Coronal loop diagnostics – developments and limitations

Dr Peter Young NASA Goddard Space Flight Center, USA George Mason University, USA

Overview

- Coronal density diagnostics
 - update of Young et al. (2009) results
- Warm 1 MK loops
 - review of some EIS results
 - new results from IRIS on sunspot loops
 - joint EIS-IRIS sunspot loop data-set

Coronal densities

- The best EIS coronal density diagnostics come from Fe XII and Fe XIII
 - Fe XII: $\lambda 186.88^{b}/\lambda 195.12$ and $\lambda 196.64/\lambda 195.12$
 - Fe XIII: $\lambda 203.82^{b}/\lambda 202.04$ and $\lambda 196.54/\lambda 202.04$
- Young et al. (2009, A&A) found large differences between densities derived from the two ions
- Since then...
 - CHIANTI has gone from v5.2 to v8.0 (coming soon!)
 - Changes to EIS radiometric calibration have been suggested by Del Zanna (2013) and Warren et al. (2014)
- Are the problems resolved?

New atomic data: before

New atomic data: after

Effect of DZ13 calibration

Effect of W14 calibration: before

Effect of W14 calibration: after

Improvement for Fe XIII with W14

Improvement for Fe XIII: W14

Fe XII & Fe XIII densities: summary

New atomic data – small improvement

- Fe XIII λ 203.82/ λ 202.04 is worse at high density
- Otherwise, slightly better agreement between Fe XII & XIII, esp. at low densities

Calibration

- Del Zanna (2013) makes things worse (esp. Fe XII λ 186.88/ λ 195.12)
- Warren et al. (2014) gives very good agreement for Fe XIII ratios...
- ...but worsens discrepancy between Fe XII & Fe XIII

<u>Summary</u>

- Are calibration changes to SW channel justified?
- High density discrepancy for Fe XII a problem (excitation from ²P term?)

1 MK active region loops

- Consider loops with bright footpoints in 171 channel
- Footpoints can either terminate in
 - sunspots (penumbra or umbra)
 - or AR plage
- LOS velocity measurements
 EIS & IRIS
- Mg/O abundance
- Density

Propagating Coronal Disturbances

- Warm loops well-known to show propagating intensity fronts at their footpoints
- Periods of 2-10 mins
- Propagation velocity ~ 100 km/s
- Interpretations:
 - slow magnetoacoustic waves
 - quasi-periodic upflows

Spectroscopy: temperature structure

Young et al. (2007, PASJ, 59, 727)

Spectroscopy: loop densities

- Mg VII λ 280.75/ λ 278.39 good diagnostic at T=0.7 MK
- Generally gives $\approx 2-3 \times 10^9 \text{ cm}^{-3}$ at loop base

Young et al. (2012, ApJ)

<u>See also</u> Young et al. (2007, PASJ) Tripathi et al. (2009, ApJ) Gupta et al. (2015, ApJ)

Spectroscopy: velocity measurements

Warren et al. (2011, ApJ)

–40 –20 0 20 4 Velocity km s⁻¹

- plage loops have velocities 20 km/s at base, decreasing with temperature
- loops are distinct from the outflow regions

Young et al. (2012) result

- Study of LOS velocities in plage loop in different ions.
- Loop fine structure revealed in velocity.

Sunspot loop flows

• Del Zanna (2009, A&A)

Redshift (km/s)

+10

+20 +30

+35

• Loops from large sunspot (5-Jan-2007)

0 V 192.91 Å Si VI 246.00 Å

Fe IX 188.50 Å

Fe X 257.26 Å

Slightly different pattern to plage loop velocities

lons

Fe IX

Fe VIII, Si VII, Mg VII

Fe VII, Si VI, Mg VI

Cooler ions

Sunspot loop flows seen by IRIS

- Kleint et al. (2014, ApJL)
 - bursts at footpoints of AIA 171 loops
 - line profiles extend to +200 km/s (supersonic downflows)
 - identified as coronal rain

Time-sequence in Si IV & O IV

- Short-lived bursts seen at footpoints, with extended red wings
- Identified with coronal rain

