Observations and Modeling of the Chromosphere and its Connections to the outer Solar Atmosphere

Bart De Pontieu Lockheed Martin Solar & Astrophysics Laboratory

Thanks to Viggo Hansteen, Juan Martinez-Sykora, Mats Carlsson, Jorrit Leenaarts Paola Testa, Joten Okamoto, Patrick Antolin, Luc Rouppe van der Voort, Haakon Skogsrud, Tiago Pereira

Outline of the Talk

I.Brief introduction to chromospheric dynamics and morphology2.Chromospheric Heating

Plage heating

- Heating from braiding
- Heating from ion-neutral interactions
- Heating from wave dissipation

3. Connections to outer atmosphere

- Impact of chromosphere on transition region
 - shocks
 - jets and spicules

Correlation between chromospheric and coronal heating

SST/CRISP Wideband 8542

SST/CRISP Fe 6302 Stokes V

SST/CRISP Ca II 8542 líne center

SST/CRISP Ca II 8542 líne center

SST/CRISP Ca II 8542 line center

An introduction to the chromospheric zoo

How does IRIS help diagnose chromospheric conditions?

How does IRIS help diagnose chromospheric conditions?

courtesy Don Schmit

IRIS "scans" from photosphere to the top of the chromosphere

What are the chromospheric conditions at the footpoints of coronal loops? Why is plage bright in chromospheric lines?

Moving on from "energy flux requirements"...

Chromospheric heating requirements based on static models (!) and other model assumptions (2,000-14,000 W/m² from Athay, 1976 to Anderson & Athay 1989)

Forward modeling and synthetic spectra of chromospheric lines provides more robust "requirement" Peculiar ("filled in") Mg II k profiles in plage regions, without emission in subordinate lines

Exploiting all chromospheric diagnostics in IRIS passbands

Mg II subordinate lines go into emission for strong chromospheric heating at high densities (i.e., low chromospheric heights)

Single-peak Mg II k plage profiles correlated with upper TR "moss"

Single peak profiles (where k2 and k3 are equal, i.e., k2-k3 black) often occur in bright AIA 193 moss: relation between single-peak profiles and TR at high column mass

Moss occurs at the footpoints of hot, highdensity coronal loops

Moss brightness good proxy for coronal pressure

Single-peak Mg II k plage profiles correlated with upper TR "moss"

Plage Properties from Mg II k 2796Å and O I 1355Å

Mg II k width remarkable constant, larger than width of optically thin O I because of opacity broadening Intensity of K2 (~T_{chromo}) constant Many locations have single-peak profiles

Constraints on temperature and non-thermal motions in plage

Mg II k broadening in part because of opacity

Plage Non-Thermal Broadening from optically thin O I line is of order \sim 7 km/s

Constraint on Alfvenic motions (see Asgari-Thargi talk), turbulence, or shocks (see De Pontieu talk, in a few minutes)

Pushing a toy model to its limits: constraints on plage properties

Plage properties:

- I. High density and high temperature in mid to upper-chromosphere (~6500K)
- 2. Highest densities (and T increase) at moss footpoints
- 3. Sharp step in T at low heights
- 4. Remarkably constant non-thermal motions

Investigating sensitivity of plage Mg II k profiles to hydrostatic model properties

How well does a more sophisticated model reproduce Mg II k? Bifrost code (Gudiksen et al. 2011) solves full 3D radiative MHD equations

"Only" free parameter is magnetic field distribution on the surface

- from upper convection zone to corona
- radiative transfer in photosphere
- radiative losses from optically thin/thick lines (TR, corona)
- thermal conduction

Corona

Transition region Chromosphere

Photosphere

Which heating mechanism dominates in Bifrost simulations?

Magnetic Wave Heating

GRANULATION, MAGNETO-HYDRODYNAMIC WAVES, AND THE HEATING OF THE SOLAR CORONA Hannes Alfvén

(Communicated by B. Lindblad) (Received 1947 July 9 ")

Summary

In an electrically conducting liquid situated in a magnetic field any motion gives rise to magneto-hydrodynamic waves. Since the granulation is considered to constitute a turbulence in the photosphere, it must produce magneto-hydrodynamic waves, which are transmitted upwards to the chromosphere and the corona. The energy of the waves is estimated to the order of one per cent of the energy radiated by the Sun. It is shown that the waves are damped mainly in the inner corona where their energy is converted into heat. It is possible that the very high temperature found in the corona is produced through this magneto-hydrodynamic heating.

