A global picture of active regions: models meet observables

Ignacio Ugarte-Urra

Coronal Loops Workshop VII - University of Cambridge - July 21st 2015

Global models

What is an active region?

Coronal Loops Workshop I, Paris, November 2002

Coronal Loops Workshop VII, Cambridge, July 2015

3D volume Fixed topology 0D/1D hydro static dynamic

3D volume 3D MagnetoHydroDynamics

Observables in the corona
Comparisons with data

Schrijver et al. (2004)

- Full Sun (2 datasets)
- Magnetic configuration: flux transport
- Extrapolation: PFSS (46,000 field lines)
- Loops modeled in 0D
 - Ad hoc heating: $F_H = \alpha B_f^\beta L^\gamma f(B_f)$

 $0.0 \leq \beta \leq 2.0 \qquad -1.7 \leq \gamma \leq 0.3$

f(B)

- Uniform, Non-uniform
- Hydrostatic solutions (Serio et al. 1981)

Data comparisons

- SXT/Yohkoh (Al/Mag), EIT/SoHO (171,284)
- Qualitative: visual
- Quantitative: intensities
- Quantitative: full Sun emission measures simulated vs historical DEMs

Results / Conclusions

• Best fit:
$$F_H \approx 4 \times 10^{14} \frac{B^{1.0 \pm 0.3}}{L^{1.0 \pm 0.5}}$$

- Uniform heating
- Quasi-hydrostatic equilibrium for T > 2MK

- Lack of cool relatively bright loops.
- Excessive contrast in simulated 171 and 195
- No faint and compact sources (PFSS resol.)

Warren & Winebarger (2006)

- Active region size (26 regions)
- Magnetic configuration: MDI los magnetog.
- Extrapolation: Potential
- Loops modeled in 1D
 - Hydrostatic solutions (van Ballegooijen)
 - Ad hoc heating: $E_H \propto \frac{\bar{B}^{\alpha}}{L^{\beta}}$

 $\alpha,\beta\in[0,1,2]$

Data comparisons

- SXT/Yohkoh (AlMg, Al.1) EIT/SoHO (171, 195, 284)
- Qualitative: visual (morphology)
- Quantitative: $\log I = b \log \Phi$ (correlation & slopes)

Results / Conclusions

- Static models adequate to reproduce high T
- Most consistent (qual + quant): $E_H \propto \frac{B}{\tau}$

• Same as Schrijver :
$$E_H \sim \frac{F_H}{L} \sim \frac{B_0}{L^2} \sim \frac{\bar{B}}{L}$$

- Significant differences in cool emission:
 - EIT simulated images dominated by moss
 - Moss is too bright
- Filling factors needed to match intensities

Lundquist et al. (2008a, 2008b)

- Active region size (10 regions)
- Magnetic configuration: vector magnetogram
- **Extrapolation: NLFF**
- Loops modeled in 1D
 - Steady state energy balance model
 - Ad hoc heating: Uniform

$$E_H \propto \frac{\bar{B}}{L}; \frac{\bar{B}}{L^2}; \frac{\bar{B}^2}{L}; \frac{\bar{B}^2}{L^2}$$

Data comparisons

- SXT/Yohkoh (AlMg, Al1)
- Qualitative: visual
- Quantitative: intensities (correl., distrib.)
- Quantitative: single T filter ratio

Results / Conclusions

- Visually and quantitatively best predictor is: $E_H \propto \frac{D}{T}$
- Pixel intensities disagree by 200% (best case) • Filter ratio: non-conclusive

- Major factors:
 - Topology from NLFF
 - Steady-state equilibrium approximation

Winebarger et al. (2008)

- Active region size (1 region)
- Magnetic configuration: MDI los magnetog.
- Extrapolation: Potential
- Loops modeled in 1D
 - Steady heating
 - E_H guess: 171 moss + Martens + Rosner
 - Hydrostatic solutions (van Ballegooijen)
 - Find $E_{\rm H}$ that matches moss and total SXT
 - Regression E_H vs B vs L

Data comparisons

- SXT/Yohkoh (AlMg, Al12)
- TRACE (171)
- Quantitative:
 - 171 moss intensities at field line footpoint
 - SXT total intensities

Results / Conclusions

- Intensities can be matched to steady uniformly heated loops within 2 stdev.
- Best match:
 - Filling factor 8%
 - Expanding loop

$$E_H \propto rac{ar{B}^{0.29}}{L^{0.95}}$$

Identified problems

Morphological discrepancies

Dudik et al. (2011)

