Fine-scale structuring, braiding and heating of loops from thermal and wave instabilities

Patrick Antolin

G. Vissers¹, T. Okamoto², T. Pereira¹, B. De Pontieu³, L. Rouppe van der Voort¹, H. Uitenbroek⁴, T. Van Doorsselaere⁵, T. Yokoyama⁶, D. Schmit³, E. Scullion⁷

¹: U. of Oslo

& ISSI Team on coronal rain*

²: Nagoya U. ³: LMSAL

⁴: NSO National Astronomical Observatory of Japan

⁵: KU Leuven

⁶: U. of Tokyo

⁷: Northumbria U.

*<u>http://www.issibern.ch/teams/coronalrainobserve/</u>

Outline

- 1. Role of fine structure in the solar atmosphere
- 2. Thermal instability in the solar corona: a tracer and a mechanism for fine structure
 - Coronal rain & prominences
- 3. Alfvénic waves & instabilities: strands, current sheets, reconnection, turbulence & heating (nanoflares)
 - corona, prominences, spicules

Fine-scale structure in the solar corona

How do small-scale processes translate into very large scales, and vice-versa?
 → organisation of the magnetic field in the solar corona

Some observational facts:

- Long lifetimes of coronal loops (Reale & Peres 2000; Warren et al. 2003, Klimchuk 2006)
- Broad DEMs: **multi-temperature** profiles (Warren et al.,)
- Unresolved motions (De Pontieu+ 2015, D. Brooks & Hara-san's talk)
- Tendency for **strand-like structure** at higher spatial resolution
- → Ensemble of unresolved independently heated strands? (Klimchuk 2006, Reale 2010, Brooks et al. 2013, Peter et al. 2013, Cirtain et al. 2013, Winebarger et al. 2013)
- → Strands ←→ reconection & nanoflares? (Parker 1988, Vekstein 2009)

Patrick Antolin

Loops VII 2015

Fine-scale structure in the corona

Thermal instability phenomena (prominences & coronal rain) provide the highest resolution windows into fine-scale structure in the corona

Not only a tracer but also a mechanism of fine-scale generation What is the role of thermal instability in the corona? What can we learn from it about coronal heating?

Thermal instability in coronal loops

State of thermal non-equilibrium: A coronal loop subject to footpoint heating can be thermally unstable (Mok+ 1990, Antiochos & Klimchuk 1991, van der Linden & Goosens 1991, Wiik+ 1996, Antiochos+ 1999, Karpen+ 2001, Müller+ 2003-4, Mendoza-Briceño+ 2005, Reale+1996-97, Mok+ 2008, Xia+ 2011)

Patrick Antolin

Loops VII 2015

Return flows of chromosphere–corona Mass Cycle: prominence and coronal rain

(McIntosh et al. 2012)

(1) Hot mass/Magnetic flux Up:
Spicules, footpoint upflows, flux emergence (e.g., bubbles/plumes)
(2) Cool mass down:
Prominences, Coronal rain
Mass flux: 1 - 5 × 10⁹ g s⁻¹
(Antolin&Rouppe v.d.Voort 2012, Liu+2012, Antolin+ 2015)

Patrick Antolin

Relation to coronal heating: variability

(Antiochos+1999, Karpen+2001, Müller+2003-4, Mendoza-Briceño+ 2005, Antolin+ 2010, Susino+ 2010, Peter+ 2011, Mikiç+ 2013)

Periodicity in the occurrence of coronal rain: link to heating parameters (geometry, spatial & temporal distribution of heating) Important information about the heating characteristics (and mechanisms) cf. Amy's talk

Relation to coronal heating: heating scales

Case study: multi-wavelength observations

Antolin+ (2015, ApJ 806, 21)

Instrument & Wavelengths	Dataset	Spatial (& spectral) resolution	Cadence [sec]	Formation temperature [log K]
SST/CRISP Ha	1	0.14" (0.085 Å)	9	3.3-4.2
Hinode/SOT Ca II H	2	0.2"	4.8	4-4.2
IRIS/SJI Mg II 2796 Å	2	0.4"	36.5	4-4.2
IRIS/SJI C II 1330 Å	2	0.33"	36.5	4.3
IRIS/SJI Si IV 1400 Å	2	0.33"	36.5	4.8
SDO/AIA He II 304 Å	1 & 2	1.2"	12	5
SDO/AIA Fe IX 171 Å	1 & 2	1.2"	12	5.9
SDO/AIA Fe XII 193 Å	1	1.2"	12	6.2