Alfven, 194[°]

Braiding and Reconnection

courtesy of Viggo Hansteen

Fig. 2. (a) A sketch of the initial uniform magnetic field B_0 through 0 < z < L. A sketch of the continuous field of equation (2).

Parker, 1991

May 2004, continuum at 4564 Å, Swedish Solar Telescope

Braiding clearly appears to lead to heating sufficient to produce a chromosphere & corona.

How well does a more sophisticated model reproduce Mg II k?

10 20 30

Solar x ["]

2794 2796 2798 2800 2802 2804 2806 0

Wavelength [A]

1333

1334 1335 1336

Wavelength [A]

1337

courtesy of Mats Carlsson

Current simulations show synthetic profiles that are too narrow

courtesy of Tiago Pereira

Current simulations seem to lack violence, mass & heat

Mg II k2 peak separation related to velocity gradients and column mass in chromosphere

courtesy of Mats Carlsson

Current simulations seem to lack "heat"

20140305_110951_3830113696 k2R

20140305_110951_3830113696 k2B

Solar y ["]

courtesy of Mats Carlsson

60

40

Current simulations seem to lack "heat"

Caused by lack of spatial resolution, lack of small-scale fields, non-MHD effects?

courtesy of Mats Carlsson

Numerical simulations now include ion-neutral interactions

Single-fluid MHD simulations use generalized Ohm's law (GOL) to include ambipolar diffusion Leads to chromospheric heating and more diffuse transition region Dissipation of magnetic energy from ion-neutral interactions appears to play significant role in chromospheric heating

Ambipolar diffusion reduces Mg II k discrepancies: broader and brighter

Single fluid MHD simulation

Ambipolar diffusion reduces Mg II k discrepancies: broader and brighter

Single fluid MHD simulation

MHD simulation with ambipolar diffusion

Is there also a role for Alfven waves?

lagnetic Wave Heating

GRANULATION, MAGNETO-HYDRODYNAMIC WAVES, AND THE HEATING OF THE SOLAR CORONA Hannes Alfvén

> (Communicated by B. Lindblad) (Received 1947 July 9 *)

> > Summary

In an electrically conducting liquid situated in a magnetic field any motion gives rise to magneto-hydrodynamic waves. Since the granulation is considered to constitute a turbulence in the photosphere, it must produce magneto-hydrodynamic waves, which are transmitted upwards to the chromosphere and the corona. The energy of the waves is estimated to the order of one per cent of the energy radiated by the Sun. It is shown that the waves are damped mainly in the inner corona where their energy is converted into heat. It is possible that the very high temperature found in the corona is produced through this magneto-hydrodynamic heating.

Alfven, 1947

Braiding and Reconnection

courtesy of Viggo Hansteen

Parker, 1991

May 2004, continuum at 4564 Å, Swedish Solar Telescope

Vorticity increases as numerical resolution of simulations increases

Vertical velocity at surface

courtesy of Viggo Hansteen

Is there any observational evidence for Alfven waves?

De Pontieu et al., Science, October 17, 2014

IRIS/SST observations reveal ubiquity of twist in chromosphere

RBE: Rapid Blueshifted Event

De Pontieu et al. 2014 Science, Rouppe van der Voort et al. 2015 ApJL 799

Rouppe van der Voort et al. 2015 ApJL 799

Is there evidence for Alfven wave dissipation?

IRIS/Hinode/SDO-AIA observations discover tell-tale signs of previously undetected heating mechanism

See also talk by Patrick Antolin

courtesy of Joten Okamoto & Patrick Antolin

Impact of the chromosphere on the outer atmosphere What drives the dynamics of the transition region spectral lines?