- Active region size (1 region)
- Magnetic configuration: MDI los magnetog.
- Extrapolation: Potential
- Loops modeled in 1D
 - Hydrostatic solutions
 - Ad hoc heating: Non-uniform

$$E_H \propto \frac{B_f^{\alpha}}{L^{\beta}} f(s)$$
$$0.5 \le \alpha \le 1.0$$

 $0.0 \leq \beta \leq 2.0$

Data comparisons

- XRT/Hinode (Al-,C-,Ti-poly,Be-thin,Be-med)
- EIT/SoHO (171, 195, 284)
- Qualitative: visual
- Quantitative:
 - T filter ratio
 - Intensity correlation and histograms

Results / Conclusions

• Best fit solution:

$$E_H \propto \frac{B_f^{0.8}}{L_f^{0.5}}$$

- X-ray emission: large heating scale lengths
- EUV loops: only with short heating scale L

- Synthetic emission higher than observed: filling factor?
- Unable to find a steady heating model that reproduces X-ray and EUV without unstable EUV loops.

Warren & Winebarger (2007)

- Active region size (1 region)
- Magnetic configuration: MDI los magnetog.
- Extrapolation: Potential (2000 field lines)
- Loops modeled in 1D
 - a) Hydrostatic solutions
 - b) Hydrodynamics (NRL Solar FT Model) Ad hoc heating: $E_D(t) = g(t) R E_S + E_B$ Uniform $E_S \propto \frac{\bar{B}}{L}$

Data comparisons

- SXT/Yohkoh (Be119,Al12,AlMg, Al.1) EIT/SoHO (304,171, 195, 284)
- Qualitative: visual (morphology)
- Quantitative: I_{tot} and intensity histograms

Results / Conclusions

- Static: reproduces SXT I_{tot} and morphology
- Impulsive: reproduces SXT
- Impulsive: significant loop emission in EUV

- The morphology of EUV does not agree.
- EUV intensities at the core are too bright

3D volume Fixed topology 0D/1D hydro static dynamic

Schrijver et al. (2004) Warren & Winebarger (2006) Warren & Winebarger (2007) Winebarger et al. (2008) Lundquist et al. (2008a,b) Dudik et al. (2011)

Full Sun, AR size 1500 km< Pixel size < 10,000 km Ad-hoc parameterized heating Static and dynamic heating Uniform and non-uniform Constant and expanding cross-sections

> Visual (morphology) Intensities Intensity-flux relationship Filter ratio temperatures

3D volume 3D MagnetoHydroDynamics

Mok et al. (2005, 2008)

- Active region size (127x91x137 mesh)
- Magnetic configuration: MDI los magnetog
- Topology: Potential \Rightarrow NLFF
- 3D MHD code
 - static magnetic field
 - thermodynamics along the field
 - Ad-hoc steady heating:

$$E_H(x) = cB(x')^{\alpha}\rho(x)^{\beta}$$

Data comparisons

- TRACE 171, 195, 284
- SXT
- Quantitative:
 - match SXT intensity
 - compare: intensity ranges in EUV

Identified problems

- Only diffuse corona <2 MK for small heating: no loops
- Excessive EUV emission of 'moss'

Log10[DN/s]

100,000 km

- Thermally unstable loops for stronger heat with time-dependency (steady heating)
- SXT intensities matched and EUV (171, 195, 284) intensities in observed range

Mok et al. (2005, 2008)

- Active region size (127x91x137 mesh)
- Magnetic configuration: MDI los magnetog
- Topology: Potential \Rightarrow NLFF
- 3D MHD code
 - static magnetic field
 - thermodynamics along the field
 - Ad-hoc steady heating:

$$E_H(x) = cB(x')^{\alpha}\rho(x)^{\beta}$$

Data comparisons

- TRACE 171, 195, 284
- SXT
- Quantitative:
 - match SXT intensity
 - compare: intensity ranges in EUV

Identified problems

- Only diffuse corona <2 MK for small heating: no loops
- Excessive EUV emission of 'moss'

Log10[DN/s]

100,000 km

- Thermally unstable loops for stronger heat with time-dependency (steady heating)
- SXT intensities matched and EUV (171, 195, 284) intensities in observed range

• Acti

Lionello et al. (2013)