Dataset 1: 26/06/2010, 10:03-11:40 UT, centred on AR 11084 at [-875",-319"]
Dataset 2: 29/11/2013, 22:30-23:30 UT, centred on AR 11903 at [944",264"]

Clumpy vs. continuous

Patrick Antolin

10

Multi-stranded structure

Multiple ripples next to large clumps: highly reminiscent of the MHD thermal mode (entropy mode) (Van der Linden & Goossens 1991). Characteristic sizes (widths & lengths) in rain may be defined by spatial structure of unstable modes (Field's length)

Cooling through TR lines

Patrick Antolin

12

Multi-thermal and multi-stranded

- Differences in structure appear at the smallest scales: chromospheric to TR temperature transition must exist at scales below Iris resolution (0.33")
- Strand-like structure extends to TR range

Patrick Antolin

Instrument & filter	Dataset	Width [arcsec]	Length [arcsec]	Blobs / min
CRISP - $H\alpha$	1	0.3 ± 0.093	3.85 ± 5.77	5.
SOT - Ca II H	2	0.61 ± 0.17	1.05 ± 0.51	9.7
SJI - 2796	2	0.8 ± 0.19	2.49 ± 1.97	2.6
SJI - 1330	2	0.7 ± 0.15	1.75 ± 1.35	3.7
SJI - 1400	2	0.8 ± 0.17	1.76 ± 1.26	4.6
AIA - 304	2	1.56 ± 0.15	10.8 ± 6.5	2.2
AIA - 304	1	1.4 ± 0.7	12.7 ± 9.2	1.2
AIA - 171	1	2.45 ± 0.81	5.5 ± 5.2	1.2
AIA - 193	1	2.69 ± 1.07	7.4 ± 4.6	1.2

Tip of the iceberg?

- Significant difference in clump widths in AIA from TR to coronal temperatures (~0.5") width of PCTR?
- Shape of width distribution is independent of temperature: sharp peak + long tail. Strong increase in clump numbers at lower temperatures but especially at higher resolution
- Tip of the iceberg scenario? (Antolin & Rouppe 2012, Fang+ 2013, Scullion +2014)
- Lengths distribution is more random: reflects other factors at play (longitudinal) -> X. Fang's poster

Resolution & temperature intertwined

Discussion

(Elemental scales)

- * Main limiting factor: resolution
- Strand-like structure extends into TR range
- Existence of elemental structures?
- Existence of elemental structures? Does thermal instability may play a main role in the morphology MHD thermal mode (Field 1965, Van der Linden * Does thermal instability may play a main role in the morphology
- & Goossens 1991): seed for density enhancements in neighbouring loops
- Flux freezing & high Alfvén speed: can affect plasma up- and downstream

same resolution, drastic temperature change: insignificant width change

significant improvement in resolution, no drastic temperature change: significant width change

Conclusions (1/2)

Thermal instability in the solar corona: strongly link to heating mechanisms

- Observed EUV common variability linked to catastrophic cooling (Froment's talk)
- Persistent redshifts (clumpy structure becomes continuous at low heights)
- Multi-temperature phenomenon: chromospheric & TR emission
- Fast-slow 2-step cooling transition observed: phase transition to thick regime?
- Multi-stranded structure in TR and chromospheric lines: strong inhomogeneity where chromospheric to TR temperatures occurs at <0.3"
- Significant increase of number at higher resolution. Tip of the iceberg scenario?
- Elemental strand-like structure of effect from thermal instability? (MHD thermal mode? pinching from flux freezing?)

Observations of Alfvénic MHD waves in the solar atmosphere

Transverse MHD waves ubiquitous in the solar atmosphere → small amplitude (~km/s), few min periods What is the role of such waves in the solar atmosphere?