- Also see sustained emission at \approx +100 km/s
 - best seen in O IV line

Si IV: logT=4.90 O IV: logT=5.15

Oscillations studied

Sunspot loops of 9-Jul-2014

- A raster observation allows spatial extent of loops to be determined
- Note that loops are entering the sunspot <u>umbra</u>

courtesy of Pradeep Chitta (MPS)

Sunspot loops of 9-Jul-2014

- Loop leg shows +100 km/s redshift
- Footpoint shows +10 km/s redshift

courtesy of Pradeep Chitta (MPS)

3-Oct-2014 joint EIS-IRIS data-set

- Many loops terminating in sunspot umbra
 - faint fan loops on right side
 - brighter, curved loops on left side
 - footpoints clearly seen in IRIS 1400 channel

AIA 171 and IRIS SJI 1400 movie

- Sunspot oscillations clearly seen in IRIS movie
 - all bright structures are affected, but best seen in fan loop

Double-Gauss fit to O IV $\lambda 1401.16$

- Force a 2-Gaussian fit to O IV
 - one for "rest" component
 - other for "supersonic" component

The 100 km/s component

R00, 23:04:36

• For each raster in sequence (24 frames) make images in the two Gaussian components

- Fan loop (right-side) does not have a high-velocity component
- Fan loop fairly stable
- Dynamic loops migrate to penumbra with time

R00, 23:04:36

O IV densities

- λ 1399.77/ λ 1401.16 and λ 1404.78/ λ 1401.16 are density diagnostics
- Average over spatial areas in fan loop and "supersonic" loop

• Not much difference: densities around log $N_e = 10.1$ to 10.4 [log T=5.15]

O IV line profiles

• IRIS λ 1401.16 and EIS λ 279.94 lines

O IV line profiles

• IRIS λ 1401.16 and EIS λ 279.94 lines

O IV line profiles

• IRIS λ 1401.16 and EIS λ 279.94 lines

Extension to higher temperatures (EIS)

• Is the 100 km/s component seen at higher temperatures?

- <u>No</u> velocities and widths decrease with temperature
- O IV represents a special temperature for downflowing plasma?

EIS densities

- Mg VII λ 280.75/λ 278.39
- Selecting (approximately) same spatial regions as IRIS O IV regions

	O IV	Mg VII
Fan loop	10.2	9.3
Supersonic loop	10.2	9.6

• $\Delta \log T = 0.6$, so \approx constant pressure

[Note: O V λ 248.46/ λ 192.90 can be measured, but new calibration gives ratios outside sensitivity range.]

Mg/O abundance

• O VI & Mg V-VII can be used to derive <u>FIP bias</u> in loop legs

Feature	Mg/O	FIP bias
Actual photosphere	0.06	1.0
EIS photospheric	0.03	0.5
Fan loop	0.226	3.8
Supersonic loop	0.158	2.6

- The IRIS movie demonstrated the supersonic loops are transient (~ 1 hour)
- EIS data show loops have significant FIP bias
 - disagrees with Widing & Feldman (2001) FIP bias evolution

Summary

Coronal density diagnostics

- Discrepancies still found for Fe XII & Fe XIII
- Revised calibrations have negative effect on ratios

<u>1MK loops</u>

- Excellent "laboratories" for spectroscopic measurements
- Good opportunities for joint EIS-IRIS science [please run IHOP 267!]
- IRIS reveals loop footpoints in great detail
 - complex dynamics and structure
- A spectroscopic survey of plage and sunspot loops would be worthwhile [PhD project?]

- See poster P1.22 (A. Ghosh)
- Speak to V. Andretta

Tian et al. (2014) observation

• Do not see the strong horizontal streaks seen by Kleint et al. (2014)

See also Straus et al. (2015, arXiv:1507.04279)

Loops Workshop VII, 21-23 July 2015

Straus et al. (2015) results

4-Oct-2014 AIA movie

• AIA 171 movie, 00:00-03:00 UT, 2 min cadence

JHelioviewer

O IV velocity components

• Histograms of two O IV velocity components

