Physical Plasma Parameters Along The Full Loop Length of a Coronal Loop
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Abstract: Coronal loops are the basic structures of the solar corona. Understanding of the physical

mechanisms behind the loop heating, plasma flows, and filling are still considered a major challenge in solar
physics. This problem makes coronal loops an interesting target for detailed study. We present spectroscopic
observations of a full coronal loop i1n various spectral lines as recorded by the Extreme-ultraviolet Imaging
Spectrometer on-board Hinode. We derive physical plasma parameters such as electron density, temperature, and
filling factors along the loop length from one footpoint to the another. The obtained parameters indicate that loop
has asymmetric density distribution with respect to gravitational stratification of the solar atmosphere. These
new measurements of physical plasma parameters may provide important constraints on the modeling of the
mass and energy balance in coronal loops.

Observations: A coronal loop from one footpoint to another was detected in an active region, AR 11131,

observed on 2010 December 11 with EIS (Culhane et al. 2007) on board Hinode. Observations were carried out
with the 2" slit with an exposure time of 35 s, and a sparse raster of the region was created with a step size of 3".
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| Figure 1. Top left image: a
portion of the Sun’s disk
showing the active region AR
11131 in the 131 A passband.
The bigger box indicates the
region rastered by
EIS/Hinode. The smaller box
1s shown 1n subsequent 1images
taken in the AIA 131 A, 171
A, and 193 A passbands, as

labeled.
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Figure 2. Traced coronal loop
from left footpoint A to right
_ footpoint B as seen in the Mg VII
1 27839 A (blended with Si VII
: 278.44 A) spectral line (top left),

e - B | Fe VIII 186.6 A (top right), Fe X
0 20 0 s w00 1%0 20 184 5 A (bottom left), and Fe XII
195.12 A (blended with Fe XII
195.18 A; bottom right). The
traced loop structure from Mg VII
278.39 A is also overplotted with a
continuous line in all of the other
panels.
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Figure 4. Intensity maps of the coronal loop obtained in the Mg VII 278.39 A (left panel) and
280.75 A (middle panel) spectral lines. The intensity ratio of the two spectral lines is sensitive
to the electron density, and the variation is obtained from CHIANTI version 7.1 (right panel).

A) Density along the loop length:

998 1 Figure 5. Density
LEJ | 1 measured along the
~ } { coronal loop from
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B) Temperature along the loop length:
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C) Filling factor along the loop length:
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D) Comparison with hydrostatic equilibrium:

The electron density profile for a loop in hydrostatic equilibrium 1s given by

k, T, T
ne(h) = n,(0) exp | — f where /\(Y;,) _ b ~ 46[—}[1%?1].
ANT) | umpy g | MK

Figure 8. Comparison of
density as  measured
using the Mg VII 280.75
and 278.39 A line ratio
(plotted with a diamond
symbol) from footpoint
A to B with the density
expected from a
hydrostatic model at
temperature 0.73 MK
obtained from projected
(dashed line) and radial
(dot—dashed line) heights
of the loop.
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Summary:

We found that the observed densities 1n the left segment of the loop were lower (1.e.,
underdense) than that expected from the 1sothermal hydrostatic model. However, it
was higher ( 1.e., overdense) for the right segment of the loop (see Figure 8). This
suggests a non-symmetric density profile along the loop. The results obtained here for
the complete loop provide an opportunity for comparison with various loop models.
The near 1sothermal nature of the loop along with the small filling factor and
overdensity (super-hydrostatic) are in agreement with the impulsive heating model
(Cargill & Klimchuk 2004; Klimchuk 2006). However, the observations presented
here show the overdensity in only one part of the loop. Moreover, the quasi-steady
footpoint heating model, which drives the thermal non-equilibrium solutions, may
explain the observed properties of the loop studies here (e.g., Lionello et al. 2013;
Mikic et al. 2013). Therefore, 1t will be interesting and important to measure physical
properties such as densities, flows, and geometries of many well-observed coronal
loops and compare their properties with various loop heating models to make generic
conclusive statements on their heating and dynamics.
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