic formula.

In obtaining Eq. 5 and Eq. 14 it was implicitly assumed
that the wave amplitude wobs and the plasma density ρ
are constant throughout the whole volume. For a kink
wave this is not a good approximation. Instead we should

use Eq. 11 to estimate the energy in the kink wave, be-
cause the energy density is localised in that case. Thus,
to allow comparison between the kink wave and Alfvén
wave description, we must obtain an equivalent relation
to Eq. 14 for kink waves, replacing energy flux and energy
density with spatially averaged values. The appropriate
average energy density ⟨εKw⟩ is obtained by considering
the total energy EKw (Eq. 11) normalised by the occu-
pied (on average) volume V = πd2

f L = πR2L/f , result-
ing in

⟨εKw⟩ =
1

2
f(ρi + ρe)w

2
obs. (15)

Using this expression in Eq. 13 yields the desired formula
expressing the energy propagating in kink modes in a
bundle of loops with density filling factor f :

Fobs =
1

2
f(ρi + ρe)w

2
obsvgr. (16)

This assumes that the observed amplitudes wobs are the
peak amplitudes at the loop cores. Thus, from Eq. 14
and Eq. 16 the energy flux according to the kink mode
interpretation as compared to the Alfvén mode interpre-
tation follows the same rule as the energy (Eq. 12):

FKw = f
ρi + ρe

ρ
FbAw. (17)

The group speed in expressions 14 and 16 can be approx-
imated by the observed phase speed. This is exact for
the bulk Alfvén wave, but is also sufficiently accurate for
kink waves because they are only weakly dispersive.

Equation 16 is a simple formula for the energy flux (in
W/m2) for the kink wave that can serve as a drop-in re-
placement for the classic formula (Eq. 14) to estimate the
energy flux by transverse kink waves in structured me-
dia, i.e. with multi-stranded loops or systems containing
multiple flux tubes.

For spectroscopic observations, we can measure the ve-
locity amplitude wobs accurately. For imaging observa-
tions, however, the velocity amplitude wobs is not a di-
rect observable, but one rather observes the transverse
displacement amplitude ξobs. From theory we know that
the velocity amplitude wKw is related to the displacement
amplitude ξKw by

wKw = ωKwξKw =
2π

PKw
ξKw, (18)

where P is the period of the studied wave, and ω the fre-
quency. Substituting those expressions into Eq. 16, we
obtain an expression for the energy in propagating trans-
verse waves that we can use for imaging observations:

Fobs =
1

2
f(ρi + ρe)

(

2π

Pobs

)2

ξ2
obsvgr. (19)

Because the solar atmosphere is mostly optically thin, it
is unfortunately not easy to measure the internal density
of the strands ρi and the surrounding density ρe indepen-
dently or accurately. However, if one tries to observa-
tionally estimate a density ρ, it is usually safe to assume
that is associated with a solar atmospheric structure that
stands out from the background (due to the presence of

n ~ 1010 cm-3 (Tripathi et al 2010 - Fe XII)
P - 77 s
ξ - 55 km
vgr - 200 km/s (McIntosh et al., 2011)

F ~ 410*f  W m-2  = 100 W m-2

van Doorsselaere et al. (2014)

Morton & McLaughlin (2014)
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the bulk Alfvén wave, but is also sufficiently accurate for
kink waves because they are only weakly dispersive.

Equation 16 is a simple formula for the energy flux (in
W/m2) for the kink wave that can serve as a drop-in re-
placement for the classic formula (Eq. 14) to estimate the
energy flux by transverse kink waves in structured me-
dia, i.e. with multi-stranded loops or systems containing
multiple flux tubes.

For spectroscopic observations, we can measure the ve-
locity amplitude wobs accurately. For imaging observa-
tions, however, the velocity amplitude wobs is not a di-
rect observable, but one rather observes the transverse
displacement amplitude ξobs. From theory we know that
the velocity amplitude wKw is related to the displacement
amplitude ξKw by

wKw = ωKwξKw =
2π

PKw
ξKw, (18)

where P is the period of the studied wave, and ω the fre-
quency. Substituting those expressions into Eq. 16, we
obtain an expression for the energy in propagating trans-
verse waves that we can use for imaging observations:

Fobs =
1

2
f(ρi + ρe)

(

2π

Pobs

)2

ξ2
obsvgr. (19)

Because the solar atmosphere is mostly optically thin, it
is unfortunately not easy to measure the internal density
of the strands ρi and the surrounding density ρe indepen-
dently or accurately. However, if one tries to observa-
tionally estimate a density ρ, it is usually safe to assume
that is associated with a solar atmospheric structure that
stands out from the background (due to the presence of

n ~ 1010 cm-3 (Tripathi et al 2010 - Fe XII)
P - 77 s
ξ - 55 km
vgr - 200 km/s (McIntosh et al., 2011)

F ~ 410*f  W m-2  = 100 W m-2

Bulk of wave energy is propagating 
along the density enhancement!

Loop plasma only - possible significant 
wave contribution.

Heating of external plasma - spatially 
averaged wave energy flux is too low.

van Doorsselaere et al. (2014)

Morton & McLaughlin (2014)

Bulk Alfven Kink�wave

E E



Conclusions

• Hi-C revealed fine-structure of moss - appears as a 
collection of inclined flux tubes?

• Typical transverse scale of moss ~400 km - similar to 
EUV loops (Brooks et al., 2013). 

• Motions of moss reveal presence of MHD kink waves  
- (v~ 4 km/s) that could contribute to heating of hot loops - a 
quasi-static component? 

Hi-C has clarified details of the moss and it’s dynamics 
obtained from previous Hinode/EIS observations of moss.