- Magnetic configuration: MDI los magnetog
- Topology: Potential \Rightarrow NLFF
- 3D MHD code
 - static magnetic field
 - thermodynamics along the field
 - Ad-hoc steady heating:

$$E_H(x) = cB(x')^{\alpha}\rho(x)^{\beta}$$

Data comparisons

- TRACE 171, 195, 284
- SXT
- Quantitative:
 - match SXT intensity
 - compare: intensity ranges in EUV

Identified problems

- Only diffuse corona <2 MK for small heating: no loops
- Excessive EUV emission of 'moss'

- Thermally unstable loops for stronger heat with time-dependency (steady heating)
- SXT intensities matched and EUV (171, 195, 284) intensities in observed range

- TRACE intensities too high: factor 3-10
- T distribution too cool for Yohkoh loops
- Doppler shifts not reproduced at high T

Gudiksen & Nordlund (2005) Peter et al. (2004)

- 60 x 60 x 37 Mm³ (150x150x150 mesh)
- Magnetic configuration: MDI los magnetogram scaled down
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code
 - thermal conduction along field

Data comparisons

- TRACE 171, 195 intensities
- SUMER/SoHO Doppler shifts and DEM
- Qualitative: visual impression
- Quantitative:
 - intensities in EUV images
 - avg. Doppler shifts as a function of $\,\lambda$
 - DEM (avg. intensities time and space)

- ne ~ 10^{8} - 10^{10} cm⁻³; T_e ~ 10^{4} - $3x10^{6}$ K
- Energy dissipated: 10⁶-10⁸ erg cm⁻² s⁻¹
- Doppler shifts as a function of λ reproduced
- Quiet Sun DEM shape reproduced

- TRACE intensities too high: factor 3-10
- T distribution too cool for Yohkoh loops
- Doppler shifts not reproduced at high T

Gudiksen & Nordlund (2005) Peter et al. (2004)

- 60 x 60 x 37 Mm³ (150x150x150 mesh)
- Magnetic configuration: MDI los magnetogram scaled down
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code
 - thermal conduction along field

Data comparisons

- TRACE 171, 195 intensities
- SUMER/SoHO Doppler shifts and DEM
- Qualitative: visual impression
- Quantitative:
 - intensities in EUV images
 - avg. Doppler shifts as a function of $\,\lambda$
 - DEM (avg. intensities time and space)

- ne ~ 10^{8} - 10^{10} cm⁻³; T_e ~ 10^{4} - $3x10^{6}$ K
- Energy dissipated: 10⁶-10⁸ erg cm⁻² s⁻¹
- Doppler shifts as a function of λ reproduced
- Quiet Sun DEM shape reproduced

- TRACE intensities too high: factor 3-10
- T distribution too cool for Yohkoh loops
- Doppler shifts not reproduced at high T

Gudiksen & Nordlund (2005) Peter et al. (2004)

- 60 x 60 x 37 Mm³ (150x150x150 mesh)
- Magnetic configuration: MDI los magnetogram scaled down
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code
 - thermal conduction along field

Data comparisons

- TRACE 171, 195 intensities
- SUMER/SoHO Doppler shifts and DEM
- Qualitative: visual impression
- Quantitative:
 - intensities in EUV images
 - avg. Doppler shifts as a function of $\,\lambda$
 - DEM (avg. intensities time and space)

- ne ~ 10^{8} - 10^{10} cm⁻³; T_e ~ 10^{4} - $3x10^{6}$ K
- Energy dissipated: 10⁶-10⁸ erg cm⁻² s⁻¹
- Doppler shifts as a function of λ reproduced
- Quiet Sun DEM shape reproduced

- TRACE intensities too high: factor 3-10
- T distribution too cool for Yohkoh loops
- Doppler shifts not reproduced at high T

Gudiksen & Nordlund (2005) Peter et al. (2004)

- 60 x 60 x 37 Mm³ (150x150x150 mesh)
- Magnetic configuration: MDI los magnetogram scaled down
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code
 - thermal conduction along field

Data comparisons

- TRACE 171, 195 intensities
- SUMER/SoHO Doppler shifts and DEM
- Qualitative: visual impression
- Quantitative:
 - intensities in EUV images
 - avg. Doppler shifts as a function of $\,\lambda$
 - DEM (avg. intensities time and space)

