# Unresolved Plasma Motions in Coronal Loops

### Hirohisa Hara National Astronomical Observatory of Japan

Coronal Loop Workshop VII in University of Cambridge

### Introduction

- The non-thermal broadening of coronal emission lines is the central topic of this study.
- It has been pointed out by the Climax coronagraph observation ( $T_i^* > T_e$ ; Billings & Lehman 1962).
- It has been investigated extensively by the spacecraft observations starting in the Skylab era  $(T_i \sim T_e, \xi; Boland+1975, Doschek+1976, Cheng+1979).$





# Non-thermal velocity $\xi$ or $V_{\rm NT}$

•  $\xi \propto T_e^{1/4}$  in Transition Region



# Non-thermal velocity $\xi$ or $V_{\rm NT}$

- Interpretation
  - Increase of  $T_i$  by heating ions (will not be the case)
  - Multiple components with different bulk Doppler velocity along the line of sight
  - Unresolved motion
    - Small-scale multiple flows/motions
    - Motion of magnetic structures including waves
    - Turbulence



### Line width change with rotation

Enhanced line broadening near footpoints disappears with rotation.

→ Excess line broadening may be due to superposition of multiple components along magnetic field line, each with different line centers.

### **Unresolved Flows**

#### hidden in line width



There is correlation between V and  $V_{NT}$ .

→ Superposition of line-of-sight plasma motions along magnetic field lines Unresolved Doppler components are hidden ! Hara et al. 2008, ApJ, 678, L67

### **Blue-side Enhanced Line Profile**



Clearly showing the presence of unresolved high-velocity upflow components that have weaker emission than primary

component.

 $V_{\rm D}/\cos\theta > 200$  km/s ~  $V_{\rm s}$ 

Hara et al. 2008, ApJ, 678, L67

## Data & Analysis for $V_{\rm NT}$ Studies

- Hinode EIS data
- Long exposure (~1 min)
- Regions near the disk center and near the limb
- Single Gaussian approx. for line profile analysis
- Active/Quiescent (with/no microflares) active region
- Statistical studies not finished









### Nonthermal velocity in emission lines



### A search for Alfven waves/turbulence



## Previous Study









# Conclusions

- We have analyzed the Hinode EIS spectral data to investigate the line-width change and anisotropy in active-region structures of  $\log T_e = 5.9 6.4$ .
  - Strong anisotropy at footpoints as have been found in 2008
  - A very weak anisotropy/nearly none in the loop structures
  - Need interpretations for large  $V_{\rm NT}$  in Si VII loops.
    - Not at the interface region between chromosphere & corona. IRIS observations will be a help for understanding.
- Line-width change with height along coronal loops found from visible green line (Fe XIV) (Hara & Ichimoto 1999, Singh+2003) has also been found from EIS data.
  - Line-width along coronal loops decreases with height in Fe XIV, but it appears to be strongly affected by foreground/background and dynamic structures because  $I_{\text{loop}}/I_{\text{F/B}}$  is small: (A view of steadiness misleads interpretations.)
  - Evidence for Alfven waves/Alfven-wave turbulence is not easy to detect in the data set we used this time. Need more case studies.