(Tomczyk+ 2007, Okamoto+ 2007, De Pontieu+ 2007, Lin 2011, McIntosh+ 2011, Morton+ 2011, Antolin & Verwichte 2011, Okamoto & De Pontieu 2012, Hillier+ 2013, Schmieder+ 2013, Morton & McLaughlin 2014, De Pontieu+ 2014, Anfinogentov+ 2013, Nisticó+ 2013)

Patrick Antolin, NAOJ

Loops VII 2015

IRIS/Hinode observations

Okamoto et al. (2015, accepted), Antolin et al. (2015, accepted)

- 9-11 UT, 19 October 2013
- 4-step sparse raster
- SJI Si IV & Mg II (10 s), SG (20 s)

- Ca II H filtergrams at 0.2" res.
- Cadence: 8 s

IRIS

IRIS/Hinode observations

- Thread-like structure
- Transverse oscillations
- Signatures of damping
- Strong transverse coherence in the plane-of-the-sky (POS) motion and the line-of-sight (LOS) velocity

Hinode/SOT

Height along slit (km)

LOS velocity (km/s)

1,000 500

-500 -1,000

IRIS/Hinode observations

Patrick Antolin

20

Resonant absorption

Prominence thread

Resonant absorption

 Very successful in explaining observed fast and frequency dependent damping (Nakariakov+1999, Verth+ 2010, Arregui & Ballester 2011)

Problems: - resonant layer is too small in order to detect the azimuthal flow - efficient for mode conversion but inefficient for heating (phase mixing)

Numerical model

- 3D MHD simulations of a flux tube oscillating with the kink mode. CIP-MOCCT code (Kudoh et al. 1999) with constant resistivity and viscosity spicule
- Grid (x,y,z): (512, 256, 100) (1024, 512, 100) $S, R \approx 10^4 10^7$
- Initial condition: sinusoidal velocity perturbation in x-direction

				$B_e \xrightarrow{z} B_e$
parameters	coronal loop	prominence	spicule	Amplitude:
$\frac{T_i}{T_e}, T_i$ [K]	1/3, T	1/100, T	1/100, T	$ \begin{array}{c c} \ell \\ \ell \\$
$\frac{ ho_i}{ ho_e}, ho_i$ [cm	3, ρ	10, <i>ρ</i>	50, ρ	$L = 200 R$ $k = \frac{\pi}{200} \sim 0.015$
B [G]	22.8 G	18.6 G	14.5 G	$\kappa = \overline{L} \approx 0.015$
С	1574	776	255	<i>/y</i> transition region
$P \approx \frac{2L}{c_k} [s]$	525	256	245	- Optically thin: FoMo (Antolin & Va
eta_i	0.02	0.001	0.01	 Doorsselaere 2013) Optically thick: RH (Uitenbroek 201
ℓ [R]	0.2-0.8	0.4	0.4	https://wiki.esat.kuleuven.be/Fo
				24

Patrick Antolin, NAOJ

model

Two mechanisms combined

Model: Uchimoto+. 1991; Karpen+ 1993, Otman+ 1994; Ziegler & Ulmschneider 1997; Terradas+ 2008, Soler+ 2010; **Obs**: Foullon+ 2011; Ofman & Thompson 2011, Berger+ 2010).

Resonant absorption & onset of K-H instability

• Onset of instability ~ 1-3 P

$$\frac{v_0}{v_{A_i}} > \frac{\pi}{m\sqrt{2}} \frac{R}{L} \sqrt{1 + \frac{\rho_i}{\rho_e}}$$

- KHI vortices obtain momentum from resonant layer 🐒
- Non-uniform boundary layer widens, apparent mixing of plasma (Fujimoto & Terasawa 1994)
- Multiple vortices & current sheets (Ofman 1994, 2009)

z - Current time = 564 s esu cm⁻² s⁻¹] **X**: T > 1.01 x 10⁶ K 'rominence 15 1.5 model 10 5 ¥_ 1.0 -5 0.5 -10 0.0 1.0 1.5 -1.5-1.0-0.50.0 0.5 x/R

BRAIDING

• Vortices degenerate into turbulence, producing twisted current sheets which may be preferential locations for reconnection

The role of the instability

Density snapshots

"The great wave off Kanagawa" by Hokusai (1830)

Vortices (and turbulence) are generated by the Kelvin-Helmholtz instability. A similar instability generates waves in the ocean

