"r

- -
- '
» .

H )

)

CoronalScience with IRIS

Paola Testa

| - } ! : . )
= . Harvard-Smithsonian Center for Astrophys‘lcs
' " .

t

.

“

B. De Pontieu (LMSAL), J. Allred (NASA GSFC), M. Carlsson (U. Oslo), F. Reale (U.,
Palermo),V. Hansteen (U. Oslo), Adrian Daw (GSFC), and the IRIS team

.
-

Coronal Loop Workshop VlI, Cambridge, UK, 22 July 20 IE




Coronal science with IRIS

Coronal science from [RIS high-resolution UV imaging/
spectral observations

insights into coronal heating mechanisms and fundamental physical processes

» (l) transition region IRIS observations at loop footpoints:
— diagnostics of coronal heating events

— evidence of non-thermal, accelerated particles in solar
“nanoflares”

» (II) FeXll coronal observations with IRIS

» conclusions
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Implication on coronal heating
from transition region variability studies

* Coronal heating is difficult to directly detect (e.g., efficient conduction, low
high T emission measure, NEl,...) — likely on SMALL spatial/temporal scales

* Transition region (TR) is very sensitive to heating, because of rapid changes
of density, temperature gradients, and spatial dimensions in this narrow layer
during heating events
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(Berger et al. 1999)




Temporal variability of moss in Hi-C data
(Testa et al. 2013)
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IRIS diagnostics of coronal heating and

mechanisms of energy transport

IRIS often observes short-
lived brightenings (<30s) at
footpoints of hot loops:
sighature of coronal heating
process!?

IRIS provides powerful
diagnostics:

* imaging and spectral
information in lines
formed in different layers
of atmosphere

* velocity diagnostics
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(Testa et al. 2014, Science)
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IRIS high spatial and temporal cadence TR obs
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* brightenings duration |5-60s

* large range of intensities

* Si IV spectra for many brightenings
shows modest blueshift (~15-20 km/s
upflow)

(Testa et al. 2014, Science)



What can we learn about heating!?

Simulations of loops heated by “nanoflares™

RADYN loop model

¢ includes non-Loc
we can model al

¢ allows to model
thermal conduct

We model nanoflare
in particular:

» total energ
» initial cond

» cutoff ener

(Liu et al. 2008))

~adiative transfer —

Turbulence acceleration
region, Coronal X-ray

emission direct heating and

Looptop source ral parameters, but

1 ~10-30s)

Escaping particles

Thick=target footpoints

(Testa et al. 2014, Science)



What can we learn about heating!?

Simulations of loops heated by “nanoflares™
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sensitive diagnostic of the heating as
its timescales depend on the
timescales of evolution of pressure

— short-lived TR brightenings imply

! ~ th.cond.
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\ X

impulsive heating

* blue-shifted SilV brightenings cannot

2 .
be reproduced by thermal conduction r
. 100 ' : ' NI s
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_ 60
* heating by non-thermal particles
T 40
reproduces the observed range of
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(Testa et al. 2014, Science)



What can we learn about heating!?

Results of simulations:

30 A Ec=10keV]| - |
e predicted emission is critically 25 (Freoezd 1o 20 21 22 28
dependent on energy cutoff parameter, _
Ec: comparison with the observations g ™ 1
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i
— Ec ~10-12 keV zoz : ET&Z} —————
- 20
e electron distributions with low Ec g
(<10 keV) yield results similar to 12 L -
conduction cases (including e.g., initial i sy L . |
redshifts in SilV emission) z eV ]
- 20
e for Ec =15 keV, the energy is deposited §‘5

too deep in the chromosphere —

(S

generally no observable TR brightenings 0 SIV& '- .
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(Testa et al. 2014, Science)



Work in progress

» interpretation of chromospheric diagnostics
(C Il, Mg Il, Mg triplet lines)

» more accurate modeling of initial atmosphere
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Heating in the low
atmosphere
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Q‘ Mg |l triplet emission indicates
heating in the low chromosphere
(Pereira et al., 2015)
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Coronal science with IRIS

Coronal science from [RIS high-resolution UV imaging/
spectral observations

insights into coronal heating mechanisms and fundamental physical processes

» (l) transition region IRIS observations at loop footpoints:
— diagnostics of coronal heating events

— evidence of non-thermal, accelerated particles in solar
“nanoflares”

(Il) FeXIl 1349.4A coronal observations with IRIS

» conclusions



Fe XII IRIS emission
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e post-flare loops (Cé6 flare)
* FeXIll line intensity, width, Doppler shift
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e FeXll line intensity, width, Doppler shift, at high spatial resolution



Fe XII IRIS emission
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e FeXll line intensity, width, Doppler shift, at high spatial resolution



Fe XII IRIS emission
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e moss FeXll emission

* FeXIll line intensity, width, Doppler shift



Fe XII IRIS emission

FeXIl 1349.4A
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Fe XII IRIS emission
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Conclusions

* |RIS provides very high spatial, spectral and temporal resolution observations of the
loops transition region, chromosphere, and corona that provide constraints on
coronal heating

» dynamics and structuring down to the limit of the resolution = progress
in understanding the role of different processes in atmospheric heating

» rapid moss variability = evidence and diagnostics of impulsive, “nanoflare”,
coronal heating

» IRIS+tmodeling = new diagnostics for energy transport mechanisms
(conduction vs. beams)

» non-thermal electron are produced even outside flares, their parameters are
tightly constrained by observations (energy, duration, Ec)

» Fe XII emission shows systematic redshifts and very small non-thermal line
broadening (&) in moss, while € appears significant in post-flare loops