Active region plage: dynamic fibrils (type I spicules) often associated with Si IV brightenings

Skogsrud et al., 2015

Impact of the chromosphere on the outer atmosphere What drives the dynamics of the transition region spectral lines?

Active region plage: dynamic fibrils (type I spicules) often associated with Si IV brightenings

Skogsrud et al., 2015

Numerical Simulations

2D/3D radiative MHD simulations show that magneto-acoustic slow-mode shocks in low-beta environment lead to dynamic fibrils and quiet Sun mottles

(Hansteen et al., 2006, De Pontieu et al., 2007, Rouppe van der Voort et al., 2007, Martinez-Sykora et al., 2009)

Dynamic fibrils (type I spicules) often associated with Si IV brightenings Skogsrud et al., 2015

Transition Region response to dynamic fibrils: Si IV brightening, blueshift and line broadening

Si IV spectra clearly related to magneto-acoustic shock waves in chromosphere

Combined λ -t plots of Mg IIh and Si IV reveal a frequent connection of Si IV emission/ broadening with shock passage in magnetized regions.

Skogsrud et al., 2015

Transition Region response to dynamic fibrils: Si IV brightening, blueshift and line broadening

Correlation between chromospheric shocks and TR line broadening also in MHD simulations

Correlation much stronger in MHD simulations with non-equilibrium ionization of Si 3+

Combined λ -t plots of Mg IIh and Si IV reveal a connection of Si IV emission/broadening with De Pontieu et al., 2015 shock passage in magnetized regions

Non-equilibrium ionization leads to Si IV formation over wider temperature range

Non-equilibrium ionization

Ionization equilibrium

De Pontieu et al., 2015

Emission

Non-equilibrium ionization leads to Si IV formation over wider temperature range

Wider temperature range leads to larger range of velocities along line-of-sight, and thus non-thermal line broadening, especially during shock passage De Pontieu et al., 2015 Impact of chromospheric shocks on TR may help explain apparent invariance of non-thermal line broadening to spatial resolution

Vy does IRIS (0.33 arcsec, 2.7 km/s) not resolve the non-thermal line broadening of Si IV (~20 km/s) already observed by SUMER (2 arcsec, 8 km/s)? De Pontieu et al., 2015

Rebinning IRIS data to lower resolution confirms the invariance to spatial resolution

Si IV 1403Å Non-Thermal Line Width [km/s]

Chromospheric spicules are heated to transition region temperatures

Ca II H spicules are the initial, rapid phase of violent upward motions Followed by Mg II k and Si IV spicules which are the extensions of Ca II H

Chromospheric spicules are connected with coronal propagating disturbances

Chromospheric and coronal heating are linked on global scales

But on small, subarcsec scales, previous observations did not find a good correlation (e.g., moss brightness and Ca II k emission in plage, De Pontieu et al., 2003)

Connection between chromospheric and coronal heating in plage

arcsec Footpoints of loops show tight connection between moss brightness and chromospheric dynamics (dynamic fibrils)

Connection between chromospheric and coronal heating in plage

Footpoints of loops show connection between "filled in profiles" and chromospheric heating i.e., connection between chromospheric heating and coronal pressure?

Pushing a toy model to its limits: constraints on plage properties

Investigating sensitivity of plage Mg II k profiles to hydrostatic model properties

Impact of coronal nanoflares and non-thermal electrons on the chromosphere

IRIS often observes short-lived brightenings (<30s) at footpoints of hot loops: signature of small-scale heating events in corona

SDO, I.5 MK

IRIS, 0.08 MK

Chromosphere and transition region sensitive diagnostics of coronal heating processes

See also talk by Paola Testa

Testa et al., Science, 2014

Outline of the Talk

I.Brief introduction to chromospheric dynamics and morphology

2.Chromospheric Heating

- Plage heating: ~6,500 K
- Heating from braiding
- Heating from ion-neutral interactions
- Heating from wave dissipation: Alfven waves, resonant absorption

3. Connections to outer atmosphere

- Impact of chromosphere on transition region
 - shocks, non-thermal line broadening
 - jets and spicules: heating to TR (maybe coronal) temperatures

Correlation between chromospheric and coronal heating