The instability couples with resonant absorption to:

- Heat the thread significantly
- Enlarge the azimuthal flow from the resonance: IRIS is able to detect it

Patrick Antolin

Time

Forward modelling

- Protruding eddies appear as distinct emission features
- Eddies <-> roll-ups in 3D
- Shuffling of field lines: twisting and possible braiding of loops from magnetic reconnection (Lapenta & Knoll 2003)
- Widening of boundary layer does not show up in emission line flux: constraint for seismology estimates (Soler et al. 2014)

$G_{171}(T,n)\rho^2$ for coronal model

Patrick Antolin, NAOJ

0.8

0.6

0.4

Loops VII 2015

Strand-like structure

- Roll-ups (eddies) along the loop + fine scale+ line-of-sight effects
 strand-like or thread-like structure in intensity images
 - → KHI vortices <—> prominence threads?
- Lifetime for 1 strand ~ 1 period. Widths: 0.01 R 0.5 R
- Apparent crossing of strands/threads

Prominence modelling

Forward modelling of Mg II h & k and Ca II H & K with RH code

• Emission comes mostly from ring, mostly optically thin. The prominence core is optically thick in Mg II h&k (temperature effect due to LTE formation)

Source function with RH

 $I_{\lambda,\mathrm{ray}}^{\mathrm{OT}} \propto \int_0^l G_\lambda(T,n) n_e^2 dl' \quad G_\lambda(T,n) \approx E_{ij} A_{ij} \frac{N_j(X^{+m})}{N(X^{+m})} \frac{N(X^{+m})}{N(X)} \frac{1}{N_e}$ $\int_{0}^{l} G_{\lambda}(T(t), n(t)) n_{e}(t)^{2} dl' = \mathrm{OT} \times \int_{0}^{L_{\mathrm{max}}} G_{\lambda}(T(0), n(0)) n_{e}(0)^{2} dl'$ such that Loops VII 2015

Spectral signatures

- Azimuthal flows with torsional character (m=1 torsional Alfvén waves) are created around the Be boundary due to resonant absorption
- Out of phase behaviour between azimuthal flows (Doppler component) and transverse flows (plane-of-the-sky component)

Fe IX 171 intensity for 45° LOS 1.0 2 (perp. to LOS)/R 0.8 0.6 0 0.4 -1 0.2 0.0 -2 Resonant absorption & Phase mixing LOS velocity for 45° LOS [km/s] 2 10 (perp. to LOS)/R 0 0 -10

0 200 400 600 800 10001200

Time [s]

-2

Observational signatures

45° LOS plane

Patrick Antolin, NAOJ

IRIS/Hinode Observations explained

Okamoto+ (2015, accepted) Antolin + (2015, accepted)

Patrick Antolin, NAOJ

IRIS/Hinode observations: spicules

Antolin, Schmit, De Pontieu, Pereira (2015, in preparation)

Time 1701 s

Spicule model

Strand-like structure in spicules may correspond to KHI vortices

Patrick Antolin

37

Loops VII 2015

Spicule model vs observations

Intensity Mg II 2796.35 Optically thin case Resolution = 0.0 R Doppler velocity Mg II 2796.35 Optically thin case Resolution = 0.0 R

Antolin, Schmit, De Pontieu, Pereira (2015, in preparation)

Conclusions (2/2)

- Transverse MHD waves may play an important role in the heating and morphology of structure in the solar atmosphere. Mainly 2 mechanisms at play:
- * KHI combines with resonant absorption: energy extracted from resonance layer and dissipated through viscous and ohmic heating
- * Turbulence generation: small-scale enhanced emissivity regions with large vorticity and strong currents: vortices and current sheets are created along loop: heating, possible reconnection leading to braiding.
- KHI fine structure + line-of-sight effects = strand-like structure in intensity images (Antolin+ 2014). Observed threads /strands = KHI vortices?
- Characteristic out-of-phase behaviour between POS motion and LOS velocity + strong dynamic coherence across the flux tube: match with observations (Okamoto+ 2015, Antolin+ 2015, accepted)
- Model valid for **corona, prominences and spicules** (Antolin+, 2015 in prep.)

Thank you!