- ne ~ 10^{8} - 10^{10} cm⁻³; T_e ~ 10^{4} - $3x10^{6}$ K
- Energy dissipated: 10⁶-10⁸ erg cm⁻² s⁻¹
- Doppler shifts as a function of λ reproduced
- Quiet Sun DEM shape reproduced

- TRACE intensities too high: factor 3-10
- T distribution too cool for Yohkoh loops
- Doppler shifts not reproduced at high T

Gudiksen & Nordlund (2005) Peter et al. (2004)

- 60 3 Peter et al. (2006)
- sh)
- Magnetic configuration: MDI los magnetogram scaled down
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code
 - thermal conduction along field

Data comparisons

- TRACE 171, 195 intensities
- SUMER/SoHO Doppler shifts and DEM
- Qualitative: visual impression
- Quantitative:
 - intensities in EUV images
 - avg. Doppler shifts as a function of $\,\lambda\,$
 - DEM (avg. intensities time and space)

- ne ~ 10^{8} - 10^{10} cm⁻³; T_e ~ 10^{4} - $3x10^{6}$ K
- Energy dissipated: 10⁶-10⁸ erg cm⁻² s⁻¹
- Doppler shifts as a function of λ reproduced
- Quiet Sun DEM shape reproduced

Zacharias et al. (2009, 2011) Bingert & Peter (2011)

- 50 x 50 x 30 Mm³ (256x256x256 mesh)
- Magnetic configuration: Gudiksen magnetogram + QS network (x5)
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code (Pencil code)
 - thermal conduction along field

Data comparisons

- SUMER/SoHO Doppler shifts
- Qualitative: visual impression
- Quantitative:
 - avg. Doppler shifts as a function of $\,\lambda$
 - intensity fluctuations (rms) as funct. of $\boldsymbol{\lambda}$
 - Doppler shifts rms as a function of $\,\lambda$

Results / Conclusions

- Coronal emission diffuse and continuous
- Cool lying loops in the transition region
- Doppler shifts as a function of λ (log T < 5.7)

- Doppler shifts not reproduced at log T > 5.7
- Some discrepancies in the fluctuations distributions as a function of λ

- Doppler shifts not reproduced at log T > 5.7
- Some discrepancies in the fluctuations distributions as a function of $\boldsymbol{\lambda}$

Zacharias et al. (2009, 2011) Bingert & Peter (2011)

- 50 x 50 x 30 Mm³ (256x256x256 mesh)
- Magnetic configuration: Gudiksen magnetogram + QS network (x5)
- Topology: potential (t=0)
- Field advected by prescribed velocity field
- 3D compressible MHD code (Pencil code)
 - thermal conduction along field

Data comparisons

- SUMER/SoHO Doppler shifts
- Qualitative: visual impression
- Quantitative:
 - avg. Doppler shifts as a function of $\,\lambda$
 - intensity fluctuations (rms) as funct. of $\boldsymbol{\lambda}$
 - Doppler shifts rms as a function of λ

- Coronal emission diffuse and continuous
- Cool lying loops in the transition region
- Doppler shifts as a function of λ (log T < 5.7)

Bourdin et al. (2013) Bingert & Peter (2011)

- 235 x 235 x 156 Mm³ (1024x1024x256 grid)
- Magnetic config.: SOT vector/los magnetog.
- Topology: potential (t=0)
- Field advected by prescribed velocity field:
 - correlation tracking: supergranulation
 - Gudiksen granulation
- 3D compressible MHD code (Pencil code)
 - thermal conduction along field

Data comparisons

- EIS/Hinode (Fe XV 284 Å, Fe XII 195 Å)
- EUVI/STEREO 284 Å
- Qualitative: visual impression (morphology)
- Quantitative:
 - EUV intensities & Doppler shifts
 - reconstructed geometry in 3D

Identified problems

- Long loops: synthetic emission weaker
- Certain short loops not observed

- Long loops: good agreement location & shape
- Good correspondance in Doppler along loops
- Geometry: synthetic emission located within 3D reconstruction

• Fe XIV line widths in simulation are smaller than observed

Hansteen et al. (2010) Gudiksen et al. (2011)

- 16 x 16 x 16 Mm³ (512x512x325 grid)
- Magnetic configuration: prescribed field
- Optically thick radiative losses ⇒ convection
- Magnetic field advected with flow
- 3D MHD compressible code
 - thermal conduction along field

Data comparisons

- EIS/Hinode Fe XIV 274 Å
- Quantitative:
 - Doppler shift histograms (Fe XIV)
 - Line width histograms (Fe XIV)

