

# Current Formation During Magnetic Field Relaxation

Simon Candelaresi, David Pontin, Gunnar Hornig



# Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity

NASA



Force-free magnetic fields



Minimum energy state

$$(\nabla \times \mathbf{B}) \times \mathbf{B} = 0 \Leftrightarrow \nabla \times \mathbf{B} = \alpha \mathbf{B}$$



Parker: Equilibrium with the same topology exists only if the twist varies uniformly along the field lines.

Strongly braided fields → topological dissipation.

(Parker 1972)



Solutions possible with filamentary current structures (sheets).

(Mikic 1989, Low 2010)

#### Methods

Ideal (non-resistive) evolution Frozen in magnetic field



(Batchelor, 1950)

Preserves topology and divergence-freeness.

Magneto-frictional term:  $\mathbf{u} = \mathbf{J} \times \mathbf{B}$   $\mathbf{J} = \nabla \times \mathbf{B}$ 

$$\mathbf{J} = 
abla imes \mathbf{B}$$

$$rac{\mathrm{d}E_{\mathrm{M}}}{\mathrm{d}t} < 0$$
 (Craig and Sneyd 1986)

Fluid with pressure:  $\mathbf{u} = \mathbf{J} \times \mathbf{B} - \beta \nabla \rho$ 

Fluid with inertia:  $d\mathbf{u}/dt = (\mathbf{J} \times \mathbf{B} - \nu \mathbf{u} - \beta \nabla \rho)/\rho$ 

For  $\mathbf{J} = \nabla \times \mathbf{B}$  use mimetic numerical operators.

(Hyman, Shashkov 1997)

Own GPU code GLEMuR: (https://github.com/SimonCan/glemur)

(Candelaresi et al. 2014)

# Highly Braided Fields

Sufficiently highly braided according to Parker.





(Candelaresi et al. 2015)

# Distorted Magnetic Fields



# Magnetic Nulls

Singular current sheets observed at magnetic nulls (B = 0)



(Syrovatskiĭ 1971; Pontin & Craig 2005; Fuentes-Fernández & Parnell 2012, 2013; Craig & Pontin 2014)

$$\mathbf{u} = \mathbf{J} \times \mathbf{B}$$









singular current sheets at magnetic nulls



Pressure cannot balance singularity.

Magnetic Carpet



Questions: How do disturbances travel into the domain?

Reconnection at null point?

Propagation in presence of nulls?

# E3 Experiments

full resistive MHD simulations with the PencilCode initially homogeneous field, E3 type of boundary driving





Braid propagates into domain.

# E3 Experiments

field line mapping







field line connectivity with foot point motions

## **Null Points**





Nulls inhibit the propagation of perturbations.



Foot point motion can annihilate nulls.



waves/oscillations?

### Conclusions

- Topology preserving relaxation of magnetic fields.
- Current concentrations not singular.
- Current increases strongly with field complexity.
- Singular currents at magnetic nulls.
- Braiding through photospheric foot point motion.
- Null point disruption through boundary motions.



#### **Posters**

Kalman J. Knizhnik, P 3.14





Fabio Reale, P 3.7





Girjesh R. Gupta, P 1.23





James Klimchuk, P 1.15



# Simply Twisted Fields

#### Magnetic streamlines:





(Candelaresi et al. 2014)

## PhD Projects @ Dundee

#### Project areas:

- Modelling of solar or astrophysical magnetic fields.
- Dynamics of the Sun's atmosphere.
- Topology of magnetic fields.
- Modelling of three-dimensional magnetic reconnection.
- Development of numerical codes for MHD problems.
- Development of measures of complexity for magnetic and electromagnetic fields.
- Application of knot theory to magnetic fields.
- Representation and visualization of electromagnetic fields.

Funding: PhD Scholarship is currently available for UK nationals (or equivalent UK status as detailed by STFC)

http://www.maths.dundee.ac.uk/mhd/phd.shtml