- Simulation is able to produce red shifts in TR lines (C IV) and blue shifts in the corona .
- Simulated coronal blue shifts match observed by EIS at loop and footprints

- Observed EIS Fe XII and He II QS intensities much larger than synthetic.
- Non-thermal widths below QS observations

Olluri et al. (2015)

- Size: 24 x 24 x 17 Mm³ (512x512x496 grid)
- Magnetic configuration: prescribed field
- Optically thick radiative losses ⇒ convection
- Magnetic field advected with flow
- 3D MHD compressible code
 - thermal conduction along field

Data comparisons

- HRTS atlas (QS, AR)
- SUMER/SoHO atlas (QS)
- EIS/Hinode (QS, AR)
- Quantitative:
 - line intensities: He II, C II, Si IV, O IV, O VI, Fe XII
 - line widths
 - Doppler shifts

- Intensities for TR lines reproduced (factor 2)
- Doppler shifts as a function of λ
- Able to produce Doppler shift correlations:
 - decreasing correlation with T in TR lines
 - anticorrelation of Doppler shifts vs nonthermal widths in Fe XII

- Observed EIS Fe XII and He II QS intensities much larger than synthetic.
- Non-thermal widths below QS observations

Olluri et al. (2015)

- Size: 24 x 24 x 17 Mm³ (512x512x496 grid)
- Magnetic configuration: prescribed field
- Optically thick radiative losses ⇒ convection
- Magnetic field advected with flow
- 3D MHD compressible code
 - thermal conduction along field

Data comparisons

- HRTS atlas (QS, AR)
- SUMER/SoHO atlas (QS)
- EIS/Hinode (QS, AR)
- Quantitative:
 - line intensities: He II, C II, Si IV, O IV, O VI, Fe XII
 - line widths
 - Doppler shifts

- Intensities for TR lines reproduced (factor 2)
- Doppler shifts as a function of λ
- Able to produce Doppler shift correlations:
 - decreasing correlation with T in TR lines
 - anticorrelation of Doppler shifts vs nonthermal widths in Fe XII

- Observed EIS Fe XII and He II QS intensities much larger than synthetic.
- Non-thermal widths below QS observations

Olluri et al. (2015)

Testa et al. (2012)

- Magnetic configuration: prescribed field
- Optically thick radiative losses ⇒ convection
- Magnetic field advected with flow
- 3D MHD compressible code
 - thermal conduction along field

Data comparisons

- HRTS atlas (QS, AR)
- SUMER/SoHO atlas (QS)
- EIS/Hinode (QS, AR)
- Quantitative:

• Size.

- line intensities: He II, C II, Si IV, O IV, O VI, Fe XII
- line widths
- Doppler shifts

- Intensities for TR lines reproduced (factor 2)
- Doppler shifts as a function of λ
- Able to produce Doppler shift correlations:
 - decreasing correlation with T in TR lines
 - anticorrelation of Doppler shifts vs nonthermal widths in Fe XII

- Observed EIS Fe XII and He II QS intensities much larger than synthetic.
- Non-thermal widths below QS observations

- Olluri et al. (2015)Testa et al. (2012)J grid)
- Mag Onthe Martínez-Sykora et al. (2011)
- Optically lines radiative losses convection
- Magnetic field advected with flow
- 3D MHD compressible code
 - thermal conduction along field

Data comparisons

- HRTS atlas (QS, AR)
- SUMER/SoHO atlas (QS)
- EIS/Hinode (QS, AR)
- Quantitative:

• Size.

- line intensities: He II, C II, Si IV, O IV, O VI, Fe XII
- line widths
- Doppler shifts

- Intensities for TR lines reproduced (factor 2)
- Doppler shifts as a function of λ
- Able to produce Doppler shift correlations:
 - decreasing correlation with T in TR lines
 - anticorrelation of Doppler shifts vs nonthermal widths in Fe XII

3D volume Fixed topology 0D/1D hydro static dynamic

Schrijver et al. (2004) Warren & Winebarger (2006) Warren & Winebarger (2007) Winebarger et al. (2008) Lundquist et al. (2008a,b) Dudik et al. (2011)

Full Sun, AR size 1500 km< Pixel size < 10,000 km Ad-hoc parameterized heating Static and dynamic heating Uniform and non-uniform Constant and expanding cross-sections

> Visual (morphology) Intensities Intensity-flux relationship Filter ratio temperatures DEM

3D volume 3D MagnetoHydroDynamics

Mok et al. (2005,2008) Peter et al. (2004, 2006) Gudiksen & Nordlund (2005) Zacharias et al. (2009, 2011) Bingert & Peter (2011) Bourdin et al. (2013) Hansteen et al. (2013) Gudiksen et al. (2011) Martinez-Sykora et al. (2011) Olluri et al. (2015) Testa et al. (2012)

16Mm - 250 Mm Rigid topology / advection mag. field Ad-hoc steady heating / Intermittent Ohmic heating Prescribed velocity fields / Convection simulation Visual (morphology) Intensities (total, fluctuations) Doppler shifts DEM 3D geometry Line widths

Warren & Ugarte-Urra (TBD)

- Active region size (15 regions)
- Magnetic configuration: HMI los magnetog.
- Extrapolation: NLFF (10,000 field lines)
- Loops modeled with EBTEL (0D)
 - Hydrodynamics
 - Ad hoc heating: $E_H \propto \frac{B}{L}$ Uniform Frequency: $dt \propto E_{i-1}$

Data comparisons

- AIA/SDO (Fe XVIII, 195, 171)
- EIS/Hinode
- Qualitative: visual
- Quantitative:
 - Flux-luminosity relationship
 - Statistics on event detection
 - DEM

Results / Conclusions

- Time-dependent quantitative comparisons are possible
- B/L works for high T
- Best match: intermediate frequencies

Identified problems

• Topology \Leftrightarrow Morphology

DN

- 1 MK emission: too much on small loops
- Temporal variability is spatially correlated
- Inferring unknown heating function is hard
- Solar corona is not 0D

Warren & Ugarte-Urra (TBD)

- Active region size (15 regions)
- Magnetic configuration: HMI los magnetog.
- Extrapolation: NLFF (10,000 field lines)
- Loops modeled with EBTEL (0D)
 - Hydrodynamics
 - Ad hoc heating: $E_H \propto \frac{B}{L}$ Uniform Frequency: $dt \propto E_{i-1}$

Data comparisons

- AIA/SDO (Fe XVIII, 195, 171)
- EIS/Hinode
- Qualitative: visual
- Quantitative:
 - Flux-luminosity relationship
 - Statistics on event detection
 - DEM

Results / Conclusions

- Time-dependent quantitative comparisons are possible
- B/L works for high T
- Best match: intermediate frequencies

Identified problems

• Topology \Leftrightarrow Morphology

DN

- 1 MK emission: too much on small loops
- Temporal variability is spatially correlated
- Inferring unknown heating function is hard
- Solar corona is not 0D

Warren & Ugarte-Urra (TBD)

- Active region size (15 regions)
- Magnetic configuration: HMI los magnetog.
- Extrapolation: NLFF (10,000 field lines)
- Loops modeled with EBTEL (0D)
 - Hydrodynamics
 - Ad hoc heating: $E_H \propto \frac{B}{L}$ Uniform Frequency: $dt \propto E_{i-1}$

Data comparisons

- AIA/SDO (Fe XVIII, 195, 171)
- EIS/Hinode
- Qualitative: visual
- Quantitative:
 - Flux-luminosity relationship
 - Statistics on event detection
 - DEM

Results / Conclusions

- Time-dependent quantitative comparisons are possible
- B/L works for high T
- Best match: intermediate frequencies

Identified problems

END

• Topology \Leftrightarrow Morphology

START

- 1 MK emission: too much on small loops
- Temporal variability is spatially correlated
- Inferring unknown heating function is hard
- Solar corona is not 0D

3D volume Fixed topology 0D/1D hydro static dynamic

Successful at reproducing the high T emission

Difficulty in reproducing EUV (impulsive?)

Hints about the timescales of heating: quasi-steady or not too infrequent

Difficult to get at the source

3D volume 3D MagnetoHydroDynamics

Successful at reproducing the TR-low corona emission (QS)

Too cool for the high T core emission in AR

Intermittency of heating

Source is everywhere, 90% near footpoints

Final thoughts

- Significant progress since 2002
- The coronal heating problem is not just about producing 1-2 MK
- Model to data comparisons are very specific with several successes
- Challenges:
 - Scaling with total flux
 - Properties of different loop populations
 - Temperature distributions (DEM)
 - Time dependency
 - Evolutionary timescales

Dahlburg et al. (Submitted to ApJ)

